CN115775902A - Method for increasing density of fuel cell electrolyte layer and fuel cell - Google Patents
Method for increasing density of fuel cell electrolyte layer and fuel cell Download PDFInfo
- Publication number
- CN115775902A CN115775902A CN202211641934.4A CN202211641934A CN115775902A CN 115775902 A CN115775902 A CN 115775902A CN 202211641934 A CN202211641934 A CN 202211641934A CN 115775902 A CN115775902 A CN 115775902A
- Authority
- CN
- China
- Prior art keywords
- electrolyte layer
- layer
- molten metal
- metal
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003792 electrolyte Substances 0.000 title claims abstract description 138
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000000446 fuel Substances 0.000 title claims abstract description 46
- 229910052751 metal Inorganic materials 0.000 claims abstract description 137
- 239000002184 metal Substances 0.000 claims abstract description 137
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 238000006056 electrooxidation reaction Methods 0.000 claims abstract description 24
- 238000002844 melting Methods 0.000 claims description 15
- 230000008018 melting Effects 0.000 claims description 15
- 229910044991 metal oxide Inorganic materials 0.000 claims description 15
- 150000004706 metal oxides Chemical class 0.000 claims description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 239000011261 inert gas Substances 0.000 claims description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 239000011591 potassium Substances 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- 239000011148 porous material Substances 0.000 abstract description 26
- 239000000463 material Substances 0.000 description 18
- 230000008569 process Effects 0.000 description 17
- 238000007750 plasma spraying Methods 0.000 description 9
- 239000007787 solid Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 238000010309 melting process Methods 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- -1 oxygen ions Chemical class 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000000280 densification Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000010349 cathodic reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000010431 corundum Substances 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000010288 cold spraying Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000010290 vacuum plasma spraying Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
本发明公开了提高燃料电池电解质层致密度的方法和燃料电池,提高燃料电池电解质层致密度的方法包括:提供金属支撑体;在所述金属支撑体一侧表面形成阴极层:在所述阴极层远离所述金属支撑体的一侧表面形成孔隙率为5‑10%的第一电解质层;令所述第一电解质层远离所述金属支撑体的表面与熔融金属接触,并通过外接电源令所述熔融金属在所述第一电解质层的孔内发生电化学氧化反应,以获得所述电解质层。由此方法制备的电解质层致密度较高和稳定性较好,能够有效降低燃料电池内阻。
The invention discloses a method for increasing the density of an electrolyte layer of a fuel cell and a fuel cell. The method for increasing the density of an electrolyte layer of a fuel cell includes: providing a metal support; forming a cathode layer on one side of the metal support; forming a cathode layer on the cathode A first electrolyte layer with a porosity of 5-10% is formed on the surface of the layer away from the metal support; the surface of the first electrolyte layer away from the metal support is in contact with the molten metal, and the The molten metal undergoes an electrochemical oxidation reaction in pores of the first electrolyte layer to obtain the electrolyte layer. The electrolyte layer prepared by the method has higher density and better stability, and can effectively reduce the internal resistance of the fuel cell.
Description
技术领域technical field
本发明属于燃料电池领域,尤其涉及一种提高燃料电池电解质层致密度的方法和燃料电池。The invention belongs to the field of fuel cells, and in particular relates to a method for increasing the density of an electrolyte layer of a fuel cell and a fuel cell.
背景技术Background technique
固体氧化物燃料电池属于第三代燃料电池,是一种在中高温下直接将储存在燃料和氧化剂中的化学能高效、环境友好地转化成电能的全固态化学发电装置,而金属支撑固体氧化物燃料能够提高电池机械强度,增加电池抗热冲击能力,降低系统成本,因此近年来金属支撑固体氧化物燃料电池逐渐成为燃料电池领域内的新的研究点。利用等离子喷涂技术制备金属支撑燃料电池电解质层,无需对电池进行长时间的高温烧结,可以避免传统的烧结法制备过程中电解质高温烧结所造成的电极铬毒害、金属支撑体高温氧化等问题,但目前制备的电解质层仍不够致密。The solid oxide fuel cell belongs to the third generation of fuel cells. It is an all-solid-state chemical power generation device that directly converts the chemical energy stored in fuel and oxidant into electrical energy in an efficient and environmentally friendly manner at medium and high temperatures. Biofuel can improve the mechanical strength of the battery, increase the thermal shock resistance of the battery, and reduce the system cost. Therefore, metal-supported solid oxide fuel cells have gradually become a new research point in the field of fuel cells in recent years. The use of plasma spraying technology to prepare the metal-supported fuel cell electrolyte layer does not require long-term high-temperature sintering of the battery, and can avoid the problems of chromium poisoning of the electrode and high-temperature oxidation of the metal support caused by the high-temperature sintering of the electrolyte in the traditional sintering method. The electrolyte layer prepared so far is still not dense enough.
因此,目前提高燃料电池电解质层致密度的方法和燃料电池仍有待改进。Therefore, the current method for increasing the density of the fuel cell electrolyte layer and the fuel cell still need to be improved.
发明内容Contents of the invention
本发明中是基于发明人对以下问题的发现而做出的:In the present invention, it is based on the inventor's discovery of the following problems:
发明人发现,虽然采用大气等离子喷涂技术设备制备电解质层的成本较低,但制备得到的电解质层的致密度较差,会导致燃料电池阴极层和阳极层电极两侧气体泄露,使得阴极层和阳极层气体的分压减少,从而降低燃料电池的开路电压,因此,需要对电解质层进行进一步致密化操作来提高其致密度。发明人进一步发现,相关技术中通过浸渍法对电解质层进行处理虽然可以降低电解质层的孔隙率,但该工艺需要多次浸渍工艺,流程耗时较长,以及难以消除电解质层的接触电阻;相关技术中通过低熔点电解质复合法,如采用氧化锑和氧化铋两种低熔点共同形成电解质层,在燃料电池工作中电解质层较易被还原为金属单质,造成电池短路而失效。The inventors found that although the cost of preparing the electrolyte layer by atmospheric plasma spraying equipment is low, the density of the prepared electrolyte layer is poor, which will cause gas leakage on both sides of the cathode layer and the anode layer of the fuel cell, making the cathode layer and the anode layer The partial pressure of the gas in the anode layer decreases, thereby reducing the open circuit voltage of the fuel cell. Therefore, it is necessary to further densify the electrolyte layer to increase its density. The inventors further found that although the porosity of the electrolyte layer can be reduced by treating the electrolyte layer by impregnation in the related art, this process requires multiple impregnation processes, the process takes a long time, and it is difficult to eliminate the contact resistance of the electrolyte layer; related In the technology, the low melting point electrolyte composite method is used, such as antimony oxide and bismuth oxide with low melting points to form the electrolyte layer. During the operation of the fuel cell, the electrolyte layer is easily reduced to a simple metal, causing the battery to short circuit and fail.
本发明旨在至少一定程度上缓解或解决上述提及问题中至少之一。The present invention aims to alleviate or solve at least one of the above-mentioned problems, at least to some extent.
在本发明的一个方面,本发明提出了一种提高燃料电池电解质层致密度的方法,包括以下步骤:提供金属支撑体;在所述金属支撑体一侧表面形成阴极层:在所述阴极层远离所述金属支撑体的一侧表面形成孔隙率为5-10%的第一电解质层;令所述第一电解质层远离所述金属支撑体的表面与熔融金属接触,并通过外接电源令所述熔融金属在所述第一电解质层的孔内发生电化学氧化反应,以获得所述电解质层。由此,可以获得致密度较高、稳定性好的电解质层。In one aspect of the present invention, the present invention proposes a method for increasing the density of the electrolyte layer of a fuel cell, comprising the following steps: providing a metal support; forming a cathode layer on one side of the metal support; forming a cathode layer on the cathode layer A first electrolyte layer with a porosity of 5-10% is formed on the surface away from the metal support; the surface of the first electrolyte layer away from the metal support is in contact with the molten metal, and an external power supply is used to make the The molten metal undergoes an electrochemical oxidation reaction in pores of the first electrolyte layer to obtain the electrolyte layer. Thus, an electrolyte layer with higher density and good stability can be obtained.
根据本发明的实施例,所述熔融金属包括金属铝、钠、钾和镓中的至少之一。由此,采用的金属性质稳定,氧化物不易被还原,提高了燃料电池的安全性能。According to an embodiment of the present invention, the molten metal includes at least one of metals aluminum, sodium, potassium and gallium. Therefore, the properties of the metal used are stable, and the oxide is not easy to be reduced, which improves the safety performance of the fuel cell.
根据本发明的实施例,所述方法进一步包括:将所述金属支撑体具有所述第一电解质层的表面朝上放置,并在所述第一电解质层远离所述金属支撑体一侧表面设置熔池,所述熔池内具有熔融金属。由此,可以进一步提高电解质层的致密度。According to an embodiment of the present invention, the method further includes: placing the metal support with the surface of the first electrolyte layer facing upwards, and disposing the surface of the first electrolyte layer away from the metal support A molten pool having molten metal therein. Thus, the density of the electrolyte layer can be further increased.
根据本发明的实施例,所述熔融金属的温度与所述熔融金属的熔点的差值不小于50℃。由此,可以促进熔融金属熔化,进一步提高电解质层的致密度。According to an embodiment of the present invention, the difference between the temperature of the molten metal and the melting point of the molten metal is not less than 50°C. Thereby, melting of the molten metal can be promoted, and the density of the electrolyte layer can be further increased.
根据本发明的实施例,所述熔融金属的熔融过程在惰性气体下进行。由此,可以减少金属在熔融过程中被氧化,进一步提高电解质层的致密度。According to an embodiment of the present invention, the melting process of the molten metal is performed under an inert gas. Thus, the oxidation of the metal during the melting process can be reduced, and the density of the electrolyte layer can be further improved.
根据本发明的实施例,所述熔池中的所述熔融金属的液面高度至少2cm。由此,可以进一步提高电解质层的致密度。According to an embodiment of the present invention, the liquid level of the molten metal in the molten pool is at least 2 cm. Thus, the density of the electrolyte layer can be further increased.
根据本发明的实施例,所述外接电源的一端与所述熔融金属电连接,所述外接电源的另一端与所述金属支撑体电连接。由此,可以使得熔融金属在第一电解质层孔内发生原位电化学氧化,进一步提高电解质层的致密度。According to an embodiment of the present invention, one end of the external power supply is electrically connected to the molten metal, and the other end of the external power supply is electrically connected to the metal support. In this way, in-situ electrochemical oxidation of the molten metal can occur in the pores of the first electrolyte layer, further improving the density of the electrolyte layer.
根据本发明的实施例,所述电化学氧化反应的电流密度为0.01-0.05A/cm2。由此,可以获得致密度较高、稳定性较好的电解质层。According to an embodiment of the present invention, the current density of the electrochemical oxidation reaction is 0.01-0.05 A/cm 2 . Thus, an electrolyte layer with higher density and better stability can be obtained.
根据本发明的实施例,所述方法进一步包括:在所述电解质层表面形成熔融金属氧化物层,并去除所述熔融金属氧化物层。由此,可以获得致密度较高较高的电解质层。According to an embodiment of the present invention, the method further includes: forming a molten metal oxide layer on the surface of the electrolyte layer, and removing the molten metal oxide layer. As a result, an electrolyte layer with higher density can be obtained.
在本发明的另一方面,本发明提出了一种燃料电池,包括前述的方法制备得到的电解质层。由此,该电池具有前述电解质层所具有的全部特征及优点,在此不再赘述。In another aspect of the present invention, the present invention provides a fuel cell, comprising the electrolyte layer prepared by the aforementioned method. Therefore, the battery has all the features and advantages of the aforementioned electrolyte layer, which will not be repeated here.
附图说明Description of drawings
图1是根据本发明一个实施例的燃料电池电解质层致密化的方法流程图;1 is a flowchart of a method for densifying a fuel cell electrolyte layer according to an embodiment of the present invention;
图2是根据本发明一个实施例的燃料电池的部分结构示意图;Fig. 2 is a partial structural schematic diagram of a fuel cell according to an embodiment of the present invention;
图3是根据本发明一个实施例的电化学氧化反应装置连接示意图;3 is a schematic diagram of the connection of an electrochemical oxidation reaction device according to an embodiment of the present invention;
图4是根据本发明一个实施例的电化学氧化反应完成后燃料电池部分结构示意图;Fig. 4 is a partial structural diagram of the fuel cell after the electrochemical oxidation reaction is completed according to an embodiment of the present invention;
图5是根据本发明一个实施例的燃料电池结构示意图;Fig. 5 is a schematic structural view of a fuel cell according to an embodiment of the present invention;
图6是本发明实施例1的电解质层的扫描电子显微镜图。Fig. 6 is a scanning electron microscope image of the electrolyte layer of Example 1 of the present invention.
附图标记:Reference signs:
金属支撑体:10;阴极层:20;第一电解质层:30;第一电解质层孔隙:310;熔融金属:40;熔融金属氧化物层:50;熔融金属氧化物:320;熔池:70;电解质层:80;阳极层:90。Metal support: 10; cathode layer: 20; first electrolyte layer: 30; first electrolyte layer pores: 310; molten metal: 40; molten metal oxide layer: 50; molten metal oxide: 320; molten pool: 70 ; Electrolyte layer: 80; Anode layer: 90.
具体实施方式Detailed ways
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。Embodiments of the present application are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals denote the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary, and are only for explaining the present application, and should not be construed as limiting the present application.
在本发明的一发明,本发明提出了一种提高燃料电池电解质致密度的方法,具体地,参考图1,该方法可以包括以下步骤:In an invention of the present invention, the present invention proposes a method for improving the density of fuel cell electrolyte, specifically, referring to Fig. 1, the method may include the following steps:
S100:提供金属支撑体S100: Provide metal support body
根据本发明的一些实施例,金属支撑体是金属支撑固体氧化物燃料电池相对于传统的固体氧化物燃料电池最基本的特征,金属支撑体具有较高导热率,能够极大地降低固体燃料电池的热梯度及热应力,金属支撑体还具有较高的电导率,可以提高固体氧化物燃料电池的电性能。金属支撑体的制备工艺不受特别限制,例如,金属支撑体可以采用薄板激光加工、化学腐蚀和粉末冶金等工艺获得。According to some embodiments of the present invention, the metal support body is the most basic feature of the metal support solid oxide fuel cell compared to the traditional solid oxide fuel cell. The metal support body has a higher thermal conductivity, which can greatly reduce the Thermal gradient and thermal stress, the metal support also has high electrical conductivity, which can improve the electrical performance of the solid oxide fuel cell. The preparation process of the metal support is not particularly limited, for example, the metal support can be obtained by thin-plate laser processing, chemical corrosion and powder metallurgy.
根据本发明的一些实施例,金属支撑体的材料不受特别限制,例如,金属支撑体的材料可以为不锈钢材料,不锈钢材料因具有较好的抗氧化性和长期稳定性,可以更好的承载金属支撑体上方的阴极层和电解质层。According to some embodiments of the present invention, the material of the metal support is not particularly limited. For example, the material of the metal support can be stainless steel. Stainless steel can better carry A cathode layer and an electrolyte layer on a metal support.
根据本发明的一些实施例,由于固体氧化物燃料电池工作过程中需要通入气氛,金属支撑体可以具有多孔性,金属支撑体的孔隙率不受特别限制,例如,可以为15-30%。According to some embodiments of the present invention, since the solid oxide fuel cell needs to be ventilated with an atmosphere during operation, the metal support may have porosity, and the porosity of the metal support is not particularly limited, for example, it may be 15-30%.
根据本发明的一些实施例,金属支撑体的厚度不受特别限制,例如,金属支撑体的厚度为可以为0.5-3mm,当金属支撑体的厚度大于0.5mm时,能够有效承载其上方的阴极层、电解质层和阳极层。According to some embodiments of the present invention, the thickness of the metal support is not particularly limited. For example, the thickness of the metal support can be 0.5-3mm. When the thickness of the metal support is greater than 0.5mm, it can effectively carry the cathode above it. layer, electrolyte layer and anode layer.
S200:在金属支撑体一侧表面形成阴极层S200: forming a cathode layer on one side of the metal support
根据本发明的一些实施例,阴极层设置于金属支撑体的一侧表面,前述的阴极层充当了后续电化学氧化过程中金属-空气电池的阴极,并在阴极发生氧气得电子生成氧离子的阴极反应,具体地,阴极层的制备工艺不受特别限制,例如,可以采用大气等离子喷涂工艺获得阴极层,即利用供粉系统将阴极层材料粉体送入喷枪产生的高温高速的等离子焰流核心,粉体在高温高速焰流作用下会迅速变为熔融液滴并加速,最后撞击金属支撑体冷却凝固,熔融液滴在金属支撑体上不断沉积形成阴极层,采用等离子喷涂工艺获得的阴极层能够减少金属支撑体材料与阴极层材料的界面反应,提高阴极层与金属支撑体之间的结合力。According to some embodiments of the present invention, the cathode layer is arranged on one side surface of the metal support, and the aforesaid cathode layer serves as the cathode of the metal-air battery in the subsequent electrochemical oxidation process, and oxygen is generated at the cathode to obtain electrons to generate oxygen ions Cathode reaction, specifically, the preparation process of the cathode layer is not particularly limited, for example, the cathode layer can be obtained by the atmospheric plasma spraying process, that is, the high-temperature and high-speed plasma flame flow generated by the powder supply system to send the cathode layer material powder into the spray gun The core, the powder will quickly turn into molten droplets and accelerate under the action of high-temperature and high-speed flame flow, and finally hit the metal support to cool and solidify, and the molten droplets will continuously deposit on the metal support to form a cathode layer. The cathode obtained by the plasma spraying process The layer can reduce the interface reaction between the metal support material and the cathode layer material, and improve the binding force between the cathode layer and the metal support.
根据本发明的一些实施例,采用大气等离子喷涂工艺喷涂阴极层的第一电弧功率不受特别限制,例如,第一电弧功率可以为25-35kW,当第一电弧功率可以为25-35kW时,能够提高阴极层的孔隙率,有利于后续电化学氧化过程中气体在孔隙中扩散和迁移,进而促进后续电化学氧化反应的发生,从而获得致密性较高的电解质层。According to some embodiments of the present invention, the first arc power of spraying the cathode layer by the atmospheric plasma spraying process is not particularly limited, for example, the first arc power can be 25-35kW, when the first arc power can be 25-35kW, The porosity of the cathode layer can be increased, which is conducive to the diffusion and migration of gas in the pores during the subsequent electrochemical oxidation process, thereby promoting the occurrence of subsequent electrochemical oxidation reactions, thereby obtaining a denser electrolyte layer.
根据本发明的一些实施例,阴极层的孔隙率不受特别限制,例如,孔隙率可以为20-30%。当阴极层的孔隙率小于20%时,阴极层有效的气体扩散和迁移通道减少,不利于后续电化学氧化反应的进行,进而影响电解质层的致密度;当阴极层的孔隙率大于30%时,阴极层有效导电体积会减少,从而影响固体氧化物燃料电池的工作电压;当阴极层的孔隙率为20-30%时,有利于气体在阴极层的孔隙中扩散和迁移,进而促进后续原位电化学氧化反应的发生。According to some embodiments of the present invention, the porosity of the cathode layer is not particularly limited, for example, the porosity may be 20-30%. When the porosity of the cathode layer is less than 20%, the effective gas diffusion and migration channels of the cathode layer are reduced, which is not conducive to the subsequent electrochemical oxidation reaction, thereby affecting the density of the electrolyte layer; when the porosity of the cathode layer is greater than 30%. , the effective conductive volume of the cathode layer will decrease, thereby affecting the working voltage of the solid oxide fuel cell; when the porosity of the cathode layer is 20-30%, it is conducive to the diffusion and migration of gas in the pores of the cathode layer, thereby promoting the subsequent principle occurrence of electrochemical oxidation reactions.
S300:在阴极层远离金属支撑体的一侧表面形成第一电解质层S300: forming a first electrolyte layer on the surface of the cathode layer away from the metal support
根据本发明的一些实施例,电解质层在固体燃料电池中电解质层起到隔绝氧气和燃料的作用,当电解质层的致密度较低时,会导致燃料电池阴极层和阳极层电极两侧气体泄露,使得阴极层和阳极层气体的分压减少,从而降低燃料电池的开路电压。在本步骤中在阴极层远离金属支撑体的一侧表面形成孔隙率为5-10%的第一电解质层,随后再通过对第一电解质层的致密度化处理形成具有较高致密度的电解质层,参考图2,在金属支撑体10一侧表面形成阴极层20,于阴极层远离金属支撑体10的一侧表面形成第一电解质层30,其中第一电解质层30存在孔隙310。According to some embodiments of the present invention, the electrolyte layer plays the role of isolating oxygen and fuel in the solid fuel cell. When the density of the electrolyte layer is low, it will cause gas leakage on both sides of the cathode layer and the anode layer of the fuel cell. , so that the partial pressure of the cathode layer and the anode layer gas is reduced, thereby reducing the open circuit voltage of the fuel cell. In this step, a first electrolyte layer with a porosity of 5-10% is formed on the surface of the cathode layer away from the metal support, and then an electrolyte with a higher density is formed by densifying the first electrolyte layer Referring to FIG. 2 , a
根据本发明的一些实施例,第一电解质层的制备工艺不受特别限制,例如,可以采用大气等离子喷涂工艺获得第一电解质层,采用前述工艺获得的第一电解质层能够减少第一电解质层材料与阴极层材料的界面反应,并提高阴极层与第一电解质层之间的结合力。According to some embodiments of the present invention, the preparation process of the first electrolyte layer is not particularly limited. For example, the first electrolyte layer can be obtained by using an atmospheric plasma spraying process, and the first electrolyte layer obtained by using the aforementioned process can reduce the material of the first electrolyte layer. The interface reaction with the material of the cathode layer increases the binding force between the cathode layer and the first electrolyte layer.
根据本发明的一些实施例,采用大气等离子喷涂工艺喷涂第一电解质层的第二电弧功率不受特别限制,例如,第二电弧功率可以为45-50kW,当第二电弧功率可以为45-50kW时,能够提高第一电解质层粉体材料在喷涂过程中的熔融程度,熔融程度较好的第一电解质层粉体液滴在阴极层表面沉积后,可以形成孔隙率较低的第一电解质层,即通过前述的第二电弧功率喷涂的第一电解质层的孔隙率为5-10%。According to some embodiments of the present invention, the second arc power for spraying the first electrolyte layer by the atmospheric plasma spraying process is not particularly limited, for example, the second arc power can be 45-50kW, when the second arc power can be 45-50kW When , the degree of melting of the powder material of the first electrolyte layer during the spraying process can be improved, and after the powder droplets of the first electrolyte layer with a better melting degree are deposited on the surface of the cathode layer, the first electrolyte layer with a lower porosity can be formed. That is, the porosity of the first electrolyte layer sprayed by the aforementioned second arc power is 5-10%.
S400:令第一电解质层远离金属支撑体的表面与熔融金属接触,并通过外接电源令熔融金属在第一电解质层的孔内发生电化学氧化反应。S400: Bring the surface of the first electrolyte layer away from the metal support into contact with the molten metal, and make the molten metal undergo an electrochemical oxidation reaction in the pores of the first electrolyte layer through an external power supply.
根据本发明的一些实施例,在该步骤中令第一电解质层远离金属支撑体的表面与熔融金属接触,即第一电解质层远离金属支撑体的表面充当了熔池的底面,并通过外接电源令融熔金属在第一电解质层的孔隙内发生电化学氧化反应,使得熔融金属在第一电解质层的孔隙内部被氧化为金属氧化物并发生体积膨胀,从而实现第一电解质层孔隙内部的有效填充。According to some embodiments of the present invention, in this step, the surface of the first electrolyte layer away from the metal support is brought into contact with the molten metal, that is, the surface of the first electrolyte layer away from the metal support acts as the bottom surface of the molten pool, and is connected to the molten pool by an external power supply. Make the molten metal undergo an electrochemical oxidation reaction in the pores of the first electrolyte layer, so that the molten metal is oxidized into metal oxides in the pores of the first electrolyte layer and undergo volume expansion, thereby realizing effective oxidation in the pores of the first electrolyte layer. filling.
根据本发明的一些实施例,熔融金属的材料不受特别限制,例如,熔融金属的材料可以包括金属铝、钠、钾和镓中的至少之一。金属铝、钠、钾和镓的熔点较低,有利于在较低的温度使金属熔化,由此电化学氧化反应可以在较低的温度进行,以及前述金属的氧化物较难被氢气还原成金属,在燃料电池工作中前述金属的金属氧化物可以稳定地存在于第一电解质层的孔隙中。According to some embodiments of the present invention, the material of the molten metal is not particularly limited, for example, the material of the molten metal may include at least one of metals aluminum, sodium, potassium and gallium. The melting points of aluminum, sodium, potassium and gallium are relatively low, which is conducive to melting the metal at a lower temperature, so that the electrochemical oxidation reaction can be carried out at a lower temperature, and the oxides of the aforementioned metals are more difficult to be reduced to The metal, the metal oxide of the aforementioned metal can stably exist in the pores of the first electrolyte layer during the operation of the fuel cell.
根据本发明的一些实施例,在该步骤中可以将金属支撑体具有第一电解质层的表面朝上放置,并在第一电解质层远离金属支撑体一侧表面设置熔池,熔池内具有熔融金属。参考图3,可以在第一电解质层30远离金属支撑体10的一侧表面设置熔池70,熔池70内部填充有熔融金属40。According to some embodiments of the present invention, in this step, the surface of the metal support with the first electrolyte layer can be placed upward, and a molten pool is provided on the surface of the first electrolyte layer away from the metal support, and there is molten metal in the molten pool. . Referring to FIG. 3 , a
根据本发明的一些实施例,在第一电解质层远离金属支撑体的一侧表面放置熔池可以减少平铺于第一电解质层表面的熔融金属发生外溢,熔池的材质不受特别限制,例如,熔池的材质可以为石英、刚玉等,当熔池的材质为石英或刚玉时,在金属熔化和电化学氧化反应过程中,熔池的材料不与熔融金属材料发生化学反应。According to some embodiments of the present invention, placing a molten pool on the surface of the first electrolyte layer away from the metal support can reduce the overflow of molten metal that is spread on the surface of the first electrolyte layer. The material of the molten pool is not particularly limited, for example , The material of the molten pool can be quartz, corundum, etc. When the material of the molten pool is quartz or corundum, the material of the molten pool will not chemically react with the molten metal during the process of metal melting and electrochemical oxidation reaction.
根据本发明的一些实施例,熔融金属的温度与熔融金属的熔点差值可不小于50℃,当维持熔融金属的温度与熔融金属的熔点差值不小于50℃,能够使金属更好的熔化从而进入第一电解质层的孔隙内发生氧化反应,实现第一电解质层孔隙的有效填充,例如,铝的熔点为660℃,则对应的熔融铝的温度为至少710℃。According to some embodiments of the present invention, the difference between the temperature of the molten metal and the melting point of the molten metal may be not less than 50°C. When the difference between the temperature of the molten metal and the melting point of the molten metal is maintained at not less than 50°C, the metal can be melted better and thus Oxidation reaction occurs in the pores of the first electrolyte layer to effectively fill the pores of the first electrolyte layer. For example, the melting point of aluminum is 660°C, and the corresponding temperature of molten aluminum is at least 710°C.
根据本发明的一些实施例,金属的熔融过程是在惰性气体下进行的,前述惰性气体可以选自氮气、氦气、氖气、氩气、氪气、氙气、氡气中的至少之一,前述惰性气体的化学性质较为稳定,在金属熔融过程中可以对金属起到较好的保护作用,防止金属被氧化。According to some embodiments of the present invention, the metal melting process is carried out under an inert gas, and the aforementioned inert gas can be selected from at least one of nitrogen, helium, neon, argon, krypton, xenon, and radon, The chemical properties of the aforementioned inert gas are relatively stable, and can protect the metal well during the metal melting process and prevent the metal from being oxidized.
根据本发明的一些实施例,金属的添加量不受特别限制,例如,金属的添加量可以为金属熔化后,熔池中熔融金属的液面高度不小于2cm,当熔池中熔融金属的液面高度不小于2cm时,能够使足够量的熔融金属进入第一电解质层的孔隙内并发生氧化反应,使第一电解质层的孔隙得到有效填充。According to some embodiments of the present invention, the amount of metal added is not particularly limited. For example, the amount of metal added can be such that after the metal is melted, the liquid level height of the molten metal in the molten pool is not less than 2 cm. When the liquid level of the molten metal in the molten pool When the surface height is not less than 2 cm, a sufficient amount of molten metal can enter the pores of the first electrolyte layer and undergo an oxidation reaction, so that the pores of the first electrolyte layer can be effectively filled.
根据本发明的一些实施例,外接电源的连接方式不受特别限制,例如,外接电源的一端可以与熔融金属电连接,外接电源的另一端可以与金属支撑体电连接,具体地,参考图3,外接电源60的正极通过金属导线与金属支撑体10连接,外接电源60的负极与融熔金属40通过预先在熔融金属40内埋入的石磨棒连接,由此,熔融金属与空气组成熔融金属-空气电池,当电源放电时,在阴极层20与第一电解质层30界面处发生阴极反应,在第一电解质层孔隙310和第一电解质层30与熔融金属40接触的界面发生阳极反应,进而完成第一电解质成的致密化处理。According to some embodiments of the present invention, the connection mode of the external power supply is not particularly limited. For example, one end of the external power supply can be electrically connected to the molten metal, and the other end of the external power supply can be electrically connected to the metal support. Specifically, refer to FIG. 3 , the positive pole of the
根据本发明的一些实施例,通过外接电源令熔融金属在第一电解质层的孔隙内发生电化学氧化反应,具体地,通过外接电源,在阴极层与第一电解质层界面处发生氧气得到电子生成氧离子阴极反应,即O2+4e-→2O2-,在第一电解质层孔隙内和第一电解质层与熔融金属界面发生阳极反应,熔融金属失去电子,并与氧离子结合生成金属氧化物,实现熔融金属的电化学氧化。以金属铝为例,熔融的金属铝在第一电解质层孔隙内和第一电解质层与熔融的金属铝界面发生阳极反应,铝失去电子,即2Al-6e-+3O2-→Al2O3。According to some embodiments of the present invention, the molten metal undergoes an electrochemical oxidation reaction in the pores of the first electrolyte layer through an external power supply, specifically, through an external power supply, oxygen occurs at the interface between the cathode layer and the first electrolyte layer to generate electrons Oxygen ion cathodic reaction, that is, O 2 +4e - → 2O 2- , anodic reaction occurs in the pores of the first electrolyte layer and at the interface between the first electrolyte layer and the molten metal, and the molten metal loses electrons and combines with oxygen ions to form metal oxides , to achieve electrochemical oxidation of molten metal. Taking metal aluminum as an example, the molten metal aluminum has anodic reaction in the pores of the first electrolyte layer and the interface between the first electrolyte layer and the molten metal aluminum, and aluminum loses electrons, that is, 2Al-6e - +3O 2- → Al 2 O 3 .
根据本发明的一些实施例,氧离子在第一电解质层内扩散和迁移,会将优先渗入到第一电解质层孔隙中的液态金属氧化并发生体积膨胀,实现第一电解质层孔隙的有效填充形成致密度高、稳定性好的电解质层。According to some embodiments of the present invention, the diffusion and migration of oxygen ions in the first electrolyte layer will oxidize the liquid metal that preferentially infiltrates into the pores of the first electrolyte layer and cause volume expansion to realize the effective filling of the pores of the first electrolyte layer. Electrolyte layer with high density and good stability.
根据本发明的一些实施例,电化学氧化反应的电流密度不受特别限制,例如,电流密度可以为0.01-0.05A/cm2,当电流密度为0.01-0.05A/cm2时,有利于电化学氧化反应平稳进行,促进第一电解质层孔隙内的熔融金属电化学氧化反应,获得致密度较高的电解质层。According to some embodiments of the present invention, the current density of the electrochemical oxidation reaction is not particularly limited, for example, the current density can be 0.01-0.05A/cm 2 , when the current density is 0.01-0.05A/cm 2 , it is beneficial to The chemical oxidation reaction proceeds smoothly, the electrochemical oxidation reaction of molten metal in the pores of the first electrolyte layer is promoted, and a dense electrolyte layer is obtained.
根据本发明的一些实施例,电源的类型不受特别限制,例如,电源可以包括电化学工作站和电子负载中的一种。According to some embodiments of the present invention, the type of the power supply is not particularly limited, for example, the power supply may include one of an electrochemical workstation and an electronic load.
根据本发明的一些实施例,可以通过延长前述的电化学氧化反应,直至在电解质层表面形成熔融金属氧化物层,以确保电解质层内部的孔隙均被金属氧化物填充,并通过后续处理去除多余的熔融金属氧化物层,参考图4,第一电解质层30孔隙内填充熔融金属氧化物320形成致密度高的电解质层80,当电解质层80的表面形成熔融金属氧化物层时,电源停止工作,将熔池从电解质层表面移除,采用砂纸打磨电解质层表面,完成电解质层的致密化处理。采用本发明提出的方法提高燃料电池电解质层的致密度,可以获得致密度99%以上的电解质层,该电解质层能够满足燃料电池对电解质层致密度的要求,有效降低固体氧化物燃料电池内阻。具体地,电解质层表面形成得熔融金属氧化物层厚度不受特别限制,例如,氧化物层的厚度可以为至少1cm。According to some embodiments of the present invention, the aforementioned electrochemical oxidation reaction can be extended until a molten metal oxide layer is formed on the surface of the electrolyte layer to ensure that the pores inside the electrolyte layer are filled with metal oxides, and the excess metal oxide can be removed through subsequent treatment. Referring to Fig. 4, the pores of the
在本发明的另一个方面,本发明还提出了一种燃料电池,该燃料电池包括采用前述方法制备的电解质层,因此该燃料电池具有前述方法制备的电解质层的全部特征及优点。In another aspect of the present invention, the present invention also proposes a fuel cell, which includes the electrolyte layer prepared by the aforementioned method, so the fuel cell has all the features and advantages of the electrolyte layer prepared by the aforementioned method.
根据本发明的一些实施例,燃料电池包括金属支撑体、阴极层、电解质层和阳极层,参考图5,阴极层20位于金属支撑10的一侧表面,电解质层80位于阴极层20远离金属支撑体的一侧表面,阳极层90位于电解质层80远离阴极层20的一侧表面,其中电解质层80是采用前述的方法制备的。According to some embodiments of the present invention, a fuel cell includes a metal support, a cathode layer, an electrolyte layer, and an anode layer. Referring to FIG. The
根据本发明的一些实施例,阳极层的制备工艺不受特别限制,例如,可以采用大气等离子喷涂工艺获得阳极层,采用前述工艺获得的阳极层能够减少阳极层材料与电解质层材料的界面反应和提高阳极层与电解质层之间的结合力。According to some embodiments of the present invention, the preparation process of the anode layer is not particularly limited. For example, the anode layer can be obtained by using an atmospheric plasma spraying process. The anode layer obtained by the aforementioned process can reduce the interface reaction between the anode layer material and the electrolyte layer material and Improve the binding force between the anode layer and the electrolyte layer.
根据本发明的一些实施例,阳极层和阴极层的制备工艺,还可以包括磁控溅射、化学气象沉积、真空等离子喷涂、超音速火焰喷涂和冷喷涂中的一种。According to some embodiments of the present invention, the preparation process of the anode layer and the cathode layer may also include one of magnetron sputtering, chemical vapor deposition, vacuum plasma spraying, supersonic flame spraying and cold spraying.
下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。Embodiments of the present invention are described in detail below. The embodiments described below are exemplary only for explaining the present invention and should not be construed as limiting the present invention. If no specific technique or condition is indicated in the examples, it shall be carried out according to the technique or condition described in the literature in this field or according to the product specification. The reagents or instruments used were not indicated by the manufacturer, and they were all commercially available conventional products.
实施例1Example 1
采用第一电弧功率为30kW的等离子喷涂工艺向金属支撑体的表面喷涂阴极层,再采用第二电弧功率为47kW的等离子喷涂工艺向阴极层的表面喷涂第一电解质层。The cathode layer is sprayed on the surface of the metal support by a plasma spraying process with a first arc power of 30kW, and then the first electrolyte layer is sprayed on the surface of the cathode layer by a second plasma spray process with an arc power of 47kW.
将熔池放置于第一电解层上方,向熔池中充入金属铝粉,并向铝粉中埋一根石墨棒,然后外接电化学工作站,其中电化学工作站的正极通过导线与石磨棒连接,电化学工作站的负极通过导线与金属支撑体连接。加热熔池、第一电解质层、阴极层和金属支撑体至710℃使铝粉完全熔化并保温。电化学工作站以0.03A/cm2的电流密度进行放电,使第一电解质层的表面和孔隙内发生电化学氧化反应,待第一电解质层表面出现厚度1cm的氧化铝层停止放电,移除熔池并对电解质层表面清洁打磨处理,得到致密度较高的电解质层。Place the molten pool above the first electrolytic layer, fill the molten pool with metal aluminum powder, bury a graphite rod in the aluminum powder, and then connect the electrochemical workstation, wherein the positive electrode of the electrochemical workstation passes through the wire and the stone grinding rod Connection, the negative electrode of the electrochemical workstation is connected to the metal support body through a wire. Heat the molten pool, the first electrolyte layer, the cathode layer and the metal support to 710°C to completely melt the aluminum powder and keep it warm. The electrochemical workstation discharges at a current density of 0.03A/cm 2 to cause an electrochemical oxidation reaction to occur on the surface of the first electrolyte layer and in the pores, and the discharge stops when an aluminum oxide layer with a thickness of 1cm appears on the surface of the first electrolyte layer, and the molten metal is removed. pool and clean and polish the surface of the electrolyte layer to obtain a denser electrolyte layer.
实施例2-9,对比例1-6与实施例1工艺相同,不同的是电流密度、金属的种类、熔融金属液面和熔融温度,具体参见表1。Examples 2-9, Comparative Examples 1-6 are the same as Example 1, the difference is the current density, the type of metal, the molten metal level and the melting temperature, see Table 1 for details.
表1Table 1
对实施例1-9,和对比例1-6致密化处理后的电解质层组装全电池,在氢气气氛下工作并进行测试,具体见表2.For Examples 1-9, and Comparative Examples 1-6, the electrolyte layers after the densification treatment were assembled into full cells, worked and tested under a hydrogen atmosphere, see Table 2 for details.
表2Table 2
由表2并结合图6,可以得出,采用熔融金属原位电化学氧化方案可以显著提升电解质层的致密度,以氢气为燃料运行时可以显著提升电池的开路电压。From Table 2 combined with Figure 6, it can be concluded that the in-situ electrochemical oxidation of molten metal can significantly increase the density of the electrolyte layer, and the open circuit voltage of the battery can be significantly increased when hydrogen is used as fuel.
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In the description of the present invention, it should be understood that the terms "first" and "second" are used for description purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the present invention, "plurality" means two or more, unless otherwise specifically defined.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise clearly specified and limited, the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch. Moreover, "above", "above" and "above" the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature. "Below", "beneath" and "beneath" the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limiting the present invention, those skilled in the art can make the above-mentioned The embodiments are subject to changes, modifications, substitutions and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211641934.4A CN115775902A (en) | 2022-12-20 | 2022-12-20 | Method for increasing density of fuel cell electrolyte layer and fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211641934.4A CN115775902A (en) | 2022-12-20 | 2022-12-20 | Method for increasing density of fuel cell electrolyte layer and fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115775902A true CN115775902A (en) | 2023-03-10 |
Family
ID=85392803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211641934.4A Pending CN115775902A (en) | 2022-12-20 | 2022-12-20 | Method for increasing density of fuel cell electrolyte layer and fuel cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115775902A (en) |
-
2022
- 2022-12-20 CN CN202211641934.4A patent/CN115775902A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017190588A1 (en) | Method for preparing lithium ion battery silicon anode through combination of diffusion welding and dealloying with laser cladding | |
CN109950494B (en) | Method for preparing silicon-carbon composite material through molten salt electrolysis | |
US11063264B2 (en) | Porous structure Si Cu composite electrode of lithium ion battery and preparation method thereof | |
WO2018161742A1 (en) | Nanoporous copper-zinc-aluminum shape memory alloy and preparation method and application thereof | |
CN107959036A (en) | A kind of preparation method of the solid oxide fuel cell of flat structure | |
WO2017190587A1 (en) | Method for preparing lithium ion battery silicon anode through combination of diffusion welding and dealloying with laser surface remelting technique | |
JP5064023B2 (en) | Method for producing electrolyte-impregnated air electrode of molten carbonate fuel cell | |
CN112768697A (en) | Composite lithium metal negative current collector and preparation method and application thereof | |
KR101627112B1 (en) | Thermal batteries using metal foam impregnated with liquid sulfur and a manufacturing method therefor | |
JP2010170854A (en) | Method of manufacturing positive electrode for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery | |
CN108588460A (en) | A kind of preparation method of resistance to arc erosion copper-based material | |
CN115441080A (en) | A direct recovery and regeneration method of oxide solid electrolyte | |
CN115775902A (en) | Method for increasing density of fuel cell electrolyte layer and fuel cell | |
CN106549172A (en) | A kind of connector and preparation method of self sealss flat-plate solid oxidized fuel cell | |
CN106083208B (en) | A method of preparing SiCN- hafnium acid yttrium composite coatings | |
CN110373700B (en) | Ti2Preparation method of AlC corrosion-resistant coating | |
CN104218245B (en) | A kind of preparation method of titanium/Asia titanium oxide/lead composite base plate | |
KR100441939B1 (en) | Nickel-aluminum alloy fuel electrode and simplified production method thereof to improve creepage and sintering resistance, activate electrochemical reaction and porosity of the electrode | |
JP2009231209A (en) | Method of manufacturing fuel cell | |
KR101288407B1 (en) | Manufacturing method of anode for solid oxide fuel cell and anode for solid oxide fuel cell manufactured thereby | |
CN111805068A (en) | A discharge plasma diffusion connection method of porous ODS tungsten and copper | |
CN113067007B (en) | Solid fuel cell composite sealing layer and preparation method thereof | |
CN105562698B (en) | A kind of method for sealing of powder metallurgy evanohm fuel cell connector | |
CN112996208B (en) | A kind of plasma torch cathode and its preparation method | |
JPH06150905A (en) | Composite metal electrode and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |