CN115803626A - 用于将液滴加载到纳米孔中的方法 - Google Patents

用于将液滴加载到纳米孔中的方法 Download PDF

Info

Publication number
CN115803626A
CN115803626A CN202180027865.5A CN202180027865A CN115803626A CN 115803626 A CN115803626 A CN 115803626A CN 202180027865 A CN202180027865 A CN 202180027865A CN 115803626 A CN115803626 A CN 115803626A
Authority
CN
China
Prior art keywords
analyte
interest
array
wells
droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180027865.5A
Other languages
English (en)
Inventor
K·莱尔斯
E·佩雷斯-鲁伊斯
J·拉默廷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office Of Research And Development University Of Leuven
Abbott Laboratories
Original Assignee
Office Of Research And Development University Of Leuven
Abbott Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office Of Research And Development University Of Leuven, Abbott Laboratories filed Critical Office Of Research And Development University Of Leuven
Publication of CN115803626A publication Critical patent/CN115803626A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0642Filling fluids into wells by specific techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0893Geometry, shape and general structure having a very large number of wells, microfabricated wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0896Nanoscaled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Clinical Laboratory Science (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明提供了一种向孔中加载液体液滴或其一部分的方法,其中每个液体液滴包含固体支持物和洗涤剂或表面活性剂,使得所述洗涤剂或表面活性剂减小所述液体液滴与所述孔之间的接触角。还提供了一种检测并定量样品中的感兴趣分析物的方法,其涉及根据前述方法向阵列中的孔中加载液体液滴,其中所述液体液滴包含捕获在固体支持物上的分析物。

Description

用于将液滴加载到纳米孔中的方法
相关申请的交叉引用
本申请要求2020年3月10日提交的美国临时专利申请号62/987,639的权益,所述临时专利申请通过引用并入本文。
背景技术
检测低浓度蛋白质生物标记物的能力可以在更早的阶段区分健康和疾病状态,并监测疾病进展,并且因此对于改进诊断工具至关重要。在飞升尺寸的孔中检测单分子是一种用于在超灵敏浓度下鉴定新的诊断蛋白质标记物的很有前途的方法。在基于珠粒的数字测定中,可以通过使用磁性珠粒将单个靶标限制在纳米孔阵列中来数字检测靶蛋白质生物标记物,并且可以通过产生荧光信号的酶来检测捕获的靶分子。数字微流体(DMF)是一种很有前途的技术,它涉及在二维表面上操纵离散小液滴,并且已用于往返运送悬浮珠粒的液滴以加载到纳米孔阵列中。然而,基于珠粒的数字测定的挑战之一是将单个珠粒有效地加载到飞升尺寸的腔室中。
仍然需要用于将含有悬浮珠粒的液滴加载到纳米孔阵列中的改进方法。本公开提供了此类方法。
发明内容
本发明提供了一种向孔中加载液体液滴的方法,所述方法包括:(a)使孔阵列与液体液滴接触,其中(i)所述阵列的一个或多个孔具有足够的尺寸以在其中加载所述液体液滴的一部分,并且(ii)所述液体液滴的每个部分包含固体支持物和洗涤剂或表面活性剂;(b)在所述孔阵列上方移动所述液体液滴,其中所述洗涤剂或表面活性剂减小所述液体液滴与所述孔之间的接触角,并且由此将所述液体液滴的一部分加载到所述阵列的每个孔中;(c)从所述阵列的表面去除未加载到孔中的任何部分的所述液体液滴;以及(d)密封经加载的孔。
本公开还提供了一种检测并定量样品中感兴趣分析物的方法,所述方法包括(a)提供含有感兴趣分析物的第一液体液滴;(b)提供含有固体支持物的第二液体液滴,所述固体支持物包含与所述感兴趣分析物特异性结合的第一结合成员;其中所述第一液体液滴或所述第二液体液滴还包含洗涤剂或表面活性剂;(c)使用能量施加力来操纵所述第一液体液滴和所述第二液体液滴以产生包含一个或多个液体液滴的液滴混合物,所述液体液滴中的每一个包含捕获在所述固体支持物的表面上的感兴趣分析物;(d)根据本文所述的方法向阵列中的孔中加载所述一个或多个液体液滴;以及(e)检测并定量所述感兴趣分析物。
附图说明
图1A和图1B是加载有包含洗涤剂Pluronic F68的液滴的纳米孔板的角落(图1A)和中心(图1B)的图像。
图2A和图2B是加载有包含洗涤剂Tetronic 90R4的液滴的纳米孔板的角落(图2A)和中心(图2B)的图像。
图3A和图3B是加载有包含洗涤剂Tween 20的液滴的纳米孔板的角落(图3A)和中心(图3B)的图像。
图4A和图4B是加载有包含洗涤剂Tween 80的液滴的纳米孔板的角落(图4A)和中心(图4B)的图像。
图5A和图5B是加载有包含洗涤剂Triton X 100的液滴的纳米孔板的角落(图5A)和中心(图5B)的图像。
具体实施方式
本公开至少部分基于以下发现:在单分子检测方法中向含有微粒的液体液滴中添加表面活性剂或洗涤剂改进了将液滴加载到纳米孔阵列上。据信,根据本文所述的方法使用表面活性剂在液滴表面上赋予亲水性外观,从而更容易润湿阵列的孔。表面活性剂或洗涤剂的存在还释放“Cassie状态”中的滞留空气,所述状态描述了液体在复合材料表面上的有效接触角θc(Cassie,A.B.D.和Baxter,S.,Transactions of the Faraday Society,40:546(1944))。表面活性剂或洗涤剂减小了液滴和纳米孔的接触角,从而产生更有效的液滴加载和孔润湿。因此,本公开提供了向孔中加载液体液滴或其部分的方法,其中所述液体液滴或其部分包含固体支持物和洗涤剂或表面活性剂。
本文还提供了用于测量或检测生物样品中存在的感兴趣分析物的方法。在此类方法中,可以将含有感兴趣靶分析物的样品液滴与含有珠粒(诸如磁性珠粒)的液滴合并,在所述珠粒上附接有与样品中存在的感兴趣靶分析物特异性结合的第一特异性结合成员。合并产生单个液滴,所述单个液滴可以温育足够长的时间以允许第一特异性结合成员与样品液滴中存在的感兴趣分析物结合。任选地,可以搅拌所述单个液滴以促进样品与第一特异性结合成员的混合。混合可以通过来回移动单个液滴、在多个电极上方移动单个液滴、分裂液滴并且然后合并液滴或使用SAW等来实现。接下来,可以将单个液滴经受磁力以将珠粒保留在装置中的某个位置,同时可以将液滴移开至废物室或垫并用含有第二结合成员的液滴替换。可以可检测地标记第二特异性结合成员。标记可以是可以光学检测的任何标记。例如,标记可以是荧光标记。在添加第二结合成员之前,可以通过将洗涤缓冲液的液滴移动至使用力(例如,磁力)保留珠粒的位置来进行任选的洗涤步骤。珠粒可以或可以不重悬浮在洗涤缓冲液中。如果使用磁性珠粒,则可以对磁性珠粒施加磁力并将洗涤缓冲液运送到废物位置。在足以使第二特异性结合成员结合与第一结合成员结合的感兴趣分析物的一段时间之后,可以将含有第二特异性结合成员的液滴移开,同时将珠粒保留在所述位置。可以使用洗涤缓冲液的液滴洗涤珠粒。在洗涤步骤后,可以将含有经标记的珠粒的液滴移动到检测模块上(如果使用磁性珠粒的话,诸如通过去除磁力),所述经标记的珠粒具有第一结合成员、感兴趣分析物和第二结合成员的复合物。如本文所解释的,免疫测定可以在样品制备模块中进行。可以允许经标记的珠粒沉降到检测模块中的孔阵列中。珠粒可以使用重力或通过施加电力或磁力来沉降。在进行洗涤步骤以去除不在孔内的任何珠粒后,可以通过使用疏水性液体来密封孔。
液体液滴
本文所述的方法涉及使孔阵列与液体液滴接触,其中所述液体液滴的一个或多个部分沉降到阵列的孔中,每个部分包含固体支持物和洗涤剂或表面活性剂。换言之,在与孔阵列接触时,液体液滴在孔阵列上方移动,并且液滴的一个或多个部分(例如,1、50、100、500、1,000、5,000、10,000、25,000、50,000、75,000、100,000、200,000、300,000、400,000、500,000或更多个部分)被加载到孔中。术语“液滴”、“液体液滴”和“流体液滴”在本文中可互换使用,是指离散体积的液体,其形状大致为球形并且在至少一侧上与壁或基材(例如,固体支持物)交界。在液滴的上下文中,“大致球形”是指诸如球形、部分扁平球体(例如,圆盘状)、块状、截球形、椭圆体、半球形或卵形的形状。本文公开的液体液滴的体积可以在约10μl至约5pL、约10μl-1pL、约7.5μl-10pL、约5μl-1nL、约2.5μl-10nL、约1μl-100nL的范围或由以上任意两个值定义的范围内。例如,液体液滴的体积可以是10μl或更小(例如,5μl、1μl、800nL、500nL或更小)。
在某些实施方案中,液体液滴由水性液体、不混溶液体或可极化液体组成。在其他实施方案中,液体液体是疏水性液体液滴。在其他实施方案中,液体液体是亲水性液体液滴。
可以使用液体的表面张力特性来形成液滴。液滴的致动可以是基于由放置在液滴所在的底部表面下方的电极生成的静电力的存在。可以使用不同类型的静电力来控制液滴的形状和运动。可以用于产生前述静电力的一种技术是基于介电泳,其依赖于液滴与周围介质之间的介电常数差异,并且可以利用高频交流(AC)电场。可以用于产生前述静电力的另一种技术是基于电润湿,其依赖于存在于表面上的液体液滴与表面之间的表面张力对施加于表面的电场的依赖性。
可以使用本领域已知的任何合适的方法或微流体装置将一种或多种固体支持物,诸如如本文所述的珠粒或微粒封装在液体液滴或其一部分中。此类方法和装置公开于例如国际专利申请公布WO 2016/161400和WO 2016/161402;美国专利9,625,454和9,675,972;Kim等人,Scientific Reports,7:Article number:46260(2017);Guan等人,Biomicrofluidics,8(1):014110(2014);Witters等人,Lab Chip,13(11):2047-54(2013);Decrop等人,Anal.Chem.,88:8596-8603(2015);以及Kaminski T.S.和P.Garstecki,ChemSoc Rev.,46(20):6210-6226(2017)。
除固体支持物之外,液体液滴及其每个部分还包含表面活性剂或洗涤剂。如以上所讨论的,表面活性剂或洗涤剂的存在改进了使用数字微流体将含有珠粒的液滴液体加载到纳米孔阵列中。虽然表面活性剂已被用于数字微流体平台以诱导液滴穿过阵列移动,但本公开首次证明了将表面活性剂并入到液滴本身中提高了珠粒加载效率。实际上,与缺乏洗涤剂或表面活性剂的液体液滴相比,所公开的方法允许改进将部分液体液滴加载到孔上。如本文所用,术语“表面活性剂”是指降低两种液体之间、气体与液体之间、或液体与固体之间的表面张力(或界面张力)的化合物。如本文所用,术语“洗涤剂”是指在稀释溶液中具有清洁特性的表面活性剂或表面活性剂混合物。任何合适的表面活性剂或洗涤剂都可以添加到液体液滴中。合适的表面活性剂的实例包括阴离子表面活性剂(例如,阴离子硫酸盐、磺酸盐和磷酸酯)、阳离子表面活性剂(例如,季铵盐)、两性离子表面活性剂(例如,磷脂酰丝氨酸、磷脂酰乙醇胺、磷脂酰胆碱和鞘磷脂)和非离子表面活性剂(例如,乙氧基化物、甘油脂肪酸酯和山梨醇脂肪酸酯)。在一个实施方案中,表面活性剂是烷基酚乙氧基化物TRITONTMX-100(可从诸如Sigma-Aldrich,St.Louis,MO和Dow Chemical(Midland,MI)等来源获得)。合适的洗涤剂的实例包括但不限于阴离子洗涤剂(例如,烷基苯磺酸盐)、阳离子洗涤剂(例如,季铵盐)和非离子洗涤剂(例如,乙氧基化物或糖苷)。在一个实施方案中,洗涤剂是非离子洗涤剂TWEEN-20或TWEEN-80。
表面活性剂或洗涤剂可以任何合适的量或浓度添加到液体液滴中。
固体支持物
在本文所述的方法中可以使用本领域已知的任何固体支持物,包括但不限于由聚合物材料制成、呈平面基材或珠粒形式的固体支持物。例如,固体支持物可以是珠粒,例如胶乳、琼脂糖、琼脂糖凝胶(sepharose)、链霉亲和素、甲苯磺酰基激活的珠粒、环氧树脂、聚苯乙烯、氨基珠粒、胺珠粒、羧基珠粒等。在某些实施方案中,珠粒可以是颗粒,例如微粒。术语“珠粒”和“颗粒”在本文中可互换使用,并且是指基本上球形的固体支持物。术语“微粒”和“微珠”在本文中可互换使用,并且是指允许占据孔阵列或沉降在孔阵列中(例如像在检测模块中的孔阵列中)的微珠或微粒。微粒或微珠可以含有至少一种与感兴趣分析物结合的特异性结合成员和至少一种可检测标记。可替代地,微粒或微珠可以含有与分析物结合的第一特异性结合成员和也与分析物结合并含有至少一种可检测标记的第二特异性结合成员。
在一些实施方案中,微粒可以是在约0.1nm与约10微米之间、约50nm与约5微米之间、约100nm与约1微米之间、约0.1nm与约700nm之间、约500nm与约10微米之间、约500nm与约5微米之间、约500nm与约3微米之间、约100nm与700nm、或约500nm与700nm之间。例如,微粒可以是约4-6微米、约2-3微米或约0.5-1.5微米。小于约500nm的颗粒可以被称为“纳米颗粒”。因此,微粒任选地可以是在约0.1nm与约500nm之间、约10nm与约500nm之间、约50nm与约500nm之间、约100nm与约500nm之间、约100nm、约150nm、约200nm、约250nm、约300nm、约350nm、约400nm、约450nm或约500nm的纳米颗粒。
在某些实施方案中,珠粒可以是磁性珠粒或磁性颗粒。磁性珠粒/颗粒可以是铁磁性的、亚铁磁性的、顺磁性的、超顺磁性的或铁磁流体的。示例性铁磁材料包括Fe、Co、Ni、Gd、Dy、CrO2、MnAs、MnBi、EuO、NiO/Fe。亚铁磁材料的实例包括NiFe2O4、CoFe2O4、Fe3O4(或FeO.Fe2O3)。珠粒可以具有磁性的实心核心部分并且被一个或多个非磁性层包围。另选地,磁性部分可以是围绕非磁性核心的层。其上固定有结合成员的固体支持物可以干燥形式或以液体储存。磁性珠粒在与具有其上固定有结合成员的磁性珠粒的样品接触之前或之后可以经受磁场。
感兴趣分析物
在一些实施方案中,固体支持物包含捕获在其表面上的感兴趣分析物。术语“分析物”、“靶分析物”和“感兴趣分析物”在本文中可互换使用,并且是指在本文公开的方法中测量的分析物。如本领域技术人员将理解的,可以使用本公开的方法检测并任选地定量被结合成员(例如,第一特异性结合成员和第二特异性结合成员)特异性结合的任何分析物。
在一些实施方案中,分析物可以是生物分子。生物分子的非限制性实例包括大分子,诸如蛋白质、脂质和碳水化合物。在某些情况下,分析物包括激素、抗体、生长因子、细胞因子、酶、受体(例如,神经、激素、营养物和细胞表面受体)或其配体、癌症标记物(例如,PSA、TNF-α)、心肌梗塞的标记物(例如,肌钙蛋白、肌酸激酶等)、毒素、药物(例如,成瘾药物)、代谢剂(例如,包括维生素)等。蛋白质分析物的非限制性实施方案包括肽、多肽、蛋白质片段、蛋白质复合物、融合蛋白、重组蛋白、磷蛋白、糖蛋白、脂蛋白等。
在某些实施方案中,分析物可以是经翻译后修饰的蛋白质(例如,磷酸化、甲基化、糖基化的蛋白质),并且对应的结合成员(以下描述)可以是翻译后修饰特异性的抗体。经修饰的蛋白质可以与固定在固体支持物上的第一结合成员结合,其中第一结合成员与经修饰的蛋白质而不与未修饰的蛋白质结合。在其他实施方案中,第一结合成员可以与未修饰和经修饰的蛋白质两者结合,并且第二结合成员可以对经翻译后修饰的蛋白质具有特异性。
在一些实施方案中,分析物可以是细胞,例如像循环肿瘤细胞、病原菌细胞或真菌细胞。在其他实施方案中,分析物可以是病毒(例如,逆转录病毒、疱疹病毒、腺病毒、慢病毒、丝状病毒(埃博拉)、肝炎病毒(例如,甲型、乙型、丙型、丁型和戊型)或人乳头瘤病毒(HPV))。
可以通过本文公开的方法分析的分析物的非限制性列表包括Aβ42淀粉状蛋白β-蛋白、胎球蛋白-A、tau、分泌颗粒素II、朊病毒蛋白、α-突触核蛋白、tau蛋白、神经丝轻链、parkin、PTEN诱导的推定激酶1、DJ-1、富含亮氨酸重复序列激酶2、突变的ATP13A2、Apo H、血浆铜蓝蛋白、过氧化物酶体增殖物激活的受体γ辅激活因子-1α(PGC-1α)、甲状腺素运载蛋白、维生素D结合蛋白、促凋亡激酶R(PKR)及其磷酸化的PKR(pPKR)、CXCL13、IL-12p40、CXCL13、IL-8、Dkk-3(精液)、p14 endocan片段、血清、ACE2、针对CD25的自身抗体、hTERT、CAI25(MUC 16)、VEGF、sIL-2、骨桥蛋白、人附睾蛋白4(HE4)、甲胎蛋白、白蛋白、白蛋白尿、微量白蛋白尿、中性粒细胞明胶酶相关脂质运载蛋白(NGAL)、白细胞介素18(IL-18)、肾损伤分子-1(KIM-1)、肝脂肪酸结合蛋白(L-FABP)、LMP1、BARF1、IL-8、癌胚抗原(CEA)、BRAF、CCNI、EGRF、FGF19、FRS2、GREB1、LZTS1、α-淀粉酶、癌胚抗原(CEA)、CA125、白细胞介素-8(IL-8)、硫氧还蛋白、β-2微球蛋白、肿瘤坏死因子-α受体、CA15-3、卵泡刺激素(FSH)、促黄体生成素(LH)、T细胞淋巴瘤侵袭转移1(TIAM1)、N-钙粘蛋白、EC39、双调蛋白、dUTPase、分泌性凝溶胶蛋白(pGSN)、PSA(前列腺特异性抗原)、胸腺素βl5、胰岛素、血浆C-肽、糖基化血红蛋白(HBA1c)、C-反应蛋白(CRP)、白细胞介素-6(IL-6)、ARHGDIB(Rho GDP-解离抑制剂2)、CFL1(丝切蛋白-1)、PFN1(抑制蛋白-1)、GSTP1(谷胱甘肽S-转移酶P)、S100A11(蛋白质S100-A11)、PRDX6(过氧化物还原酶-6)、HSPE1(10kDa热休克蛋白,线粒体)、LYZ(溶菌酶C前体)、GPI(葡萄糖-6-磷酸异构酶)、HIST2H2AA(组蛋白H2A2-A型)、GAPDH(3-磷酸甘油醛脱氢酶)、HSPG2(基底膜特异性硫酸乙酰肝素蛋白聚糖核心蛋白前体)、LGALS3BP(半乳糖凝集素-3-结合蛋白前体)、CTSD(组织蛋白酶D前体)、APOE(载脂蛋白E前体)、IQGAP1(RasGTPase激活样蛋白IQGAP1)、CP(铜蓝蛋白前体)和IGLC2(IGLC1蛋白)、PCDGF/GP88、EGFR、HER2、MUC4、IGF-IR、p27(kip1)、Akt、HER3、HER4、PTEN、PIK3CA、SHIP、Grb2、Gab2、PDK-1(3-磷酸肌醇依赖性蛋白激酶-1)、TSC1、TSC2、mTOR、MIG-6(ERBB受体反馈抑制剂1)、S6K、src、KRAS、MEK丝裂原激活蛋白激酶1、cMYC、TOPO II拓扑异构酶(DNA)IIα170kDa、FRAP1、NRG1、ESR1、ESR2、PGR、CDKN1B、MAP2K1、NEDD4-1、FOXO3A、PPP1R1B、PXN、ELA2、CTNNB1、AR、EPHB2、KLF6、ANXA7、NKX3-1、PITX2、MKI67、PHLPP、脂联素(ADIPOQ)、纤维蛋白原α链(FGA)、瘦素(LEP)、晚期糖基化终末产物特异性受体(AGER或RAGE)、α-2-HS-糖蛋白(AHSG)、血管生成素(ANG)、CD14分子(CD14)、铁蛋白(FTH1)、胰岛素样生长因子结合蛋白1(IGFBP1)、白细胞介素2受体、α(IL2RA)、血管细胞粘附分子1(VCAM1)和血管性血友病因子(VWF)、髓过氧化物酶(MPO)、IL1α、TNFα、核周抗中性粒细胞胞浆抗体(p-ANCA)、乳铁蛋白、钙卫蛋白、威尔姆斯肿瘤(Wilm’stumor)-1蛋白、水通道蛋白-1、MLL3、AMBP、VDAC1、大肠杆菌肠毒素(不耐热外毒素、耐热肠毒素)、流感HA抗原、破伤风毒素、白喉毒素、肉毒杆菌毒素、志贺毒素、志贺样毒素I、志贺样毒素II、艰难梭菌(Clostridium difficile)毒素A和B等。
分析物的其他实例包括滥用药物(例如,可卡因)、蛋白质生物标记物(包括但不限于核仁素、核因子-kB必需调节剂(NEMO)、CD-30、蛋白酪氨酸激酶7(PTK7)、血管内皮生长因子(VEGF)、MUC1糖型、免疫球蛋白μ重链(IGHM)、免疫球蛋白E、αvβ3整联蛋白、α-凝血酶、HIVgp120、NF-κB、E2F转录因子、HER3、纤溶酶原激活物抑制剂、腱生蛋白C、CXCL12/SDF-1、前列腺特异性膜抗原(PSMA)、胃癌细胞和HGC-27);细胞(包括但不限于非小细胞肺癌(NSCLC)、结直肠癌细胞、(DLD-1)、H23肺腺癌细胞、Ramos细胞、T细胞急性淋巴细胞性白血病(T-ALL)细胞、CCRF-CEM、急性髓性白血病(AML)细胞(HL60)、小细胞肺癌(SCLC)细胞、NCIH69、人胶质母细胞瘤细胞、U118-MG、PC-3细胞、过表达HER-2的人乳腺癌细胞、SK-BR-3、胰腺癌细胞(Mia-PaCa-2));以及传染剂(包括但不限于结核分枝杆菌(Mycobacteriumtuberculosis)、金黄色葡萄球菌(Staphylococcus aureus)、痢疾志贺氏菌(Shigelladysenteriae)、大肠杆菌(Escherichia coli)O157:H7、空肠弯曲菌(Campylobacterjejuni)、李斯特菌(Listeria monocytogenes)、铜绿假单胞菌(Pseudomonasaeruginosa)、沙门氏菌(Salmonella)O8、肠炎沙门氏菌(Salmonella enteritidis))。
样品
术语“样品”、“测试样品”和“生物样品”在本文中可互换使用,并且是指含有或疑似含有感兴趣分析物的流体样品。在一些情况下,样品可以包含液体、流动的微粒固体或固体颗粒的流体悬浮液。在某些实施方案中,样品可以是液体样品或固体样品的液体提取物。在一些情况下,可以在本文所述的分析之前处理样品。例如,可以在分析之前将样品从其来源分离或纯化;然而,在某些实施方案中,可以直接测定含有分析物的未处理样品。样品可以源自任何合适的来源。例如,样品来源可以是合成的(例如,在实验室中产生)、环境(例如,空气、土壤、流体样品,例如,供水系统等)、动物(例如,哺乳动物)、植物或其任何组合。在一个具体实例中,样品是人体物质(例如,体液、血液、血清、血浆、尿液、唾液、汗液、痰液、精液、粘液、泪液、淋巴液、羊水、间质液、肺灌洗液、脑脊髓液、粪便、组织、器官等)。组织可以包括但不限于骨骼肌组织、肝组织、肺组织、肾组织、心肌组织、脑组织、骨髓、子宫颈组织、皮肤等。在某些情况下,样品的来源可以是器官或组织,诸如活检样品,其可以通过组织分解/细胞裂解而溶解。
在一些情况下,流体样品可以在用于测定中之前进行稀释。例如,在分析物分子的来源是人体液(例如,血液、血清)的实施方案中,流体可以用适当的溶剂(例如,缓冲液,诸如PBS缓冲液)进行稀释。在使用之前可以将流体样品稀释约1倍、约2倍、约3倍、约4倍、约5倍、约6倍、约10倍、约100倍或更多倍。
在一些情况下,如以上提及的,样品可以经历分析前处理。分析前处理可以提供额外的功能性,诸如非特异性蛋白质去除和/或有效但可廉价实现的混合功能性。分析前处理的一般方法可以包括使用电动力捕获、AC电动力学、表面声波、等速电泳、介电电泳、电泳或本领域已知的其他预浓缩技术。在一些情况下,流体样品可以在用于测定中之前进行浓缩。例如,在样品是人体液(例如,血液、血清)的实施方案中,可以通过沉淀、蒸发、过滤、离心或其组合来浓缩流体。在使用之前可以将流体样品浓缩约1倍、约2倍、约3倍、约4倍、约5倍、约6倍、约10倍、约100倍或更多倍。
特异性结合成员
感兴趣分析物通过附接至固体支持物的与分析物特异性结合的特异性结合成员被捕获在固体支持物的表面上。术语“特异性结合配偶体”、“特异性结合成员”和“结合成员”在本文中可互换使用,并且是指与其他分子的明显更少识别相比特异性识别另一种分子的两种或更多种不同分子之一。如本领域技术人员将理解的,适当的特异性结合成员将由待分析的分析物确定。在一个实施方案中,固体支持物合乎需要地包含多个(例如,2个或更多、50个或更多、100个或更多、1,000个或更多、或5,000个或更多)固定在其表面上的与感兴趣分析物结合的特异性结合成员。在固体支持物与样品之间进行足够的温育时间后,样品中存在的一种或多种感兴趣分析物合乎需要地通过固定在固体支持物表面上的特异性结合成员被捕获在固体支持物表面上。如本文所用,术语“固定的”是指结合成员与固体支持物的表面的稳定缔合。
多种靶分子的结合成员是已知的,或者可以使用已知技术容易地发现或开发。例如,当靶分析物是蛋白质时,结合成员可以包括蛋白质,特别是抗体或其片段(例如,抗原结合片段(Fab)、Fab’片段、F(ab’)2片段、重组抗体、嵌合抗体、单链Fv(“scFv”)、单链抗体、单结构域抗体诸如源自骆驼科动物的可变重链结构域(“VHH”;还被称为“VHH片段”)(VHH及其制备方法描述于Gottlin等人,Journal of Biomolecular Screening,14:77-85(2009))、重组VHH单结构域抗体和VNAR片段、二硫键连接的Fv(“sdFv”)和抗独特型(“抗Id”)抗体以及上述任一种的功能活性表位结合片段、全长多克隆或单克隆抗体、抗体样片段等),其他蛋白质诸如受体蛋白、蛋白质A、蛋白质C等。在分析物是小分子诸如类固醇、胆色素、类视色素或脂质的实施方案中,第一和/或第二结合成员可以是支架蛋白(例如,脂质运载蛋白)或受体。在一些情况下,蛋白质分析物的结合成员可以是肽。例如,当靶分析物是酶时,合适的结合成员可以包括酶底物和/或酶抑制剂,其可以是肽、小分子等。在一些情况下,当靶分析物是磷酸化物质时,结合成员可以包括磷酸盐结合剂。例如,磷酸盐结合剂可以包括金属离子亲和介质(参见,例如美国专利7,070,921和美国专利申请号2006/0121544)。
在某些情况下,特异性结合成员可以是适体,诸如在美国专利5,270,163、5,475,096、5,567,588、5,595,877、5,637,459、5,683,867和5,705,337中描述的那些。如本文所用,术语“适体”是指可以高亲和力和特异性与预先选择的靶标(包括小分子、蛋白质和肽等)结合的核酸或肽分子。可以开发核酸适体(例如,单链DNA分子或单链RNA分子)以捕获几乎任何靶分子。适体以高度特异性、构象依赖性方式结合靶分子,通常具有非常高的亲和力,尽管可以选择结合亲和力较低的适体。适体可以基于非常小的结构差异(诸如甲基或羟基基团的存在或不存在)来将靶分析物分子区分开来,并且某些适体可以将D-和L-对映异构体与非对映异构体区分开来。适体可以结合小分子靶标,包括药物、金属离子和有机染料、肽、生物素和蛋白质。适体在生物素化、荧光素标记之后并且当附接至玻璃表面和微球时可以保留功能活性。
核酸适体是寡核苷酸,其可以是单链寡脱氧核苷酸、寡核糖核苷酸或经修饰的寡脱氧核苷酸或寡核糖核苷酸。“经修饰的”寡脱氧核苷酸或寡核糖核苷酸是指具有共价修饰的碱基和/或糖的核苷酸。例如,经修饰的核苷酸包括具有与除了在3’位置的羟基基团和在5’位置的磷酸基团之外的低分子量有机基团共价附接的糖的核苷酸。因此,经修饰的核苷酸还可以包括2’取代的糖,诸如2’-O-甲基;2-O-烷基;2-O-烯丙基;2’-S-烷基;2’-S-烯丙基;2’-氟-;2’-卤代或2-叠氮基-核糖、碳环糖类似物、异头糖;差向异构糖,诸如阿拉伯糖、木糖或来苏糖、吡喃糖、呋喃糖和景天庚酮糖。
可以设计肽适体来干扰蛋白质相互作用。肽适体可以是基于可变肽环附接至其上的蛋白质支架,从而限制适体的构象。在一些情况下,肽适体的支架部分源自细菌硫氧还蛋白A(TrxA)。
当分析物是碳水化合物时,合适的结合成员包括例如抗体、凝集素和选择素。如本领域普通技术人员将理解的,可以与感兴趣分析物特异性缔合的任何分子都可以潜在地用作结合成员。
在某些实施方案中,合适的分析物/结合成员复合物可以包括但不限于抗体/抗原、抗原/抗体、受体/配体、配体/受体、蛋白质/核酸、酶/底物和/或抑制剂、碳水化合物(包括糖蛋白和糖脂)/凝集素和/或选择素、蛋白质/蛋白质、蛋白质/小分子等。
在一个特定实施方案中,特异性结合成员可以通过连接附接至固体支持物,所述连接可以包括促进结合成员附接至支持物的支持物和/或结合成员的任何部分、官能化或修饰。结合成员与支持物之间的连接可以包括一种或多种化学或物理(例如,通过范德华力、氢键、静电相互作用、疏水性/亲水性相互作用等的非特异性附接)键和/或提供此类键的化学间隔物。某些实施方案利用为蛋白质或多肽的结合成员。如本领域已知的,可以使用任何数量的技术将多肽附接至多种固体支持物(参见,例如美国专利5,620,850;以及Heller,Acc.Chem.Res.,23:128(1990))。
在某些实施方案中,固体支持物还可以包含保护层、封闭层或钝化层,其可以在测定期间消除或最小化非捕获组分(例如,分析物分子、结合成员)与结合表面的非特异性附接,所述非特异性附接可能在检测过程中导致假阳性信号或信号丢失。在某些实施方案中可以用于形成钝化层的材料的实例包括但不限于排斥蛋白质的非特异性结合的聚合物(例如,聚乙二醇);天然存在的蛋白质(例如,血清白蛋白和酪蛋白);表面活性剂(例如,两性离子表面活性剂、磺基甜菜碱);天然存在的长链脂质;聚合物刷和核酸,诸如鲑鱼精DNA。
如本文所解释的,结合成员与分析物之间的结合是特异性的,例如当结合成员和分析物是结合对的互补部分时。在某些实施方案中,结合成员与分析物特异性结合。“特异性结合”或“结合特异性”意指结合成员以足以区分分析物分子与样品的其他组分或污染物的特异性结合分析物分子。例如,根据一个实施方案,结合成员可以是与分析物上的表位特异性结合的抗体。根据一个实施方案,抗体可以是能够与感兴趣分析物特异性结合的任何抗体。例如,适当的抗体包括但不限于单克隆抗体、双特异性抗体、微抗体、结构域抗体(dAb)(例如,诸如Holt等人,Trends in Biotechnology,21:484-490(2014)中描述的,并且包括天然存在的(如在软骨鱼类和骆驼科中)或合成的(例如纳米抗体、VHH或其他结构域结构)单结构域抗体sdAb)、合成抗体(有时被称为抗体模拟物)、嵌合抗体、人源化抗体、抗体融合物(有时被称为“抗体缀合物”)和如上所述的抗体片段。作为另一个实例,分析物分子可以是抗体并且对应的结合成员可以是抗原。
在分析物是生物细胞(例如,哺乳动物、鸟类、爬虫类动物、其他脊椎动物、昆虫、酵母、细菌、细胞等)的实施方案中,结合成员可以是对细胞表面抗原具有特异性亲和力的配体(例如,细胞表面受体)。在一个实施方案中,结合成员可以是粘附分子受体或其部分,其对在靶细胞类型的表面上表达的细胞粘附分子具有结合特异性。在使用中,粘附分子受体与靶细胞的细胞外表面上的粘附分子结合,从而固定或捕获细胞,然后可以通过使用可以与第一结合成员相同或者可以与细胞表面上表达的不同分子结合的第二结合成员来检测结合的细胞。
在一些实施方案中,分析物分子与结合成员之间的结合亲和力应足以在测定条件(包括去除非特异性结合的分子或颗粒的洗涤步骤)下保持结合。在一些情况下,例如在某些生物分子的检测中,分析物分子与其互补结合成员的结合常数可以在至少约104与约106M-1之间、至少约105与约109M-1之间、至少约107与约109M-1之间、大于约109M-1、或更大。
加载孔阵列
所公开的方法包括使孔阵列与液体液滴接触。孔阵列包括多个单独的孔。孔阵列可以包括每1mm2的数量范围可以是10至109的多个孔。在某些情况下,可以制造约100,000至500,000个孔(例如,飞升孔)的阵列,覆盖大约12mm2的面积。每个孔可以测量约4.2μm宽X3.2μm深(体积大约50飞升),并且理想地能够容纳单个珠粒/颗粒(约3μm直径)或具有足够的尺寸以在其中加载单个液体液滴的一部分。在此密度下,飞升孔以大约7.4μm的距离彼此隔开。在一些实例中,可以将孔阵列制造成具有直径为10nm至10,000nm的单独孔。
孔可以具有各种形状中的任一种,例如像具有平坦底面的圆柱形、具有圆形底面的圆柱形、立方体、立方形、截头圆锥形、倒置截头圆锥形或圆锥形。在某些情况下,孔可以包括侧壁,所述侧壁可以定向为有利于接收和保留已在孔阵列上方移动的液体液滴中存在的微珠或微粒。在一些实施方案中,孔可以包括第一侧壁和第二侧壁,其中第一侧壁可以与第二侧壁相对。在一些实例中,第一侧壁相对于孔的底部以钝角定向,并且第二侧壁相对于孔的底部以锐角定向。液滴的移动可以是在平行于孔的底部并且从第一侧壁到第二侧壁的方向上。
在一些实例中,可以通过模制、压力、加热或激光或其组合来制造孔阵列。在一些实例中,可以使用纳米压印/纳米球光刻来制造孔阵列。还可以使用本领域熟知的其他制造方法。在某些实施方案中,所述方法中使用的孔阵列具有疏水性表面。在其他实施方案中,孔阵列具有亲水性表面。
本文所述的方法还包括在孔阵列上方移动液体液滴(其中阵列的一个或多个孔具有足够的尺寸以容纳至少一个固体支持物)。在一些实施方案中,通过使用能量施加力来操纵液体液滴,从而实现液体液滴在孔阵列上方的移动。如本文所用,短语“使用能量施加力来操纵液体液滴”是指使用非机械力(即,例如,在不使用泵和/或阀门的情况下产生的能量)来提供或施加操纵(例如,移动或合并)至少一部分液体液滴穿过或越过孔阵列的力。可以在本文所述的方法中使用的非机械力的实例包括电致动力(诸如液滴致动、电泳、电润湿、介电泳、静电致动、电场介导的力、电极介导的力、毛细管力、色谱、离心或抽吸)和/或声力(诸如表面声波(或“SAW”))。在某些实施方案中,采用电致动力。例如,电致动力可以是交流电。在一些实施方案中,交流电可以具有10V、15V、20V、25V、30V、35V或更高的均方根(rms)电压。例如,这种交流电可以具有10V或更高、15V或更高、20V或更高、25V或更高、30V或更高、或35V或更高的rms电压。可替代地,交流电可以具有射频范围内的频率。
在某些实施方案中,如果使用磁性固体支持物,则可以从相对于一个或多个液体液滴的至少一部分的相反方向施加电致动力和磁场。在某些实施方案中,可以使用一系列或多个电极(即,至少两个或更多、至少三个或更多、至少四个或更多、至少五个或更多、至少六个或更多、至少七个或更多、至少八个或更多、至少九个或更多、至少十个或更多、至少十一个或更多、至少十二个或更多、至少十三个或更多、至少十四个或更多、至少十五个或更多等)生成电致动力以将液滴移动到孔阵列并在孔阵列上方移动。在一些实施方案中,所述方法还包括使用毛细管元件将液体液滴定位在孔阵列上方,所述毛细管元件被配置来促进液体液滴移动到孔阵列。
在某些实施方案中,液体液滴移动到孔阵列并在孔阵列上方移动导致液体液滴的一个或多个部分以及包含在其中的固体支持物加载(填充和/或放置)到阵列的孔中。在某些实施方案中,使用磁场来促进液体液滴以及因此至少一个固体支持物移动到阵列的一个或多个孔中。如以上所讨论的,据信液体液滴中表面活性剂或洗涤剂的存在释放“Cassie状态”中的滞留空气,所述状态描述了液体在复合材料表面上的有效接触角θc(Cassie,A.B.D.和Baxter,S.,Transactions of the Faraday Society,40:546(1944))。表面活性剂或洗涤剂减小了液滴和微孔或纳米孔的接触角,从而产生更有效的液滴加载和孔润湿。在某些实施方案中,在将液体液滴加载到孔中之后,可以使用本领域已知的常规技术去除未加载到孔中的液体液滴的任何部分。例如,这种去除可以涉及用一系列或多个电极生成电致动力(诸如本文先前所述的)以将流体液滴(诸如可极化流体液滴)移动到孔阵列,从而将混合物的至少一部分移动到距孔阵列的一定距离(其长度不是关键的)。在某些实施方案中,水性洗涤液体可以用于去除未加载到孔中的液体液滴部分。在此类实施方案中,去除涉及用一系列或多个电极生成电致动力以移动水性洗涤(或洗涤)液滴穿过孔阵列。用于所述洗涤的水性液体的量和类型不是关键的。在进行洗涤步骤以去除不在孔内的液体液滴的任何部分后,所述方法包括密封经加载的孔。可以使用任何合适的方法或组合物来密封经加载的孔。在一个实施方案中,可以通过使用如本文所述的外力将疏水性液体(例如,油)移动到经加载的孔上方来密封孔。
分析物检测和定量
本文还提供了一种检测并定量样品中感兴趣分析物的方法,所述方法包括(a)提供含有感兴趣分析物的第一液体液滴;(b)提供含有固体支持物的第二液体液滴,所述固体支持物包含与所述感兴趣分析物特异性结合的结合成员;其中所述第一液体液滴或所述第二液体液滴还包含洗涤剂或表面活性剂;(c)使用能量施加力来操纵所述第一液体液滴和所述第二液体液滴以产生包含一个或多个液体液滴的液滴混合物,所述液体液滴中的每一个包含捕获在所述固体支持物的表面上的感兴趣分析物;(d)根据本文所述的方法向阵列中的孔中加载所述一个或多个液体液滴;以及(e)检测并定量所述感兴趣分析物。以上结合本公开的其他实施方案阐述的感兴趣分析物、样品、液体液滴及其部分、固体支持物、洗涤剂或表面活性剂以及孔的加载的描述也适用于检测并定量感兴趣分析物的前述方法的那些相同方面。与液体液滴在以上所述的孔阵列上方的移动类似,分析物检测方法涉及使用能量施加力来操纵第一液体液滴和第二液体液滴以产生液滴混合物。例如,可以使用非机械力来提供或施加将至少第一液体液滴和第二液体液滴(以及任选地另外的液滴)操纵(诸如合并或组合)成混合物的力。可以在本文所述的方法中使用的非机械力的实例包括电致动力(诸如液滴致动、电泳、电润湿、介电泳、静电致动、电场介导的力、电极介导的力、毛细管力、色谱、离心或抽吸)和/或声力(例如,SAW)。在某些实施方案中,所生成的电致动力是交流电,诸如以上所述。
如本文其他地方所述,第一液滴、第二液滴和液滴混合物中的一个或多个可以包括水性液体或不混溶液体。在其他实施方案中,第一液滴、第二液滴和液滴混合物中的一个或多个可以是疏水性液体液滴。在其他实施方案中,第一液滴、第二液滴和液滴混合物中的一个或多个可以是亲水性液体液滴。在某些实施方案中,第一液滴、第二液滴和液滴混合物中的一个或多个是可极化液体。
本文所述的方法涉及检测并定量样品中的感兴趣分析物。为此,在一些实施方案中,在向阵列中的孔中加载一个或多个液体液滴之前,将可检测标记添加到液滴混合物中。可替代地,可以在向阵列中的孔中加载液滴混合物之后,将可检测标记添加到液滴混合物中。在其他实施方案中,第一液滴或第二液滴可以在对其进行操纵以产生液滴混合物之前包含可检测标记。
术语“标记”和“可检测标记”可以在本文中可互换使用,是指附接至特异性结合成员或分析物,以使特异性结合成员与分析物之间的反应可检测的部分,并且如此标记的特异性结合成员或分析物被称为“可检测地标记的”。标记可以产生可通过视觉或仪器手段检测到的信号。各种标记包括:(i)通过可裂解接头附接至特异性结合成员或分析物的标签;或(ii)产生信号的物质,诸如发色团、荧光化合物、酶、化学发光化合物、放射性化合物等。标记的代表性实例包括产生光的部分,例如吖啶鎓化合物;以及产生荧光的部分,例如荧光素。其他标记是本领域已知的(参见,例如WO 2016/161400A1)并且可以在所公开的方法中使用。在其他实施方案中,部分本身可以是不可检测的,但在与另一部分反应时可以变得可检测。术语“可检测地标记的”的使用旨在涵盖这种标记。
在某些实施方案中,可检测标记包括至少一种与感兴趣分析物特异性结合的结合成员。可检测标记可以包括发色团、荧光化合物、酶、化学发光化合物或放射性化合物。在某些实施方案中,所述结合成员是受体、适体或抗体。
可以使用本领域已知的任何合适的产生信号的物质作为可检测标记。例如,可检测标记可以是放射性标记(诸如3H、14C、32P、33P、35S、90Y、99Tc、111In、125I、131I、177Lu、166Ho和153Sm)、酶标记(诸如辣根过氧化酶、碱性过氧化酶、葡萄糖6-磷酸脱氢酶等(如果使用酶,则还必须添加对应的酶底物))、化学发光标记(诸如吖啶酯、硫酯或磺酰胺;鲁米诺、异鲁米诺、菲啶鎓酯等)、荧光标记(诸如荧光素(例如,5-荧光素、6-羧基荧光素、3’6-羧基荧光素、5(6)-羧基荧光素、6-六氯-荧光素、6-四氯荧光素、异硫氰酸荧光素等))、若丹明、藻胆蛋白、R-藻红素、量子点(例如,硫化锌封盖的硒化镉)、测温标记或免疫聚合酶链反应标记。标记、标记程序和标记检测描述于例如Polak和Van Noorden,Introduction toImmunocytochemistry,第2版,Springer Verlag,N.Y.(1997)以及Haugland,Handbook ofFluorescent Probes and Research Chemicals,Molecular Probes,Inc.,Eugene,Oregon(1996)中。在分析物检测测定中使用荧光标记还描述于例如Adamczyk等人,Bioorg.Med.Chem.Lett.,16:1324-1328(2006);Adamczyk等人,Bioorg.Med.Chem.Lett.,4:2313-2317(2004);Adamczyk等人,Biorg.Med.Chem.Lett.,14:3917-3921(2004);以及Adamczyk等人,Org.Lett.,5:3779-3782(2003)中。
应理解,样品和第一结合成员可以温育足够长的时间段以允许结合成员与分析物之间发生结合相互作用。另外,温育可以在促进特异性结合相互作用的结合缓冲液中进行。可以通过改变结合缓冲液在测定中操纵或改变结合成员的结合亲和力和/或特异性。在一些实施方案中,可以通过改变结合缓冲液来增加结合亲和力和/或特异性。在一些实施方案中,可以通过改变结合缓冲液来降低结合亲和力和/或特异性。
结合缓冲液可以包括通常在抗原-抗体结合缓冲液中使用的分子,诸如白蛋白(例如,BSA)、非离子洗涤剂(Tween-20、Triton X-100)和/或蛋白酶抑制剂(例如,PMSF)。在某些情况下,可以在添加样品之前或之后将结合缓冲液添加到微流体芯片、腔室等中。在其他实施方案中,在与样品接触之前,结合成员可以存在于结合缓冲液中。结合成员与分析物之间发生结合相互作用的时间长度可以根据经验确定,并且可以取决于结合成员与分析物之间的结合亲和力和结合亲合力。在某些实施方案中,接触或温育可以持续5秒至1小时,诸如10秒-30分钟、或1分钟-15分钟、或5分钟-10分钟,例如10秒、15秒、30秒、1分钟、5分钟、10分钟、15分钟、30分钟、45分钟、1小时或2小时的时间段。结合相互作用的其他条件,诸如温度和盐浓度,也可以根据经验确定或者可以是基于制造商的说明书。例如,接触可以在室温(21℃-28℃,例如23℃-25℃)、37℃或4℃下进行。在某些实施方案中,样品与第一结合成员的任选混合可以在接触步骤期间进行。
在通过第一结合成员将分析物捕获在固体支持物上(即,形成包含第一结合成员和分析物的“复合物”)后,可以将任何未结合的分析物与样品一起从第一结合成员附近去除,而第一结合成员和分析物的复合物可以由于其与固体支持物的缔合而保留。任选地,固体支持物可以与洗涤缓冲液接触,以去除任何与固体支持物非特异性结合的分子。
在固定的第一结合成员与分析物之间形成复合物以及任选的去除样品和/或清洗步骤后,可以将第一结合成员和分析物的复合物与第二结合成员接触,所述第二结合成员与感兴趣分析物特异性结合,从而形成其中分析物被两个结合成员结合的夹心复合物。可以进行第二成员与第一结合成员-分析物复合物的任选混合。在一些实施方案中,相对于表面固定分析物分子可以有助于从溶液中去除任何过量的第二结合成员,而无需担心将分析物分子从表面移除。在一些实施方案中,如本文所讨论的,第二结合成员可以包括可检测标记,所述可检测标记包括一种或多种产生信号的物质,诸如发色图、荧光化合物、化学发光化合物、酶、放射性化合物等。
在与第二结合成员接触后,可以去除任何未结合的第二结合成员,接着进行任选的洗涤步骤。可以通过合适的方式将任何未结合的第二结合成员与第一结合成员-分析物-第二结合成员的复合物分离,所述合适的方式诸如液滴致动、电泳、电润湿、介电泳、静电致动、电场介导的力、电极介导的力、毛细管力、色谱、离心、抽吸或SAW。在从第一结合成员-分析物-第二结合成员的复合物附近去除任何未结合的第二结合成员后,附接至第一结合成员-分析物-第二结合成员的复合物中存在的第二结合成员的可检测标记可以通过合适的方式分离或者可以使用本领域已知的技术来检测。
在某些实施方案中,本文所述的方法使用微流体装置,诸如数字微流体装置进行。术语“数字微流体(DMF)”、“数字微流体模块(DMF模块)”或“数字微流体装置(DMF装置)”在本文中可互换使用,是指利用数字或基于液滴的微流体技术的模块或装置以提供对呈液滴形式的离散和少量液体的操纵。数字微流体使用乳液科学原理将流体-流体分散到通道中(主要是油包水乳液)。它允许产生单分散小滴/气泡或具有非常低的多分散性。数字微流体是基于可重构网络内不连续流体液滴的微操纵。可以通过组合液滴形成、易位、分裂和合并的基本操作来编写复杂的指令。
数字微流体在离散体积的流体上操作,所述流体可以通过二进制电信号进行操纵。通过使用离散单位体积液滴,微流体操作可以定义为一组重复的基本操作,即在一个单位距离上移动一个单位流体。可以使用液体的表面张力特性来形成液滴。液滴的致动是基于由放置在液滴所在的底部表面下方的电极生成的静电力的存在。可以使用不同类型的静电力来控制液滴的形状和运动。可以用于产生前述静电力的一种技术是基于介电泳,其依赖于液滴与周围介质之间的介电常数差异,并且可以利用高频AC电场。可以用于产生前述静电力的另一种技术是基于电润湿,其依赖于存在于表面上的液体液滴与表面之间的表面张力对施加于表面的电场的依赖性。
在某些实施方案中,本文所述的方法使用基于表面声波的微流体装置(SAW)进行。在某些实施方案中,本文所述的方法使用集成的DMF和分析物检测装置进行。在某些实施方案中,本文所述的方法使用集成的基于SAW的微流体装置和分析物检测装置进行。在某些实施方案中,本文所述的方法使用基于机器人的测定处理单元进行。
所述方法可以涉及单分子计数。在某些实施方案中,所述方法涉及确定样品中分析物的存在和/或浓度。在某些实施方案中,所述方法还可以用于确定样品中存在的多种不同分析物的存在和/或浓度(即,多重复用)。
在某些实施方案中,定量感兴趣分析物首先涉及确定阵列的孔中固体支持物的总数(“固体支持物总数”)。接下来,确定阵列的孔中含有可检测标记的固体支持物的数量,例如像确定由可检测标记产生的信号的强度(“阳性”)。从固体支持物总数中减去阳性以提供孔阵列中不含可检测标记或未检测到的固体支持物数量(“阴性”)。然后,可以确定孔阵列中的阳性与阴性的比率并与校准曲线进行比较。可以使用模拟或数字读数来定量分析物浓度。例如,对于大数量的阳性孔(>70%),可以将带有信号的孔的相对强度分别与单个珠粒/颗粒/分析物分子生成的信号强度进行比较,并用于生成模拟信号。可替代地,对于小数量的阳性孔(<70%阳性),可以采用泊松方程P(x;μ)进行数字定量,如下所示:
P(x;μ)=(e)(μx)/x!
其中:
e:是一个常数,大约等于2.71828,
μ:是在指定区域中发生的平均成功次数,并且
x:是在指定区域中发生的总成功次数。
因此,数字信号可以用于较低的分析物浓度,而模拟信号可以用于较高的分析物浓度。可以使用数字和模拟定量的组合,这可以扩大线性动态范围。
在某些实施方案中,可以通过使用多个不同的第一结合成员和第二结合成员来同时分析单个样品中的多种分析物,其中一对第一结合成员和第二结合成员对样品中的单个分析物具有特异性。在这些实施方案中,与对单个分析物具有特异性的第一对第一结合成员和第二结合成员的第二结合成员缔合的可检测标记可以与与对不同分析物具有特异性的第二对第一结合成员和第二结合成员的第二结合成员缔合的可检测标记区分开来。基于产生信号的物质的差异等,第一可检测标记可以与第二可检测标记区分开来
在一些实施方案中,可以基本准确确定的样品中分析物的浓度小于约5000fM(飞摩尔)、小于约3000fM、小于约2000fM、小于约1000fM、小于约500fM、小于约300fM、小于约200fM、小于约100fM、小于约50fM、小于约25fM、小于约10fM、小于约5fM、小于约2fM、小于约1fM、小于约500aM(渺摩尔)、小于约100aM、小于约10aM、小于约5aM、小于约1aM、小于约0.1aM、小于约500zM(仄摩尔)、小于约100zM、小于约10zM、小于约5zM、小于约1zM、小于约0.1zM或更小。例如,可以基本准确确定的样品中分析物的浓度在约5000fM与约0.1fM之间、在约3000fM与约0.1fM之间、在约1000fM与约0.1fM之间、在约1000fM与约0.1zM之间、在约100fM与约1zM之间、在约100aM与约0.1zM之间或由以上任意两个值定义的范围内。
在一些实施方案中,检测下限(例如,可以在溶液中确定的分析物的最低浓度)为约100fM、约50fM、约25fM、约10fM、约5fM、约2fM、约1fM、约500aM(渺摩尔)、约100aM、约50aM、约10aM、约5aM、约1aM、约0.1aM、约500zM(仄摩尔)、约100zM、约50zM、约10zM、约5zM、约1zM、约0.1zM或更小。
检测上限(例如,可以在溶液中确定的分析物的浓度上限)可以为至少约100fM、至少约1000fM、至少约10pM(皮摩尔)、至少约100pM、至少约100pM、至少约10nM(纳摩尔)、至少约100nM、至少约1000nM、至少约10μM、至少约100μM、至少约1000μM、至少约10mM、至少约100mM、至少约1000mM或更大。
在一些情况下,可以快速检测样品中分析物的存在和/或浓度,通常在少于约1小时内,例如45分钟、30分钟、15分钟、10分钟、5分钟、1分钟或30秒。
所公开的方法可以包括质量控制组件。在本文所述的免疫测定和试剂盒的上下文中的“质量控制组件”包括但不限于校准物、对照物和敏感性组。可以使用“校准物”或“标准物”(例如,一种或多种,诸如复数种)来建立校正(标准)曲线以内插分析物(诸如抗体)的浓度。可替代地,可以使用接近参考水平或对照水平(例如,“低”、“中等”或“高”水平)的单一校准物。可以联合使用多种校准物(即,多于一种的校准物或不同量的校准物)以构成“敏感性组”。校准物任选地是一系列校准物的一部分,其中每个校准物不同于系列中的其他校准物,例如像通过浓度或检测方法(例如,比色或荧光检测)。
所公开方法的变型
所公开的方法还可以根据用于分析分析物的其他方法调整为适当的。熟知的变型的实例包括但不限于免疫测定,诸如夹心免疫测定(例如,单克隆-多克隆夹心免疫测定),包括酶检测的免疫测定(酶免疫测定(EIA)或酶联免疫吸附测定(ELISA)),竞争性抑制免疫测定(例如,正向和反向)、酶扩大免疫测定技术(EMIT)、竞争性结合测定、生物发光共振能量转移(BRET)、一步抗体检测测定、均质测定、异质测定、即时捕获测定等。在一些情况下,以下描述可能与以上所述的方法重叠;在其他情况下,以下描述可以提供替代方法。
免疫测定
可以使用免疫测定分析感兴趣分析物和/或肽或其片段。可以利用任何免疫测定。免疫测定可以是例如酶联免疫测定(ELISA)、竞争性抑制免疫测定(诸如正向或反向竞争性抑制测定)或竞争性结合测定。在一些实施方案中,可检测标记(例如,一个或多个荧光标记)附接至捕获抗体和/或检测抗体。
可以使用异质形式。例如,在从受试者获得样品之后,制备第一混合物。所述混合物含有待评估感兴趣分析物的样品和第一特异性结合成员,其中第一特异性结合成员和样品中含有的任何感兴趣分析物形成第一特异性结合成员-感兴趣分析物复合物。优选地,第一特异结合成员是抗感兴趣分析物抗体或其片段。添加样品和第一特异性结合成员以形成混合物的顺序并不关键。优选地,将第一特异性结合成员固定在固相上。用于免疫测定(针对第一特异性结合成员和任选地第二特异性结合成员)中的固相可以是本领域已知的任何固相,诸如但不限于磁性颗粒、珠粒、纳米珠粒、微珠、纳米颗粒、微粒、膜、支架分子、薄膜、滤纸、盘片或芯片(例如,微流体芯片)。
在形成含有第一特异性结合成员-感兴趣分析物复合物的混合物之后,使用本领域已知的任何技术从复合物去除任何未结合的感兴趣分析物。例如,未结合的感兴趣分析物可以通过洗涤去除。然而,合乎需要的是第一特异性结合成员以超过样品中存在的任何感兴趣分析物的量存在,使得存在于样品中的所有分析物都被第一特异性结合成员结合。
在去除任何未结合的感兴趣分析物之后,将第二特异性结合成员添加到混合物中以形成第一特异性结合成员-感兴趣分析物-第二特异性结合成员复合物。第二特异性结合成员优选地是感兴趣抗分析物(诸如抗体),其与感兴趣分析物上的表位结合,所述表位不同于被第一特异性结合成员结合的感兴趣分析物上的表位。此外,还优选地,第二特定结合成员用可检测标记进行标记或含有可检测标记(例如,可检测标记、被可裂解接头附接的标签等)。
固定的抗体或其抗体片段的使用可以结合到免疫测定中。可以将抗体固定到多种支持物上,诸如磁性或色谱基质颗粒、胶乳颗粒或表面改性的胶乳颗粒、聚合物或聚合物薄膜、塑料或塑料薄膜、平面基材、微流体表面、固体基材材料片等。
夹心免疫测定
夹心免疫测定测量两层抗体(即,捕获抗体(即,至少一种捕获抗体)和检测抗体(即,至少一种检测抗体))之间的抗原量。捕获抗体和检测抗体与抗原(例如,感兴趣分析物)上的不同表位结合。合乎需要地,捕获抗体与表位的结合不会干扰检测抗体与表位的结合。单克隆或多克隆抗体均可以用作夹心免疫测定中的捕获抗体和检测抗体。
通常,采用至少两种抗体来分离和定量样品中的感兴趣分析物。更具体地,至少两种抗体与感兴趣分析物或感兴趣分析物片段的某些表位结合,从而形成免疫复合物,其被称为“夹心”。一种或多种抗体可以用于捕获样品中的感兴趣分析物(这些抗体经常被称为一种或多种“捕获”抗体),并且具有可检测标记(例如,荧光标记、被可裂解接头附接的标签等)的也结合感兴趣分析物的一种或多种抗体(这些抗体经常被称为一种或多种“检测”抗体)可以用于完成夹心。在一些实施方案中,适体可以用作第二结合成员。在夹心测定中,抗体与其表位的结合合乎需要地不会因测定中任何其他抗体与其相应表位的结合而减弱。换言之,选择抗体,使得与疑似含有感兴趣分析物的样品接触的一种或多种第一抗体不与第二或后续抗体所识别的表位的全部或部分结合,从而干扰一种或多种第二检测抗体与感兴趣分析物结合的能力。
在一个实施方案中,疑似含有感兴趣分析物的样品可以同时或依序地与至少一种(或多种)捕获抗体和至少一种检测抗体接触。在夹心测定形式中,首先在允许形成抗体-感兴趣分析物复合物的条件下,将疑似含有感兴趣分析物(诸如膜相关的感兴趣分析物、可溶性感兴趣分析物、膜相关的感兴趣分析物片段、可溶性感兴趣分析物片段、感兴趣分析物(膜相关或可溶性感兴趣分析物)的变体或其任何组合)的样品与至少一种与特定表位特异性结合的捕获抗体接触。如果使用多于一种捕获抗体,则形成多种捕获抗体-感兴趣分析物复合物。在夹心测定中,抗体,优选地至少一种捕获抗体,以相对于样品中预期的感兴趣分析物或感兴趣分析物片段的最大量的摩尔过量量使用。
任选地,在使样品与至少一种第一捕获抗体接触之前,至少一种捕获抗体可以与固体支持物结合,所述固体支持物有利于从样品分离抗体-感兴趣分析物复合物。可以使用本领域已知的任何固体支持物,包括但不限于由聚合物材料制成、呈平面基材或珠粒形式的固体支持物等。一种(或多种)抗体可以通过吸附、通过使用化学偶联剂的共价键合或通过本领域已知的其他手段与固体支持物结合,前提条件是这种结合不会干扰抗体结合感兴趣分析物或感兴趣分析物片段的能力。此外,如果需要,可以将固体支持物衍生化以允许与抗体上的各种官能团反应。这种衍生化需要使用某些偶联剂,诸如但不限于顺丁烯二酸酐、N-羟基琥珀酰亚胺、叠氮基、炔基和1-乙基-3-(3-二甲基氨基丙基)碳化二亚胺。
在将疑似含有感兴趣分析物的样品与至少一种捕获抗体接触之后,对样品进行温育,以便允许形成一种(或多种)捕获抗体-感兴趣分析物复合物。温育可以在约4.5至约10.0的pH下,在约2℃至约45℃的温度下,并且持续至少约一分钟至约十八(18)小时、约2-6分钟或约3-4分钟的时间段来进行。
在形成一种(或多种)捕获抗体-感兴趣分析物复合物之后,然后使复合物与至少一种检测抗体接触(在允许形成一种(或多种)捕获抗体-感兴趣分析物-一种(或多种)检测抗体复合物的条件下)。如果捕获抗体-感兴趣分析物复合物与多于一种检测抗体接触,则形成一种(或多种)捕获抗体-感兴趣分析物-一种(或多种)检测抗体复合物。与捕获抗体一样,当使至少一种检测(和后续)抗体与捕获抗体-感兴趣分析物复合物接触时,在与以上所述的那些类似的条件下温育一段时间是形成一种(或多种)捕获抗体-感兴趣分析物-一种(或多种)检测抗体复合物所需的。优选地,至少一种检测抗体含有可检测标记(例如,荧光标记、被可裂解接头附接的标签等)。在形成一种(或多种)捕获抗体-感兴趣分析物-一种(或多种)检测抗体复合物之前、同时或之后,可检测标记可以与至少一种检测抗体结合。可以使用本领域已知的任何可检测标记,例如,荧光标记、本文讨论的可裂解接头以及本领域已知的其他标记。
添加样品和一种或多种特异性结合成员以形成用于测定的混合物的顺序并不关键。如果第一特异性结合成员被可检测地标记(例如,荧光标记、附接有可裂解接头的标签等),则形成了可检测地标记的第一特异性结合成员-感兴趣分析物复合物。可替代地,如果使用第二特异性结合成员并且第二特异性结合成员被可检测地标记(例如,荧光标记、附接有可裂解接头的标签等),则形成了第一特异性结合成员-感兴趣分析物-第二特异性结合成员的可检测地标记的复合物。任何未结合的特异性结合成员(无论标记或未标记的)都可以使用本领域已知的任何技术(诸如洗涤)从混合物中去除。
接下来,生成指示存在感兴趣分析物或其片段的信号。基于所生成的信号的参数,可以定量样品中的感兴趣分析物的量。任选地,可以通过质谱、重量分析方法和本领域已知的其他技术使用感兴趣分析物的已知浓度的连续稀释液或溶液来生成标准曲线。
正向竞争性抑制
在正向竞争形式中,使用已知浓度的标记的感兴趣分析物(例如,具有荧光标记、附接有可裂解接头的标签等的分析物)的等分试样与样品中的感兴趣分析物竞争结合感兴趣分析物抗体。
在正向竞争测定中,固定的特异性结合成员(诸如抗体)可以依序地或同时与样品和标记的感兴趣分析物、其感兴趣分析物片段或感兴趣分析物变体接触。感兴趣分析物肽、感兴趣分析物片段或感兴趣分析物变体可以用任何可检测标记标记,包括由用可裂解接头附接的标签组成的可检测标记。在此测定中,可以将抗体固定在固体支持物上。可替代地,可以将抗体与固定在固体支持物(诸如微粒或平面基材)上的抗体,诸如抗物种抗体偶联。
反向竞争测定
在反向竞争测定中,固定的感兴趣分析物可以依序地或同时与样品和至少一种标记的抗体接触。感兴趣分析物可以与固体支持物,诸如以上结合夹心测定形式讨论的固体支持物结合。
一步免疫测定或“即时捕获”
在即时捕获免疫测定中,用固定剂预先涂布固体基材。将捕获剂、分析物和检测剂一起添加至固体基材,之后是洗涤步骤,然后检测。捕获剂可以结合分析物并且包含针对固定剂的配体。捕获剂和检测剂可以是抗体或如本文所述或本领域已知的能够捕获或检测的任何其他部分。配体可以包含肽标签并且固定剂可以包含抗肽标签抗体。另选地,配体和固定剂可以是能够结合在一起,以便用于即时捕获测定的任何试剂对(例如,特异性结合对,以及如本领域已知的其他试剂对)。可以测量多于一种分析物。在一些实施方案中,可以用抗原涂布固体基材,并且待分析的分析物是抗体。
在某些其他实施方案中,在一步免疫测定或“即时捕获”中,使用了预先涂布有固定剂(诸如生物素、链霉抗生物素蛋白等)的固体支持物(诸如微粒)和至少第一特异性结合成员和第二特异性结合成员(分别用作捕获试剂和检测试剂)。第一特异性结合成员包含针对固定剂的配体(例如,如果固体支持物上的固定剂是链霉抗生物素蛋白,则第一特异性结合成员上的配体可以是生物素)并且还与感兴趣分析物结合。第二特异性结合成员包含可检测标记并且与感兴趣分析物结合。可以将固体支持物以及第一和第二特异性结合成员(依序地或同时)添加到样品中。第一特异性结合成员上的配体与固体支持物上的固定剂结合,形成固体支持物/第一特异性结合成员复合物。存在于样品中的任何感兴趣分析物与固体支持物/第一特异性结合成员复合物结合以形成固体支持物/第一特异性结合成员/分析物复合物。第二特异性结合成员与固体支持物/第一特异性结合成员/分析物复合物结合,并且检测到可检测标记。在检测之前可以采用任选的洗涤步骤。在某些实施方案中,在一步测定中,可以测量多于一种分析物。在某些其他实施方案中,可以采用多于两种特异性结合成员。在某些其他实施方案中,可以添加多种可检测标记。在某些其他实施方案中,可以添加多种感兴趣分析物。
即时捕获测定的使用可以如本文所述的多种形式进行,并且是本领域已知的。例如,所述形式可以是如上所述的夹心测定,但另选地可以是竞争测定,可以采用单一特异性结合成员、或使用诸如已知的其他变型。
组合测定
在组合测定中,用抗原和抗体共涂布固体基材(诸如微粒)以分别从样品中捕获抗体和抗原。可以用两种或更多种不同的抗原共涂布固体基材以从样品中捕获两种或更多种抗体。可以用两种或更多种不同的抗体共涂布固体基材以从样品中捕获两种或更多种抗原。
另外,本文所述的方法可以使用封闭剂来防止测定化合物之间的特异性或非特异性结合反应(例如,HAMA问题)。一旦试剂(和任选的任何对照)固定在支持物上,则试剂的剩余结合位点可以在支持物上被封闭。可以使用本领域普通技术人员已知的任何合适的封闭试剂。例如,可以采用牛血清白蛋白(“BSA”)、酪蛋白在PBS中的磷酸盐缓冲盐水(“PBS”)溶液、Tween 20TM(Sigma Chemical Company,St.Louis,Mo.)或其他合适的表面活性剂以及其他封闭剂。
如根据本公开显而易见的,本文公开的方法(包括变型)可以用于诊断疑似患有疾病、障碍或病状的受试者的疾病、障碍或病状。例如,样品分析可以用于检测疾病标记物诸如癌症标记物、心脏病的标记物,毒素,病原体诸如病毒、细菌或其部分。所述方法还可以用于测量生物样品中存在的分析物。所述方法还可以用于血液筛选测定以检测靶分析物。血液筛选测定可以用于筛选血液供应。
以下实施例进一步说明了本发明,但当然不应解释为以任何方式限制其范围。
实施例
此实施例描述了洗涤剂对塑料微阵列中接种效率的影响。
使用以下实验条件测试氧化铟锡(ITO,50nm)涂布的PET塑料(125μm)纳米孔阵列:5种不同的洗涤剂(Pluronic F68;Tetronic 90R4;Tween 20;Tween80;Triton X 100);PBS中0.05%;甲苯磺酰基珠粒(2.7μm,用抗体官能化);20个接种周期;塑料阵列;ROW 3.0-4.2;30x放大率。每种洗涤剂的结果在图1-5中示出。Tween 20、Tween 80和Triton X 100改进了将珠粒加载到纳米孔阵列上。
本文引用的所有参考文献(包括公布、专利申请和专利)均通过引用特此并入,其引用的程度如同每个参考文献被个别地并且明确地指示通过引用并入并且以其全部内容在此阐述。
除非本文另外指示或者上下文明显矛盾,否则在描述本发明的上下文中(尤其在下文权利要求书的上下文中)使用术语“一(a和an)”和“所述”以及“至少一个(种)”和类似指示物应解释为涵盖单数与复数二者。除非本文另外指示或者上下文明显矛盾,否则术语“至少一个(种)”之后接一个或多个项目的列表(例如,“A和B中的至少一个(种)”)应解释为意指选自所列项目的一个项目(A或B)或所列项目中的两个或更多个的任意组合(A和B)。除非另外说明,否则术语“包含”、“具有”、“包括”和“含有”应解释为开放性术语(即,意指“包括但不限于”)。除非本文另外指示,否则本文叙述的值的范围仅仅打算作为个别地表示此范围内的每一单独值的简化方法,并且每一单独值都被并入本说明书中,就如同其在本文中被个别地叙述一样。在本文所述的所有方法能够以任何合适顺序进行,除非本文另外指示或另外与上下文明显相矛盾。除非另外要求保护,否则本文提供的任何和所有实例或示例性语言(例如“诸如”)的应用仅旨在更好地说明本发明,而不对本发明范围做出限制。说明书中的语言不应被解释为指示任何未要求保护的要素是实践本发明所必需的。
本文描述了本发明的优选实施方案,包括发明人已知的用于实施本发明的最佳方式。在阅读前述描述之后,那些优选实施方案的变型对于本领域普通技术人员而言将变得显而易见。本发明人期望熟练的技术人员适当时采用这类变型,并且本发明人希望以不同于本文具体描述的方式来实践本发明。因此,本发明包括被可适用法律允许的附在后面的权利要求中引用的主题的所有修改和等效物。此外,除非本文另外指示或与上下文明显矛盾,否则本发明涵盖上述元件呈其所有可能变型的任何组合。

Claims (21)

1.一种向孔中加载液体液滴的方法,所述方法包括:
(a)使孔阵列与液体液滴接触,其中(i)所述阵列的一个或多个孔具有足够的尺寸以在其中加载所述液体液滴的一部分,并且(ii)所述液体液滴的每个部分包含固体支持物和洗涤剂或表面活性剂;
(b)在所述孔阵列上方移动所述液体液滴,其中所述洗涤剂或表面活性剂减小所述液体液滴与所述孔之间的接触角,并且由此将所述液体液滴的一部分加载到所述阵列的每个孔中;
(c)从所述阵列的表面去除未加载到孔中的任何部分的所述液体液滴;以及
(d)密封经加载的孔。
2.如权利要求1所述的方法,其中所述孔是微孔或纳米孔。
3.如权利要求1或权利要求2所述的方法,其中所述固体支持物是珠粒。
4.如权利要求3所述的方法,其中所述珠粒是微粒。
5.如权利要求1-4中任一项所述的方法,其中所述固体支持物包含捕获在其表面上的感兴趣分析物。
6.如权利要求1-5中任一项所述的方法,其中所述液体液滴的每个部分包含洗涤剂。
7.如权利要求6所述的方法,其中所述洗涤剂是TWEEN-20或TWEEN-80。
8.如权利要求1-7中任一项所述的方法,其中所述液体液滴的每个部分包含表面活性剂。
9.如权利要求8所述的方法,其中所述表面活性剂是TRITON X-110。
10.如权利要求1-9中任一项所述的方法,其中与缺乏洗涤剂或表面活性剂的液体液滴相比,所述液体液滴的加载得到改进。
11.如权利要求1-10中任一项所述的方法,其中在所述孔阵列上方移动所述液体液滴包括跨所述阵列施加电场。
12.如权利要求11所述的方法,其中施加电场包括生成交流电。
13.如权利要求1-10中任一项所述的方法,其中在所述孔阵列上方移动所述液体液滴包括使用毛细管元件。
14.如权利要求1-13中任一项所述的方法,其中所述孔阵列具有亲水性表面。
15.如权利要求1-13中任一项所述的方法,其中所述孔阵列具有疏水性表面。
16.一种检测并定量样品中的感兴趣分析物的方法,所述方法包括:
(a)提供含有感兴趣分析物的第一液体液滴;
(b)提供含有固体支持物的第二液体液滴,所述固体支持物包含与所述感兴趣分析物特异性结合的第一结合成员;其中所述第一液体液滴或所述第二液体液滴还包含洗涤剂或表面活性剂;
(c)使用能量施加力来操纵所述第一液体液滴和所述第二液体液滴以产生包含液体液滴的液滴混合物,所述液体液滴中的每一个包含捕获在所述固体支持物的表面上的感兴趣分析物;
(d)根据权利要求1-15中的任一项向阵列中的孔中加载所述液体液滴;以及
(e)检测并定量所述感兴趣分析物。
17.如权利要求16所述的方法,其中检测并定量所述感兴趣分析物包括在向阵列中的孔中加载所述一个或多个液体液滴之前将可检测标记添加到所述液滴混合物中。
18.如权利要求17所述的方法,其中检测并定量所述感兴趣分析物包括在向阵列中的孔中加载所述一个或多个液体液滴之后将可检测标记添加到所述液滴混合物中。
19.如权利要求16所述的方法,其中所述第二液体液滴包含可检测标记。
20.如权利要求17-19中任一项所述的方法,其中所述可检测标记包括至少一种与所述感兴趣分析物特异性结合的第二结合成员。
21.如权利要求20所述的方法,其中所述可检测标记包括发色团、荧光化合物、酶、化学发光化合物或放射性化合物。
CN202180027865.5A 2020-03-10 2021-03-09 用于将液滴加载到纳米孔中的方法 Pending CN115803626A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202062987639P 2020-03-10 2020-03-10
US62/987,639 2020-03-10
PCT/US2021/021502 WO2021183512A1 (en) 2020-03-10 2021-03-09 Method for droplet loading into nanowells

Publications (1)

Publication Number Publication Date
CN115803626A true CN115803626A (zh) 2023-03-14

Family

ID=75252869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180027865.5A Pending CN115803626A (zh) 2020-03-10 2021-03-09 用于将液滴加载到纳米孔中的方法

Country Status (4)

Country Link
US (1) US20230096625A1 (zh)
EP (1) EP4118432A1 (zh)
CN (1) CN115803626A (zh)
WO (1) WO2021183512A1 (zh)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637459A (en) 1990-06-11 1997-06-10 Nexstar Pharmaceuticals, Inc. Systematic evolution of ligands by exponential enrichment: chimeric selex
US5683867A (en) 1990-06-11 1997-11-04 Nexstar Pharmaceuticals, Inc. Systematic evolution of ligands by exponential enrichment: blended SELEX
US5270163A (en) 1990-06-11 1993-12-14 University Research Corporation Methods for identifying nucleic acid ligands
EP1695978A1 (en) 1990-06-11 2006-08-30 Gilead Sciences, Inc. Nucleic acid ligands
US5705337A (en) 1990-06-11 1998-01-06 Nexstar Pharmaceuticals, Inc. Systematic evolution of ligands by exponential enrichment: chemi-SELEX
US5496938A (en) 1990-06-11 1996-03-05 Nexstar Pharmaceuticals, Inc. Nucleic acid ligands to HIV-RT and HIV-1 rev
US5567588A (en) 1990-06-11 1996-10-22 University Research Corporation Systematic evolution of ligands by exponential enrichment: Solution SELEX
US5620850A (en) 1994-09-26 1997-04-15 President And Fellows Of Harvard College Molecular recognition at surfaces derivatized with self-assembled monolayers
US7070921B2 (en) 2000-04-28 2006-07-04 Molecular Devices Corporation Molecular modification assays
US7632651B2 (en) 1997-09-15 2009-12-15 Mds Analytical Technologies (Us) Inc. Molecular modification assays
US9675972B2 (en) 2006-05-09 2017-06-13 Advanced Liquid Logic, Inc. Method of concentrating beads in a droplet
US9625454B2 (en) 2009-09-04 2017-04-18 The Research Foundation For The State University Of New York Rapid and continuous analyte processing in droplet microfluidic devices
WO2016161402A1 (en) 2015-04-03 2016-10-06 Abbott Laboratories Devices and methods for sample analysis
RU2020100511A (ru) 2015-04-03 2020-06-26 Эбботт Лэборетриз Устройства и способы для анализа образца
JP7097895B2 (ja) * 2017-01-18 2022-07-08 アボット・ラボラトリーズ 試料分析のための方法およびデバイス

Also Published As

Publication number Publication date
US20230096625A1 (en) 2023-03-30
EP4118432A1 (en) 2023-01-18
WO2021183512A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
AU2021209235B2 (en) Devices and methods for sample analysis
JP7246931B2 (ja) 試料分析のためのデバイスおよび方法
EP3278108B1 (en) Devices and methods for sample analysis
JP2018518655A5 (zh)
CN113454455B (zh) 微粒上的单分子的直接检测
JP2024050633A (ja) デジタルアッセイのために横からの照射を使用した光学イメージングシステム
WO2018143478A1 (en) Method for reducing noise in a signal-generating digital assays
US20190376963A1 (en) Sequential sampling method for improving immunoassay sensitivity and kinetics of small volume samples
US20230096625A1 (en) Method for droplet loading into nanowells
JP7493513B2 (ja) 微粒子上の1分子の直接検出
JP2024079779A (ja) シグナル発生型デジタルアッセイにおけるノイズを低減する方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination