CN115766263A - 基于云雾计算的多维电力数据隐私保护聚合方法及系统 - Google Patents
基于云雾计算的多维电力数据隐私保护聚合方法及系统 Download PDFInfo
- Publication number
- CN115766263A CN115766263A CN202211486720.4A CN202211486720A CN115766263A CN 115766263 A CN115766263 A CN 115766263A CN 202211486720 A CN202211486720 A CN 202211486720A CN 115766263 A CN115766263 A CN 115766263A
- Authority
- CN
- China
- Prior art keywords
- data
- fog
- aggregation
- ciphertext
- fog node
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002776 aggregation Effects 0.000 title claims abstract description 95
- 238000004220 aggregation Methods 0.000 title claims abstract description 95
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000004364 calculation method Methods 0.000 title claims description 18
- 239000003595 mist Substances 0.000 title claims description 5
- 238000012795 verification Methods 0.000 claims abstract description 59
- 238000003860 storage Methods 0.000 claims abstract description 29
- 230000006870 function Effects 0.000 claims description 25
- 238000004422 calculation algorithm Methods 0.000 claims description 19
- 238000006116 polymerization reaction Methods 0.000 claims description 10
- 230000004931 aggregating effect Effects 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 4
- 241000269319 Squalius cephalus Species 0.000 claims description 3
- 230000000295 complement effect Effects 0.000 claims description 3
- 238000013519 translation Methods 0.000 claims description 3
- 230000001186 cumulative effect Effects 0.000 claims description 2
- 230000005611 electricity Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006854 communication Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/20—Information technology specific aspects, e.g. CAD, simulation, modelling, system security
Landscapes
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种基于云雾计算的多维电力数据隐私保护聚合方法及系统,属于网络空间安全领域。所述方法包括:智能电表将多维电力数据中每个维度的电力数据进行填充和拼接形成多维电力数值,根据多维电力数值生成报告数据;雾节点对报告数据进行验证,在验证通过时对报告数据进行聚合得到雾端聚合密文,根据雾端聚合密文生成存储数据;云服务器对存储数据进行验证,在验证通过时对存储数据进行聚合得到聚合密文值,根据聚合密文值生成聚合数据;远程控制中心对聚合数据进行验证,在验证通过时对聚合密文值进行解密,并计算每个雾节点的聚合电力数据,以及对聚合电力数据进行切割。本发明从根本上解决了单维聚合数据方案庞大的性能开销问题。
Description
技术领域
本发明属于网络空间安全领域,特别是涉及一种基于云雾计算的多维电力数据隐私保护聚合方法及系统。
背景技术
当今,智能电网作为下一代网络,以其可靠性、灵活性和高效性等显著特征优于传统电网。智能电网中采用了先进的通信技术、测量技术和传感设备来实现双向通信,并能创建一个自动化和分布式的高级能源输送网络通道。智能电表作为智能电网的重要组成部分,可以实时地收集住户的用电信息和其他的使用数据,并阶段性地向远程控制中心(如电力公司或电力服务提供商)报告。通过利用实时的和细粒度的电力数据,远程控制中心能以最优策略控制电力的生成和分配,并动态的调整电价。然而,将海量细粒度的电力数据直接发送给远程控制中心不仅会在短时间内对网络造成巨大的冲击,而且还会对远程控制中心造成巨大的数据处理压力。此外,细粒度的电力数据作为信息丰富的电力使用汇总账本,这完全可能会暴露住户的家庭用电习惯和其他个人隐私行为。例如,住户每天什么时候回家,常用的电器种类有多少,又喜欢在什么时间段开电视机等等。
虽然已有许多基于雾计算或云计算的智能电网方案已被提出来保护电力数据的隐私和减轻远程控制中心的各种压力,但这些解决方案也带来了新的挑战。首先,由于住户的智能电表是资源受限的,而这些电力数据总是为了远端控制中心而不断地报告,其加密都是使用远端控制中心的公钥进行加密的,这就是使得原始数据上传者无法访问自己所产生的电力数据,以了解之前的电力消费情况或其他感兴趣的应用。一个直接的方法是向每一个组合发送数据的解密私钥,但这不仅会招致庞大的密钥交换过程的通信与计算开销,而且其他租户的加密数据也可能会被恶意的住户所解密,从而泄露个人的数据隐私。其次,在许多的智能电网应用中,远端控制中心可能只想对单个聚合电力数据进行深度的统计和分析,从而节省自身的计算成本。而在实际操作中,智能电表的部署确实是根据设置不同,这些数据可以根据电器进行分类,如电视机、冰箱、空调和洗衣机等,因此,这些电力数据通常是多维度或多类型的。然而,现有的绝大多数电力数据聚合方案是针对单维度的,这就无法使得远程控制只对单个聚合密文就能执行多维度的同态计算。再次,住户的电力数据是通过公共信道传输,由于公开网络的复杂性,传输数据的多样性以及公开网络中攻击的频发性,故传输的电力数据可能会被一个训练有素的敌手截获并进一步地破坏、替换或篡改这些加密电力数据。那么,这就直接导致远程控制中心所分析的电力结果是错误的或有偏差的,从而对整个智能电网造成混乱。最后,我们也注意到了一旦远端控制中心因网络攻击或自身的粗心大意而泄露了所持有的全局私钥,敌手(包括云服务器)能轻易地解密存储在云服务器上的多有加密电力数据,从而泄露所有住户的数据隐私。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于云雾计算的多维电力数据隐私保护聚合方法及系统。
本发明的目的是通过以下技术方案来实现的:
根据本发明的第一方面,基于云雾计算的多维电力数据隐私保护聚合方法,包括:
S100.密钥生成中心生成系统公共参数,并为每个智能电表、雾节点、云服务器和远程控制中心生成对应的公私钥对;每个雾节点生成一个第一多项式函数,并根据所述第一多项式函数为该雾节点所辖的每个智能电表生成一个密钥值;
S200.智能电表将收集到的每个多维电力数据中每个维度的电力数据进行二进制位的填充处理,然后将每个多维电力数据中所有维度的电力数据拼接成一个多维电力数值,将所述多维电力数值加密为数据密文,并对数据密文签名得到第一签名,然后根据数据密文、第一签名、智能电表的身份和智能电表定期上传的时间点生成报告数据,并将报告数据上传该智能电表所属的雾节点;
S300.雾节点在每个预设时间段内接收到的报告数据的数量大于阈值时,雾节点对该预设时间段内接收到的报告数据进行正确性验证,并在正确性验证通过时对该预设时间段内接收到的报告数据中所有的数据密文进行聚合得到雾端聚合密文,对雾端聚合密文进行签名得到第二签名,根据雾端聚合密文、第二签名、雾节点的身份和雾节点的时间戳生成存储数据,并将存储数据上传云服务器;
S400.云服务器在接收到所有雾节点发送来的存储数据后,对存储数据中的第二签名进行完整性验证,并在完整性验证通过时对所有雾节点发送的雾端聚合密文进行聚合得到聚合密文值,对聚合密文值进行签名得到第三签名,根据聚合密文值、第三签名、云服务器的身份信息和云服务器的时间戳生成聚合数据,并将聚合数据发送到远程控制中心;
S500.远程控制中心对接收到的聚合数据中的聚合密文进行完整性验证,并在完整性验证通过时使用全局私钥来对聚合密文值进行解密,并根据解密结果、利用递归算法得出每个雾节点的聚合电力数据,然后对聚合电力数据进行切割得到每个雾节点的每个维度的电力数据之和。
进一步地,所述系统公共参数包括大素数、乘法循环群、乘法循环群的生成元、椭圆曲线上的循环群、双线性对映射和哈希函数。
进一步地,所述S100具体包括以下步骤:
S111.密钥生成中心KGC公开系统公共参数
进一步地,所述S200具体包括以下步骤:
进一步地,所述S300具体包括以下步骤:
进一步地,所述S400具体包括以下步骤:
进一步地,所述S500具体包括以下步骤:
S503.远程控制中心CC使用Pollard’s Lambda方法来获得如下的明文聚合值:
根据本发明的第二方面,基于云雾计算的多维电力数据隐私保护聚合系统,包括:
密钥生成中心,用于生成系统公共参数,并为每个智能电表、雾节点、云服务器和远程控制中心生成对应的公私钥对;
智能电表,用于将收集到的每个多维电力数据中每个维度的电力数据进行二进制位的填充处理,然后将每个多维电力数据中所有维度的电力数据拼接成一个多维电力数值,将所述多维电力数值加密为数据密文,并对数据密文签名得到第一签名,然后根据数据密文、第一签名、智能电表的身份和智能电表定期上传的时间点生成报告数据,并将报告数据上传该智能电表所属的雾节点;
雾节点,用于生成一个第一多项式函数,并根据所述第一多项式函数为该雾节点所辖的每个智能电表生成一个密钥值;以及用于在每个预设时间段内接收到的报告数据的数量大于阈值时,雾节点对该预设时间段内接收到的报告数据进行正确性验证,并在正确性验证通过时对该预设时间段内接收到的报告数据中所有的数据密文进行聚合得到雾端聚合密文,对雾端聚合密文进行签名得到第二签名,根据雾端聚合密文、第二签名、雾节点的身份和雾节点的时间戳生成存储数据,并将存储数据上传云服务器;
云服务器,用于在接收到所有雾节点发送来的存储数据后,对存储数据中的第二签名进行完整性验证,并在完整性验证通过时对所有雾节点发送的雾端聚合密文进行聚合得到聚合密文值,对聚合密文值进行签名得到第三签名,根据聚合密文值、第三签名、云服务器的身份信息和云服务器的时间戳生成聚合数据,并将聚合数据发送到远程控制中心;
远程控制中心,用于对接收到的聚合数据中的聚合密文进行完整性验证,并在完整性验证通过时使用全局私钥来对聚合密文值进行解密,并根据解密结果、利用递归算法得出每个雾节点的聚合电力数据,然后对聚合电力数据进行切割得到每个雾节点的每个维度的电力数据之和。
本发明的有益效果是:
(1)本发明为智能电网提出了一个安全高效的基于云-雾计算的三层数据聚合模型,使用二进制转化与比特对智能电表产生的多个维度的电力数据进行安全处理,并引入超线性序列技术来有效地将多维度的电力数据计算成一个可恢复出单个维度电力数据的数值,这不仅从根本上解决了单维聚合数据方案庞大的性能开销问题,而且还提高了电力数据的安全性,从而减轻了通信的负担、降低了海量多源电力数据报告的时间延迟,并实现了加密电力数据的长期存储;
(2)本发明将Shamir密钥共享技术整合到改进了的Boneh-Goh-Nissim (BGN)同态算法中,这不仅能在雾节点段对个别智能电表因硬件损坏或软件bug而造成无法上传或数据上传延时等异常情况实现容错功能,而且使得任何未经授权的实体(包括云服务器和远程控制中心)是无法从加了密的电力数据中学到或获得住户的原始明文数据;此外,即使远程控制中心因初心大意或受到网络攻击而泄露了所持有的全局解密私钥,任何的敌手(包括云服务器)都是无法解密存储在云服务器上的单个密文电力数据,从而实现了密钥泄露攻击的抵制而不需要额外地进行强有力的安全假设;
(3)本发明对现有的同态算法进行了改进,改进后的BGN算法比现有的同态算法更能使电力数据的机密性和隐私保护得到保障。具体地,改进的BGN同态算法比现有的BGN算法多选择一个生成元,并为每一个住户(用户)分配一个随机选取的盲化因子来对BGN密文进行混淆,生成一个盲化的BGN密文,而在云服务器的加密数据聚合过程中,只有所有雾节点加入数据的聚合,这些盲化因子才能被消去,才能进一步地使得远程控制中心能正确地解密出聚合密文,并有效地计算每一维的聚合明文进行和与均值。由此,改进后的BGN同态算法相较于现有技术中同态算法对住户(用户)电力数据的机密性提供了更强的保护,即使远程控制中心因遭受网络主动攻击而泄露全局解密私钥,敌手也无法破译存储在云服务器中的住户(用户)的个人加密用电数据;
(4)本发明将改进的Boneh-Lynn-Shacham(BLS)数字签名算法与基于身份的密码机制相结合,这能实现系统中的两个逻辑实体之间进行安全的身份认证,同时确保了密文电力数据或聚合电力数据的完整性,避免外部敌手在公开的网络环境下发起网络主动攻击(包括重放攻击、注入攻击、删除攻击和替换攻击等)来影响远程分析中心对聚合多维电力数据统计与分析的最终结果;此外,基于身份的密码机制解决了公钥基础设施PKI复杂证书管理成本的问题(包括密钥的创建、分发、存储和证书的撤销),从而进一步地提高了系统的性能,使得所提出的面向云-雾计算框架的多维电力数据隐私保护聚合算法更适合部署在实际的智能电网中;
(5)本发明对现有的BLS签名算法进行了改进,改进后的BLS比数字签名算法相较于现有技术中签名算法在实体的身份认证和密文数据的批量验证过程中效率更高,且签名不易被外部敌手和恶意的云服务器所伪造,从而确保了电力数据的源可认证性和智能网络中传输密文的完整性。
附图说明
图1为本发明中多维电力数据隐私保护聚合方法的一种实施例的流程图;
图2为本发明中多维电力数据隐私保护聚合系统的一种实施例的组成框图。
具体实施方式
下面将结合实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
参阅图1-图2,本实施例提供了一种基于云雾计算的多维电力数据隐私保护聚合方法及系统:
如图1所示,本发明的第一方面提供了一种基于云雾计算的多维电力数据隐私保护聚合方法,所述轨道区段状态监控方法包括步骤S100~步骤S600,以下详细说明。
S100.密钥生成中心生成系统公共参数,并为每个智能电表、雾节点、云服务器和远程控制中心生成对应的公私钥对。每个雾节点生成一个第一多项式函数,并根据所述第一多项式函数为该雾节点所辖的每个智能电表生成一个密钥值。
在一些实施例中,所述系统公共参数包括大素数、乘法循环群、乘法循环群的生成元、椭圆曲线上的循环群、双线性对映射和哈希函数。
在一些实施例中,所述S100具体包括以下步骤:
S111. 密钥生成中心KGC公开系统公共参数
S200.智能电表将收集到的每个多维电力数据中每个维度的电力数据进行二进制位的填充处理,然后将每个多维电力数据中所有维度的电力数据拼接成一个多维电力数值,将所述多维电力数值加密为数据密文,并对数据密文签名得到第一签名,然后根据数据密文、第一签名、智能电表的身份和智能电表定期上传的时间点生成报告数据,并将报告数据上传该智能电表所属的雾节点。
在一些实施例中,所述S200具体包括以下步骤:
S300.雾节点在每个预设时间段内接收到的报告数据的数量大于阈值时,雾节点对该预设时间段内接收到的报告数据进行正确性验证,并在正确性验证通过时对该预设时间段内接收到的报告数据中所有的数据密文进行聚合得到雾端聚合密文,对雾端聚合密文进行签名得到第二签名,根据雾端聚合密文、第二签名、雾节点的身份和雾节点的时间戳生成存储数据,并将存储数据上传云服务器。
在一些实施例中,所述S300具体包括以下步骤:
S400.云服务器在接收到所有雾节点发送来的存储数据后,对存储数据中的第二签名进行完整性验证,并在完整性验证通过时对所有雾节点发送的雾端聚合密文进行聚合得到聚合密文值,对聚合密文值进行签名得到第三签名,根据聚合密文值、第三签名、云服务器的身份信息和云服务器的时间戳生成聚合数据,并将聚合数据发送到远程控制中心。
在一些实施例中,所述S400具体包括以下步骤:
S402. 若第二签名的批量完整性验证未通过,则云服务器CS拒绝所述存储数据,并返回预设的提示信息给雾节点;若第二签名的批量完整性验证通过,则云服务器CS对存储数据中的雾端聚合密文进行聚合操作,得到聚合密文值。
S500.远程控制中心对接收到的聚合数据中的聚合密文进行完整性验证,并在完整性验证通过时使用全局私钥来对聚合密文值进行解密,并根据解密结果、利用递归算法得出每个雾节点的聚合电力数据,然后对聚合电力数据进行切割得到每个雾节点的每个维度的电力数据之和。
在一些实施例中,所述S500具体包括以下步骤:
S503. 远程控制中心CC使用Pollard’s Lambda方法来获得如下的明文聚合值:
式中,D表示所有雾节点发送的电力数据的明文聚合值, 表示的第i个雾节点所发送的全部电力数据的聚合明文, 表示的第n个雾节点所发送的全部电力数据的聚合明文。需说明的是,这里已经被远程控制中心解密过了,故称其为“聚合明文”。
如图2所示,本发明的第二方面提供了一种基于云雾计算的多维电力数据隐私保护聚合系统,所述系统包括密钥生成中心、智能电表、雾节点、云服务器和远程控制中心。
密钥生成中心,用于生成系统公共参数,并为每个智能电表、雾节点、云服务器和远程控制中心生成对应的公私钥对。本实施例中,所述密钥生成中心可用于执行图1所示的步骤S100,关于所述密钥生成中心的具体描述可参对所述步骤S100的描述。
智能电表,用于将收集到的每个多维电力数据中每个维度的电力数据进行二进制位的填充处理,然后将每个多维电力数据中所有维度的电力数据拼接成一个多维电力数值,将所述多维电力数值加密为数据密文,并对数据密文签名得到第一签名,然后根据数据密文、第一签名、智能电表的身份和智能电表定期上传的时间点生成报告数据,并将报告数据上传该智能电表所属的雾节点。本实施例中,所述智能电表可用于执行图1所示的步骤S200,关于所述智能电表的具体描述可参对所述步骤S200的描述。
雾节点,用于生成一个第一多项式函数,并根据所述第一多项式函数为该雾节点所辖的每个智能电表生成一个密钥值;以及用于在每个预设时间段内接收到的报告数据的数量大于阈值时,雾节点对该预设时间段内接收到的报告数据进行正确性验证,并在正确性验证通过时对该预设时间段内接收到的报告数据中所有的数据密文进行聚合得到雾端聚合密文,对雾端聚合密文进行签名得到第二签名,根据雾端聚合密文、第二签名、雾节点的身份和雾节点的时间戳生成存储数据,并将存储数据上传云服务器。本实施例中,所述雾节点可用于执行图1所示的步骤S100和步骤S300,关于所述雾节点的具体描述可参对所述步骤S100和步骤S300的描述。
云服务器,用于在接收到所有雾节点发送来的存储数据后,对存储数据中的第二签名进行完整性验证,并在完整性验证通过时对所有雾节点发送的雾端聚合密文进行聚合得到聚合密文值,对聚合密文值进行签名得到第三签名,根据聚合密文值、第三签名、云服务器的身份信息和云服务器的时间戳生成聚合数据,并将聚合数据发送到远程控制中心。本实施例中,所述云服务器可用于执行图1所示的步骤S400,关于所述云服务器的具体描述可参对所述步骤S400的描述。
远程控制中心,用于对接收到的聚合数据中的聚合密文进行完整性验证,并在完整性验证通过时使用全局私钥来对聚合密文值进行解密,并根据解密结果、利用递归算法得出每个雾节点的聚合电力数据,然后对聚合电力数据进行切割得到每个雾节点的每个维度的电力数据之和。本实施例中,所述远程控制中心可用于执行图1所示的步骤S500,关于所述远程控制中心的具体描述可参对所述步骤S500的描述。
以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。
Claims (9)
1.基于云雾计算的多维电力数据隐私保护聚合方法,其特征在于,包括:
S100.密钥生成中心生成系统公共参数,并为每个智能电表、雾节点、云服务器和远程控制中心生成对应的公私钥对;每个雾节点生成一个第一多项式函数,并根据所述第一多项式函数为该雾节点所辖的每个智能电表生成一个密钥值;
S200.智能电表将收集到的每个多维电力数据中每个维度的电力数据进行二进制位的填充处理,然后将每个多维电力数据中所有维度的电力数据拼接成一个多维电力数值,将所述多维电力数值加密为数据密文,并对数据密文签名得到第一签名,然后根据数据密文、第一签名、智能电表的身份和智能电表定期上传的时间点生成报告数据,并将报告数据上传该智能电表所属的雾节点;
S300.雾节点在每个预设时间段内接收到的报告数据的数量大于阈值时,雾节点对该预设时间段内接收到的报告数据进行正确性验证,并在正确性验证通过时对该预设时间段内接收到的报告数据中所有的数据密文进行聚合得到雾端聚合密文,对雾端聚合密文进行签名得到第二签名,根据雾端聚合密文、第二签名、雾节点的身份和雾节点的时间戳生成存储数据,并将存储数据上传云服务器;
S400.云服务器在接收到所有雾节点发送来的存储数据后,对存储数据中的第二签名进行完整性验证,并在完整性验证通过时对所有雾节点发送的雾端聚合密文进行聚合得到聚合密文值,对聚合密文值进行签名得到第三签名,根据聚合密文值、第三签名、云服务器的身份信息和云服务器的时间戳生成聚合数据,并将聚合数据发送到远程控制中心;
S500.远程控制中心对接收到的聚合数据中的聚合密文进行完整性验证,并在完整性验证通过时使用全局私钥来对聚合密文值进行解密,并根据解密结果、利用递归算法得出每个雾节点的聚合电力数据,然后对聚合电力数据进行切割得到每个雾节点的每个维度的电力数据之和。
2.根据权利要求1所述的基于云雾计算的多维电力数据隐私保护聚合方法,其特征在于,所述系统公共参数包括大素数、乘法循环群、乘法循环群的生成元、椭圆曲线上的循环群、双线性对映射和哈希函数。
3.根据权利要求1所述的基于云雾计算的多维电力数据隐私保护聚合方法,其特征在于,所述S100具体包括以下步骤:
S111.密钥生成中心KGC公开系统公共参数
4.根据权利要求3所述的基于云雾计算的多维电力数据隐私保护聚合方法,其特征在于,所述S200具体包括以下步骤:
8.根据权利要求6所述的基于云雾计算的多维电力数据隐私保护聚合方法,其特征在于,所述S500具体包括以下步骤:
S503.远程控制中心CC使用Pollard’s Lambda方法来获得如下的明文聚合值:
9.基于云雾计算的多维电力数据隐私保护聚合系统,其特征在于,包括:
密钥生成中心,用于生成系统公共参数,并为每个智能电表、雾节点、云服务器和远程控制中心生成对应的公私钥对;
智能电表,用于将收集到的每个多维电力数据中每个维度的电力数据进行二进制位的填充处理,然后将每个多维电力数据中所有维度的电力数据拼接成一个多维电力数值,将所述多维电力数值加密为数据密文,并对数据密文签名得到第一签名,然后根据数据密文、第一签名、智能电表的身份和智能电表定期上传的时间点生成报告数据,并将报告数据上传该智能电表所属的雾节点;
雾节点,用于生成一个第一多项式函数,并根据所述第一多项式函数为该雾节点所辖的每个智能电表生成一个密钥值;以及用于在每个预设时间段内接收到的报告数据的数量大于阈值时,雾节点对该预设时间段内接收到的报告数据进行正确性验证,并在正确性验证通过时对该预设时间段内接收到的报告数据中所有的数据密文进行聚合得到雾端聚合密文,对雾端聚合密文进行签名得到第二签名,根据雾端聚合密文、第二签名、雾节点的身份和雾节点的时间戳生成存储数据,并将存储数据上传云服务器;
云服务器,用于在接收到所有雾节点发送来的存储数据后,对存储数据中的第二签名进行完整性验证,并在完整性验证通过时对所有雾节点发送的雾端聚合密文进行聚合得到聚合密文值,对聚合密文值进行签名得到第三签名,根据聚合密文值、第三签名、云服务器的身份信息和云服务器的时间戳生成聚合数据,并将聚合数据发送到远程控制中心;
远程控制中心,用于对接收到的聚合数据中的聚合密文进行完整性验证,并在完整性验证通过时使用全局私钥来对聚合密文值进行解密,并根据解密结果、利用递归算法得出每个雾节点的聚合电力数据,然后对聚合电力数据进行切割得到每个雾节点的每个维度的电力数据之和。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211486720.4A CN115766263B (zh) | 2022-11-25 | 2022-11-25 | 基于云雾计算的多维电力数据隐私保护聚合方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211486720.4A CN115766263B (zh) | 2022-11-25 | 2022-11-25 | 基于云雾计算的多维电力数据隐私保护聚合方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115766263A true CN115766263A (zh) | 2023-03-07 |
CN115766263B CN115766263B (zh) | 2024-05-03 |
Family
ID=85337512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211486720.4A Active CN115766263B (zh) | 2022-11-25 | 2022-11-25 | 基于云雾计算的多维电力数据隐私保护聚合方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115766263B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117134992A (zh) * | 2023-10-23 | 2023-11-28 | 北京前景无忧电子科技股份有限公司 | 一种智能电网的用户电力数据安全防护方法及系统 |
CN117455722A (zh) * | 2023-12-26 | 2024-01-26 | 湖北工业大学 | 基于个性化差分隐私保护的智能电网数据聚合方法及系统 |
CN117879837A (zh) * | 2024-03-11 | 2024-04-12 | 贵州师范大学 | 一种具有恒定长度的聚合签名方法、系统、设备及介质 |
CN118337365A (zh) * | 2024-05-09 | 2024-07-12 | 广东技术师范大学 | 一种对称同态加密的多维聚合隐私保护系统 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001097442A2 (en) * | 2000-06-12 | 2001-12-20 | Ingrian Systems, Inc. | Method and apparatus for batched network security protection server performance |
CN107707354A (zh) * | 2017-10-16 | 2018-02-16 | 广东工业大学 | 一种基于椭圆曲线加密法的云存储数据验证方法及系统 |
CN110138538A (zh) * | 2019-05-09 | 2019-08-16 | 南京邮电大学 | 基于雾计算的智能电网安全与隐私保护数据聚合方法 |
CN110536259A (zh) * | 2019-08-27 | 2019-12-03 | 南京邮电大学 | 一种基于雾计算的轻量级隐私保护数据多级聚合方法 |
CN111294366A (zh) * | 2020-05-13 | 2020-06-16 | 西南石油大学 | 智能电网中抗密钥泄露的加密数据聚合的统计分析方法 |
CN113691380A (zh) * | 2021-10-26 | 2021-11-23 | 西南石油大学 | 一种智能电网中多维隐私数据聚合方法 |
CN113783683A (zh) * | 2021-11-12 | 2021-12-10 | 晨越建设项目管理集团股份有限公司 | 基于传感器网络的云平台隐私保护可验证数据聚合方法 |
CN115085940A (zh) * | 2022-07-25 | 2022-09-20 | 中国长江三峡集团有限公司 | 一种智能电网的隐私数据聚合方法和系统 |
-
2022
- 2022-11-25 CN CN202211486720.4A patent/CN115766263B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001097442A2 (en) * | 2000-06-12 | 2001-12-20 | Ingrian Systems, Inc. | Method and apparatus for batched network security protection server performance |
CN107707354A (zh) * | 2017-10-16 | 2018-02-16 | 广东工业大学 | 一种基于椭圆曲线加密法的云存储数据验证方法及系统 |
CN110138538A (zh) * | 2019-05-09 | 2019-08-16 | 南京邮电大学 | 基于雾计算的智能电网安全与隐私保护数据聚合方法 |
CN110536259A (zh) * | 2019-08-27 | 2019-12-03 | 南京邮电大学 | 一种基于雾计算的轻量级隐私保护数据多级聚合方法 |
CN111294366A (zh) * | 2020-05-13 | 2020-06-16 | 西南石油大学 | 智能电网中抗密钥泄露的加密数据聚合的统计分析方法 |
CN113691380A (zh) * | 2021-10-26 | 2021-11-23 | 西南石油大学 | 一种智能电网中多维隐私数据聚合方法 |
CN113783683A (zh) * | 2021-11-12 | 2021-12-10 | 晨越建设项目管理集团股份有限公司 | 基于传感器网络的云平台隐私保护可验证数据聚合方法 |
CN115085940A (zh) * | 2022-07-25 | 2022-09-20 | 中国长江三峡集团有限公司 | 一种智能电网的隐私数据聚合方法和系统 |
Non-Patent Citations (2)
Title |
---|
LIEHUANG ZHU: "Privacy-Preserving Authentication and Data Aggregation for Fog-Based Smart Grid", 《 IEEE COMMUNICATIONS MAGAZINE》, 1 June 2019 (2019-06-01), pages 80 - 85, XP011730541, DOI: 10.1109/MCOM.2019.1700859 * |
陈思光: "基于雾计算的智能电网安全与隐私保护数据聚合研究", 《南京邮电大学学报( 自然科学版)》, 31 December 2019 (2019-12-31), pages 62 - 71 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117134992A (zh) * | 2023-10-23 | 2023-11-28 | 北京前景无忧电子科技股份有限公司 | 一种智能电网的用户电力数据安全防护方法及系统 |
CN117134992B (zh) * | 2023-10-23 | 2024-01-02 | 北京前景无忧电子科技股份有限公司 | 一种智能电网的用户电力数据安全防护方法及系统 |
CN117455722A (zh) * | 2023-12-26 | 2024-01-26 | 湖北工业大学 | 基于个性化差分隐私保护的智能电网数据聚合方法及系统 |
CN117455722B (zh) * | 2023-12-26 | 2024-03-22 | 湖北工业大学 | 基于个性化差分隐私保护的智能电网数据聚合方法及系统 |
CN117879837A (zh) * | 2024-03-11 | 2024-04-12 | 贵州师范大学 | 一种具有恒定长度的聚合签名方法、系统、设备及介质 |
CN117879837B (zh) * | 2024-03-11 | 2024-05-07 | 贵州师范大学 | 一种具有恒定长度的聚合签名方法、系统、设备及介质 |
CN118337365A (zh) * | 2024-05-09 | 2024-07-12 | 广东技术师范大学 | 一种对称同态加密的多维聚合隐私保护系统 |
Also Published As
Publication number | Publication date |
---|---|
CN115766263B (zh) | 2024-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021227241A1 (zh) | 智能电网中抗密钥泄露的加密数据聚合的统计分析方法 | |
CN111131148B (zh) | 一种面向智能电网的可保护隐私数据聚合方法及系统 | |
Guan et al. | EFFECT: An efficient flexible privacy-preserving data aggregation scheme with authentication in smart grid | |
Boudia et al. | Elliptic curve-based secure multidimensional aggregation for smart grid communications | |
CN110138538B (zh) | 基于雾计算的智能电网安全与隐私保护数据聚合方法 | |
CN111372243B (zh) | 基于雾联盟链的安全分布式聚合与访问系统及方法 | |
Li et al. | EPPDR: An efficient privacy-preserving demand response scheme with adaptive key evolution in smart grid | |
CN113691380B (zh) | 一种智能电网中多维隐私数据聚合方法 | |
Merad-Boudia et al. | An efficient and secure multidimensional data aggregation for fog-computing-based smart grid | |
CN115766263A (zh) | 基于云雾计算的多维电力数据隐私保护聚合方法及系统 | |
CN111800400B (zh) | 一种基于雾的多维度多角度用电数据的聚合系统 | |
CN105812128B (zh) | 一种智能电网抗恶意数据挖掘攻击的数据聚合方法 | |
Zhan et al. | Efficient function queryable and privacy preserving data aggregation scheme in smart grid | |
CN112291191A (zh) | 基于边缘计算的轻量级隐私保护多维数据聚合方法 | |
Karopoulos et al. | MASKER: Masking for privacy-preserving aggregation in the smart grid ecosystem | |
CN110012443A (zh) | 一种全同态的数据加密聚合方法及其系统 | |
Bao et al. | Bbnp: a blockchain-based novel paradigm for fair and secure smart grid communications | |
Saxena et al. | Secure and privacy-preserving concentration of metering data in AMI networks | |
Abdallah et al. | A lightweight lattice-based security and privacy-preserving scheme for smart grid | |
Hu et al. | CP_ABSC: An attribute-based signcryption scheme to secure multicast communications in smart grids | |
Lee et al. | A blockchain-enabled authentication and conserved data aggregation scheme for secure smart grids | |
Wen et al. | A data aggregation scheme with fine-grained access control for the smart grid | |
Cho et al. | PALDA: Efficient privacy-preserving authentication for lossless data aggregation in Smart Grids | |
Guan et al. | Protecting user privacy based on secret sharing with fault tolerance for big data in smart grid | |
Chen et al. | A privacy protection scheme based on certificateless aggregate signcryption and masking random number in smart grid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |