CN115789511B - 一种液氢冷能梯级利用系统和方法 - Google Patents

一种液氢冷能梯级利用系统和方法 Download PDF

Info

Publication number
CN115789511B
CN115789511B CN202211589043.9A CN202211589043A CN115789511B CN 115789511 B CN115789511 B CN 115789511B CN 202211589043 A CN202211589043 A CN 202211589043A CN 115789511 B CN115789511 B CN 115789511B
Authority
CN
China
Prior art keywords
unit
hydrogen
cold
heat exchanger
cold energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211589043.9A
Other languages
English (en)
Other versions
CN115789511A (zh
Inventor
龚领会
王倩
霍延凯
李岸然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Advanced Cryogenic Technology Research Institute
Original Assignee
Zhongshan Advanced Cryogenic Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Advanced Cryogenic Technology Research Institute filed Critical Zhongshan Advanced Cryogenic Technology Research Institute
Priority to CN202211589043.9A priority Critical patent/CN115789511B/zh
Publication of CN115789511A publication Critical patent/CN115789511A/zh
Application granted granted Critical
Publication of CN115789511B publication Critical patent/CN115789511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明涉及能源转化、冷量回收的技术领域,并提供了一种液氢冷能梯级利用系统和方法,该系统包括增压设备、冷能利用单元和管路单元。增压设备与冷能利用单元连接,以用于将常压液氢增压至高压液氢并通过管路单元进入冷能利用单元;冷能利用单元设有多个,包括与增压设备连接用于将高压液氢转变为高压氢气的初级冷能利用单元,以及多个次级冷能利用单元;初级冷能利用单元和多个次级冷能利用单元依次连接,用于阶梯式地回收低温高压氢气的冷量并应用于相应的场景,通过设置多个冷能利用单元实现多温区的液氢冷能利用场景,使氢气冷能梯级利用,减小换热温差,减少不可逆损失。

Description

一种液氢冷能梯级利用系统和方法
技术领域
本发明涉及能源转化、冷量回收的技术领域,特别涉及一种液氢冷能梯级利用系统和方法。
背景技术
液氢作为氢能应用领域的重要组成部分,其体积能量密度(8.5MJ/L)是15MPa气氢的6.5倍,是理想的可再生能源,成为弃电消纳、进行大规模储能载体。但氢气液化温度较低(~20K)决定了其液化难度大,液化过程所耗费的能量代价大。通过热力学对㶲的定义可得出,物质温度越低,其冷量㶲越大,温度趋于0K,其蕴藏的冷量㶲趋于无穷大,冷量品质极高。以298.15K,0.1MPa为参考状态,298.15K,0.1MPa的液氢冷量㶲高达14MJ/kg。因此,通过对液氢冷能的回收再利用,对于提高能量综合利用效率具有重要意义。
目前,关于液氢冷量的回收利用,主要局限在应用场景单一,比如当需要用于冷库、制取干冰等场景时,通过换热器换热,利用载冷工质将液氢冷量应用到相应场景。而单一的应用场景导致换热温区较窄,缺点在于换热温差大,不可逆损失大;或是出口氢气温度仍较低,冷量利用不充分,造成㶲效率较低。另外,温区越低,冷量㶲占液氢总㶲的比值相对越大。若在接近液氢温区无合适应用场景,则在低温温区因温差带来的不可逆损失是制约整体冷能利用㶲效率的主要因素之一。
发明内容
本发明的目的在于解决现有技术中液氢冷能利用的㶲效率低下的技术问题。
为解决上述技术问题,本发明提供了一种液氢冷能梯级利用系统,其包括:增压设备,其用于将常压液氢增压至高压液氢;冷能利用单元,其设置有多个,包括与所述增压设备连接用于将高压液氢转变为高压氢气的初级冷能利用单元,以及多个次级冷能利用单元;所述初级冷能利用单元和多个所述次级冷能利用单元依次连接,用于阶梯式地回收低温高压氢气的冷量并应用于相应的场景;管路单元,与所述增压设备和多个所述冷能利用单元连接以用于输送液氢或氢气。
可选地,所述初级冷能利用单元为氮气液化单元,所述次级冷能利用单元包括依次连接的制干冰单元、冷库单元和空调单元。
可选地,所述氮气液化单元包括氮气液化换热器、氮气液化换热器氮气工质进口和氮气液化换热器液氮工质出口;所述制干冰单元包括制干冰换热器、制干冰换热器载冷工质进口和制干冰换热器载冷工质出口;所述冷库单元包括冷库换热器、冷库换热器载冷工质进口和冷库换热器载冷工质出口;所述空调单元包括空调换热器、空调换热器载冷工质进口和空调换热器载冷工质出口。
可选地,所述氮气液化换热器的载冷工质用于将高压液氢换热后气化为所述高压氢气,所述制干冰换热器、所述冷库换热器和所述空调换热器的载冷工质用于将所述高压氢气换热后升温以实现阶梯式地收集所述高压氢气的冷量。
可选地,所述管路单元包括与所述增压设备连接的前管、用于连接所述增压设备和所述氮气液化单元的液氢进口管路、用于连接所述氮气液化单元和所述制干冰单元的第一氢气管路、用于连接所述制干冰单元和所述冷库单元的第二氢气管路、用于连接所述冷库单元和所述空调单元的第三氢气管路、与所述空调单元连接的常温常压氢气用户端连接管路。
可选地,该液氢冷能梯级利用系统还包括与所述空调单元连接的一级透平膨胀机,所述管路单元还包括第一回路,所述第一回路包括用于使得高压氢气自所述空调单元进入所述一级透平膨胀机的第一氢气进口管路和用于使得氢气自所述一级透平膨胀机排出进入所述空调单元的第一排气再热管路。
可选地,该液氢冷能梯级利用系统还包括与所述空调单元连接的二级透平膨胀机,所述管路单元还包括第二回路,所述第二回路包括用于使得氢气自所述空调单元进入所述二级透平膨胀机的第二氢气进口管路、用于使得氢气自所述二级透平膨胀机排出进入所述制干冰单元的第二排气再热管路、连接所述制干冰单元和所述冷库单元的第三排气再热管路、连接所述冷库单元和所述空调单元内的第四排气再热管路。
可选地,所述增压设备为液氢增压泵。
本申请还提供了一种液氢冷能梯级利用的方法,所述方法基于上述的液氢冷能梯级利用系统实现,所述方法包括以下步骤:
S10、将常压液氢经增压设备增压为20MPa的高压液氢进入氮气液化单元;
S20、高压液氢经氮气液化单元的氮气液化换热器与氮气工质换热后气化为高压氢气进入制干冰单元,氮气液化换热器的氮气工质收集高压氢气的冷量被液化,通过氮气液化换热器液氮工质出口进入液氮储罐;
S30、高压氢气经制干冰单元的制干冰换热器的载冷工质换热升温后进入冷库单元,制干冰换热器的载冷工质收集高压氢气的冷量通过制干冰换热器载冷工质出口进入制干冰工艺流程;
S40、高压氢气经冷库单元的冷库换热器的载冷工质换热升温后进入空调单元,冷库换热器的载冷工质收集高压氢气的冷量通过冷库换热器载冷工质出口进入冷库工艺流程;
S50、高压氢气经空调单元的空调换热器的载冷工质换热升温,空调换热器的载冷工质收集高压氢气的冷量通过空调换热器载冷工质出口进入空调工艺流程。
可选地,在所述步骤S50后还包括:高压氢气自空调单元进入第一透平膨胀机,经第一透平膨胀机膨胀降温后回到空调单元,再自空调单元进入第二透平膨胀机,经第二透平膨胀机膨胀降温后依次回流经过制干冰单元、冷库单元和空调单元,最后成为常温常压气体进入常温常压氢气用户端连接管路。
由上述技术方案可知,本发明的有益效果为:
本发明提供了一种液氢冷能梯级利用系统和方法,该系统包括增压设备、冷能利用单元和管路单元。增压设备与冷能利用单元连接,以用于将常压液氢增压至高压液氢并通过管路单元进入冷能利用单元;冷能利用单元设有多个,包括与增压设备连接用于将高压液氢转变为高压氢气的初级冷能利用单元,以及多个次级冷能利用单元;初级冷能利用单元和多个次级冷能利用单元依次连接,用于阶梯式地回收低温高压氢气的冷量并应用于相应的场景,通过设置多个冷能利用单元实现多温区的液氢冷能利用场景,使氢气冷能梯级利用,减小换热温差,减少不可逆损失。
附图说明
图1是本申请提供的一种液氢冷能梯级利用系统的结构示意图。
附图标记说明如下:
10、增压设备;20、氮气液化单元;21、氮气液化换热器;22、氮气液化换热器氮气工质进口;23、氮气液化换热器液氮工质出口;30、制干冰单元;31、制干冰换热器;32、制干冰换热器载冷工质进口;33、制干冰换热器载冷工质出口;40、冷库单元;41、冷库换热器;42、冷库换热器载冷工质进口;43、冷库换热器载冷工质出口;50、空调单元;51、空调换热器;52、空调换热器载冷工质进口;53、空调换热器载冷工质出口;60、管路单元;61、前管;62、液氢进口管路;63、第一氢气管路;64、第二氢气管路;65、第三氢气管路;66、常温常压氢气用户端连接管路;70、一级透平膨胀机;71、第一氢气进口管路;72、第一排气再热管路;80、二级透平膨胀机;81、第二氢气进口管路;82、第二排气再热管路;83、第三排气再热管路;84、第四排气再热管路。
具体实施方式
体现本发明特征与优点的典型实施方式将在以下的说明中详细叙述。应理解的是本发明能够在不同的实施方式上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及图示在本质上是当作说明之用,而非用以限制本发明。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了进一步说明本发明的原理和结构,现结合附图对本发明的优选实施例进行详细说明。
本申请提供一种液氢冷能梯级利用系统和方法,该系统包括增压设备10、冷能利用单元和管路单元60。增压设备10与冷能利用单元连接,冷能利用单元设有多个,多个冷能利用单元通过管路单元60依次连接。
冷能利用单元包括与增压设备10连接用于将高压液氢转变为高压氢气的初级冷能利用单元,以及多个次级冷能利用单元;初级冷能利用单元和多个所述次级冷能利用单元依次连接,用于阶梯式地回收低温高压氢气的冷量并应用于相应的场景。
具体地,初级冷能利用单元为氮气液化单元20,次级冷能利用单元包括依次连接的制干冰单元30、冷库单元40和空调单元50。氮气液化单元20包括氮气液化换热器21、氮气液化换热器氮气工质进口22和氮气液化换热器液氮工质出口23;制干冰单元30包括制干冰换热器31、制干冰换热器载冷工质进口32和制干冰换热器载冷工质出口33;冷库单元40包括冷库换热器41、冷库换热器载冷工质进口42和冷库换热器载冷工质出口43;空调单元50包括空调换热器51、空调换热器载冷工质进口52和空调换热器载冷工质出口53。
如图1所示,增压设备10、氮气液化单元20、制干冰单元30、冷库单元40和空调单元50依次连接。增压设备10为液氢增压泵,增压设备10将常压液氢增压至高压液氢,高压液氢流入氮气液化单元20,与氮气液化换热器21的氮气工质换热后气化转变为高压氢气的形态,被液化的氮气工质通过氮气液化换热器液氮工质出口23进入液氮储罐;进入制干冰单元30的高压氢气经制干冰换热器31的载冷工质换热升温后进入下一级冷库单元40,制干冰换热器31的载冷工质降温后经制干冰换热器载冷工质出口33进入制干冰工艺流程;进入冷库单元40的高压氢气经冷库换热器41的载冷工质换热升温后进入下一级空调单元50,冷库换热器41的载冷工质降温后经冷库换热器载冷工质出口43进入冷库工艺流程;进入空调单元50的高压氢气经空调换热器51的载冷工质换热升温,空调换热器51的载冷工质降温后经空调换热器载冷工质出口53进入空调工艺流程。通过四个冷能利用场景,使液氢冷能在4个温区内梯级释放,提高了液氢冷能利用率。
可以理解地是,初级冷能利用单元和次级冷能利用单元不局限于本实施例中的四个应用场景,可以增加或减少应用场景数量,或使用其他应用场景替换。
管路单元60包括与增压设备10连接的前管61、用于连接增压设备10和氮气液化单元20的液氢进口管路62、用于连接氮气液化单元20和制干冰单元30的第一氢气管路63、用于连接制干冰单元30和冷库单元40的第二氢气管路64、用于连接冷库单元40和空调单元50的第三氢气管路65、与空调单元50连接的常温常压氢气用户端连接管路66。通过管路单元60将液氢输送至氮气液化单元20转换成氢气依次将氢气输送至各级冷能利用单元,最后将成为常温常压的氢气送出。
进一步地,该液氢冷能梯级利用系统还包括空调单元50连接的一级透平膨胀机70,管路单元60还包括第一回路,第一回路包括用于使得高压氢气自空调单元50进入一级透平膨胀机70的第一氢气进口管路71和用于使得氢气自一级透平膨胀机70排出进入空调单元50的第一排气再热管路72。具体地,高压氢气自空调单元50出来经第一氢气进口管路71进入一级透平膨胀机70降温,对外输出功,膨胀降温后的氢气经第一排气再热管路72进入空调单元50换热器,继续为空调工艺流程提供冷量。
进一步地,该液氢冷能梯级利用系统还包括与空调单元50连接的二级透平膨胀机80,管路单元60还包括第二回路,第二回路包括用于使得氢气自空调单元50进入二级透平膨胀机的第二氢气进口管路81、用于使得氢气自二级透平膨胀机80排出进入制干冰单元30的第二排气再热管路82、连接制干冰单元30和冷库单元40的第三排气再热管路83、连接冷库单元40和空调单元50内的第四排气再热管路84。具体地,经过一级透平膨胀机70膨胀降温进入空调单元50,为空调工艺提供冷量后经第二氢气进口管路81自空调单元50出来进入二级透平膨胀机80继续膨胀做功,再次膨胀降温后的氢气再依次进入制干冰单元30、冷库单元40和空调单元50提供冷量最后成为常温常压气体经常温常压氢气用户端连接管路66进入氢气用户端。
由于四个温区梯级利用完成后的高压氢气仍具有很大的压力㶲值,通过设置一级透平膨胀机70和二级透平膨胀机80,使得高压氢气膨胀降温后,将此部分冷能通过换热器再次回收利用。
本申请还提供了一种液氢冷能梯级利用的方法,该方法包括以下步骤:
S10、将常压液氢经增压设备10增压为20MPa的高压液氢进入氮气液化单元20;
S20、高压液氢经氮气液化单元20的氮气液化换热器21与氮气工质换热气化为高压氢气进入制干冰单元30,氮气液化换热器21的氮气工质收集高压氢气的冷量被液化,通过氮气液化换热器液氮工质出口23进入液氮储罐;
具体地,氮气液化单元20包括氮气液化换热器21、氮气液化换热器氮气工质进口22和氮气液化换热器液氮工质出口23;高压液氢经氮气液化换热器21的氮气工质换热,高压液氢气化为高压低温氢气,氮气液化换热器21的氮气工质收集高压氢气的冷量被液化,通过氮气液化换热器液氮工质出口23进入液氮储罐;
S30、高压氢气经制干冰单元30的制干冰换热器31的载冷工质换热升温后进入冷库单元40,制干冰换热器31的载冷工质收集高压氢气的冷量通过制干冰换热器载冷工质出口33进入制干冰工艺流程;
具体地,制干冰单元30包括制干冰换热器31、制干冰换热器载冷工质进口32和制干冰换热器载冷工质出口33;高压低温氢气经制干冰换热器31的载冷工质换热,载冷工质收集高压氢气的冷量通过制干冰换热器载冷工质出口33进入制干冰工艺流程;
S40、高压氢气经冷库单元40的冷库换热器41的载冷工质换热升温后进入空调单元50,冷库换热器41的载冷工质收集高压氢气的冷量通过冷库换热器载冷工质出口43进入冷库工艺流程;
具体地,冷库单元40包括冷库换热器41、冷库换热器载冷工质进口42和冷库换热器载冷工质出口43;高压低温氢气经冷库换热器41的载冷工质换热,载冷工质收集高压氢气的冷量通过冷库换热器载冷工质出口43进入冷库工艺流程;
S50、高压氢气经空调单元50的空调换热器51的载冷工质换热升温,空调换热器51的载冷工质收集高压氢气的冷量通过空调换热器载冷工质出口53进入空调工艺流程;
具体地,空调单元50包括空调换热器51、空调换热器载冷工质进口52和空调换热器载冷工质出口53;高压低温氢气经空调换热器51的载冷工质换热,载冷工质收集高压氢气的冷量通过空调换热器载冷工质出口53进入空调工艺流程。
进一步地,在所述步骤S50后还包括:高压氢气自空调单元50进入第一透平膨胀机,经第一透平膨胀机膨胀降温后回到空调单元50,再自空调单元50进入第二透平膨胀机,经第二透平膨胀机膨胀降温后依次回流经过制干冰单元30、冷库单元40和空调单元50,最后成为常温常压气体进入常温常压氢气用户端连接管路66。
通过对本申请涉及的冷能利用流程进行HYSYS过程模拟仿真,结果表明该流程液氢冷能利用率32%左右,相比无多级膨胀做功,仅有上述四个换热应用场景(㶲效率仅为12%)㶲效率有明显提升。说明液氢增加实现部分温度㶲转化压力㶲,气化后高压氢气多级膨胀做功的冷能转换利用方法对提高㶲效率的作用明显。相比单温区应用场景(㶲效率低于10%),㶲效率也有明显提高。
本发明提供了一种液氢冷能梯级利用系统和方法,该系统包括增压设备10、冷能利用单元和管路单元60。增压设备10与冷能利用单元连接,以用于将常压液氢增压至高压液氢并通过管路单元60进入冷能利用单元;冷能利用单元设有多个,包括与增压设备10连接用于将高压液氢转变为高压氢气的初级冷能利用单元,以及多个次级冷能利用单元;初级冷能利用单元和多个次级冷能利用单元依次连接,用于阶梯式地回收低温高压氢气的冷量并应用于相应的场景,通过设置多个冷能利用单元实现多温区的液氢冷能利用场景,使氢气冷能梯级利用,减小换热温差,减少不可逆损失。
本申请提供的液氢冷能梯级利用系统和方法,不局限于液氢冷能的利用,液氮、液氧、LNG等低温液体的冷能回收同样适用本申请涉及的方法,只需要选择适合温区的应用场景即可。
虽然已参照几个典型实施方式描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (7)

1.一种液氢冷能梯级利用系统,其特征在于,包括:
增压设备,其用于将常压液氢增压至高压液氢;
冷能利用单元,其设置有多个,包括与所述增压设备连接用于将高压液氢转变为高压氢气的初级冷能利用单元,以及多个次级冷能利用单元;所述初级冷能利用单元和多个所述次级冷能利用单元依次连接,用于阶梯式地回收低温高压氢气的冷量并应用于相应的场景;
管路单元,与所述增压设备和多个所述冷能利用单元连接以用于输送液氢或氢气;
所述初级冷能利用单元为氮气液化单元,所述次级冷能利用单元包括依次连接的制干冰单元、冷库单元和空调单元;
还包括与所述空调单元连接的一级透平膨胀机,所述管路单元还包括第一回路,所述第一回路包括用于使得高压氢气自所述空调单元进入所述一级透平膨胀机的第一氢气进口管路和用于使得氢气自所述一级透平膨胀机排出进入所述空调单元的第一排气再热管路;
还包括与所述空调单元连接的二级透平膨胀机,所述管路单元还包括第二回路,所述第二回路包括用于使得氢气自所述空调单元进入所述二级透平膨胀机的第二氢气进口管路、用于使得氢气自所述二级透平膨胀机排出进入所述制干冰单元的第二排气再热管路、连接所述制干冰单元和所述冷库单元的第三排气再热管路、连接所述冷库单元和所述空调单元内的第四排气再热管路。
2.根据权利要求1所述的液氢冷能梯级利用系统,其特征在于,所述氮气液化单元包括氮气液化换热器、氮气工质进口和液氮工质出口;所述制干冰单元包括制干冰换热器、制干冰换热器载冷工质进口和制干冰换热器载冷工质出口;所述冷库单元包括冷库换热器、冷库换热器载冷工质进口和冷库换热器载冷工质出口;所述空调单元包括空调换热器、空调换热器载冷工质进口和空调换热器载冷工质出口。
3.根据权利要求2所述的液氢冷能梯级利用系统,其特征在于,所述氮气液化换热器的氮气工质用于将高压液氢换热后气化为所述高压氢气,所述制干冰换热器、所述冷库换热器和所述空调换热器的载冷工质用于将所述高压氢气换热后升温以实现阶梯式地收集所述高压氢气的冷量。
4.根据权利要求3所述的液氢冷能梯级利用系统,其特征在于,所述管路单元包括与所述增压设备连接的前管、用于连接所述增压设备和所述氮气液化单元的液氢进口管路、用于连接所述氮气液化单元和所述制干冰单元的第一氢气管路、用于连接所述制干冰单元和所述冷库单元的第二氢气管路、用于连接所述冷库单元和所述空调单元的第三氢气管路、与所述空调单元连接的常温常压氢气用户端连接管路。
5.根据权利要求1至4中任一项所述的液氢冷能梯级利用系统,其特征在于,所述增压设备为液氢增压泵。
6.一种液氢冷能梯级利用的方法,所述方法基于权利要求5所述的液氢冷能梯级利用系统实现,其特征在于,所述方法包括以下步骤:
S10、将常压液氢经增压设备增压为20MPa的高压液氢进入氮气液化单元;
S20、高压液氢经氮气液化单元的氮气液化换热器与氮气工质换热后气化变为低温高压氢气进入制干冰单元,氮气液化换热器的氮气工质收集高压液氢的冷量被液化,通过氮气液化换热器液氮工质出口进入液氮储罐;
S30、高压氢气经制干冰单元的制干冰换热器的载冷工质换热升温后进入冷库单元,制干冰换热器的载冷工质收集高压氢气的冷量通过制干冰换热器载冷工质出口进入制干冰工艺流程;
S40、高压氢气经冷库单元的冷库换热器的载冷工质换热升温后进入空调单元,冷库换热器的载冷工质收集高压氢气的冷量通过冷库换热器载冷工质出口进入冷库工艺流程;
S50、高压氢气经空调单元的空调换热器的载冷工质换热升温,空调换热器的载冷工质收集高压氢气的冷量通过空调换热器载冷工质出口进入空调工艺流程。
7.根据权利要求6所述的方法,其特征在于,在所述步骤S50后还包括:高压氢气自空调单元进入第一透平膨胀机,经第一透平膨胀机膨胀降温后回到空调单元,再自空调单元进入第二透平膨胀机,经第二透平膨胀机膨胀降温后依次回流经过制干冰单元、冷库单元和空调单元,最后成为常温常压气体进入常温常压氢气用户端连接管路。
CN202211589043.9A 2022-12-12 2022-12-12 一种液氢冷能梯级利用系统和方法 Active CN115789511B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211589043.9A CN115789511B (zh) 2022-12-12 2022-12-12 一种液氢冷能梯级利用系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211589043.9A CN115789511B (zh) 2022-12-12 2022-12-12 一种液氢冷能梯级利用系统和方法

Publications (2)

Publication Number Publication Date
CN115789511A CN115789511A (zh) 2023-03-14
CN115789511B true CN115789511B (zh) 2023-10-17

Family

ID=85418661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211589043.9A Active CN115789511B (zh) 2022-12-12 2022-12-12 一种液氢冷能梯级利用系统和方法

Country Status (1)

Country Link
CN (1) CN115789511B (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092888A (zh) * 2007-05-10 2007-12-26 华南理工大学 一种利用液化天然气低温的开式工质循环发电方法
CN102967099A (zh) * 2012-11-08 2013-03-13 暨南大学 一种液化天然气冷能的能量梯级综合利用方法
CN203478839U (zh) * 2013-09-05 2014-03-12 中国寰球工程公司 一种lng冷能梯级利用系统
CN105865149A (zh) * 2016-04-22 2016-08-17 暨南大学 一种利用液化天然气冷能生产液态空气的方法
CN207006622U (zh) * 2016-11-14 2018-02-13 青岛远洋船员职业学院 一种lng运输船的冷能梯级利用系统
CN108362037A (zh) * 2018-03-14 2018-08-03 天津商业大学 利用液化天然气梯级冷能余冷的制冷和空调组合系统
CN207881304U (zh) * 2017-10-11 2018-09-18 李明 低温流体冷能利用工艺
CN109184837A (zh) * 2018-08-15 2019-01-11 江苏科技大学 Lng动力船燃料冷能全发电梯级利用系统及利用方法
CN209279466U (zh) * 2018-12-25 2019-08-20 江苏金合能源科技有限公司 一种lng冷能存储及梯级利用蓄冷系统
CN110486627A (zh) * 2019-07-24 2019-11-22 西安交通大学 一种基于lng冷能利用的多联产系统
CN110761862A (zh) * 2019-11-08 2020-02-07 江苏科技大学 一种液化天然气动力船液化天然气冷能梯级利用系统
CN110864498A (zh) * 2019-10-17 2020-03-06 深圳市燃气集团股份有限公司 一种lng冷能梯级利用装置和方法
CN113531388A (zh) * 2021-08-06 2021-10-22 液空厚普氢能源装备有限公司 一种液氢加氢站冷量回收利用系统及方法
CN113914940A (zh) * 2021-09-23 2022-01-11 青岛科技大学 一种氢燃料动力船能量综合利用系统
CN217875296U (zh) * 2022-05-23 2022-11-22 中国科学院理化技术研究所 一种级联式液氢加氢站冷量回收系统

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092888A (zh) * 2007-05-10 2007-12-26 华南理工大学 一种利用液化天然气低温的开式工质循环发电方法
CN102967099A (zh) * 2012-11-08 2013-03-13 暨南大学 一种液化天然气冷能的能量梯级综合利用方法
CN203478839U (zh) * 2013-09-05 2014-03-12 中国寰球工程公司 一种lng冷能梯级利用系统
CN105865149A (zh) * 2016-04-22 2016-08-17 暨南大学 一种利用液化天然气冷能生产液态空气的方法
CN207006622U (zh) * 2016-11-14 2018-02-13 青岛远洋船员职业学院 一种lng运输船的冷能梯级利用系统
CN207881304U (zh) * 2017-10-11 2018-09-18 李明 低温流体冷能利用工艺
CN108362037A (zh) * 2018-03-14 2018-08-03 天津商业大学 利用液化天然气梯级冷能余冷的制冷和空调组合系统
CN109184837A (zh) * 2018-08-15 2019-01-11 江苏科技大学 Lng动力船燃料冷能全发电梯级利用系统及利用方法
CN209279466U (zh) * 2018-12-25 2019-08-20 江苏金合能源科技有限公司 一种lng冷能存储及梯级利用蓄冷系统
CN110486627A (zh) * 2019-07-24 2019-11-22 西安交通大学 一种基于lng冷能利用的多联产系统
CN110864498A (zh) * 2019-10-17 2020-03-06 深圳市燃气集团股份有限公司 一种lng冷能梯级利用装置和方法
CN110761862A (zh) * 2019-11-08 2020-02-07 江苏科技大学 一种液化天然气动力船液化天然气冷能梯级利用系统
CN113531388A (zh) * 2021-08-06 2021-10-22 液空厚普氢能源装备有限公司 一种液氢加氢站冷量回收利用系统及方法
CN113914940A (zh) * 2021-09-23 2022-01-11 青岛科技大学 一种氢燃料动力船能量综合利用系统
CN217875296U (zh) * 2022-05-23 2022-11-22 中国科学院理化技术研究所 一种级联式液氢加氢站冷量回收系统

Also Published As

Publication number Publication date
CN115789511A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
CN110701870B (zh) 一种利用lng冷能的空分装置和方法
US10520225B2 (en) Refrigeration and/or liquefaction device using selective pre-cooling, and corresponding method
CN115451647B (zh) 一种集成液化空气储能系统的氢液化系统
CN116247700B (zh) 一种基于lng冷能利用的液态空气储能系统
CN115789511B (zh) 一种液氢冷能梯级利用系统和方法
CN209990560U (zh) 一种基于热声技术的冷能梯级利用系统
US6170290B1 (en) Refrigeration process and plant using a thermal cycle of a fluid having a low boiling point
JP4142559B2 (ja) ガスの液化装置およびガスの液化方法
JPH08159654A (ja) 液体水素の製造方法及び装置
CN114352372B (zh) 一种利用液态天然气冷能的热泵储电方法
CN112112694B (zh) 压缩热自消纳的液态空气储能系统及方法
CN213540514U (zh) 压缩热自消纳的液态空气储能系统
CN215676067U (zh) 利用lng冷能的液态空气生产装置
CN115773180A (zh) 与Allam循环形式电站相结合的联合循环系统及低温循环方法
CN114370391A (zh) 一种超临界压缩空气储能系统
CN114991896A (zh) 一种闭式循环储能系统及方法
CN114812095A (zh) 一种超流氦制冷机
CN210165624U (zh) 一种用于油气回收的多级冷凝系统
JPH09303954A (ja) ネオンを用いた水素液化方法及び装置
CN113701388A (zh) 多元混合工质节流-超音速两相膨胀复合低温氢液化系统
RU2258186C1 (ru) Способ сжижения природного газа
CN216868943U (zh) 一种氢气液化装置
CN213984245U (zh) 一种新型氢气液化装置
CN107477898A (zh) 一种多级串联式大型低温制冷系统
RU2062412C1 (ru) Установка снабжения природным газом

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant