CN115753677A - 一种用于粮油原料的铅、镉快速检测方法 - Google Patents

一种用于粮油原料的铅、镉快速检测方法 Download PDF

Info

Publication number
CN115753677A
CN115753677A CN202211475964.2A CN202211475964A CN115753677A CN 115753677 A CN115753677 A CN 115753677A CN 202211475964 A CN202211475964 A CN 202211475964A CN 115753677 A CN115753677 A CN 115753677A
Authority
CN
China
Prior art keywords
grain
oil
sample
detected
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211475964.2A
Other languages
English (en)
Inventor
汪少芸
韩金志
蔡茜茜
陈旭
杨捷
武培汾
骆韦博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202211475964.2A priority Critical patent/CN115753677A/zh
Publication of CN115753677A publication Critical patent/CN115753677A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

针对粮油原料检测的不足,本发明提供一种用于粮油原料的铅、镉快速检测方法,包括4个步骤:获取不含重金属的背景样品。获取含有重金属的比较样品。获取单一粮油原料的原始样品。获取对单一粮油原料进行检测的结果。此外,本发明还包括建立粮油动态监控与预测的方法。有益的技术效果:本发明将实验室检测与远程监控预防相结合,通过对单独样品的激光采样获得精准数据,并结合厂家信息、产品信息、年份信息、地域信息,建立多维度标签的粮油原料数据库。由此对于粮油加工单位不同配方的产品进行模型预期、模型修正,进而实现对粮油产品安全进行监控、预警、主动干预,提前规划抽检的频度与区域,达到宏观加速检测效率的目的。

Description

一种用于粮油原料的铅、镉快速检测方法
技术领域
本发明属于检测技术领域,尤其涉及一种用于粮油原料的铅、镉快速检测方法。
背景技术
粮油原料安全,是后续食品加工、食品安全的基础与先决条件。但在粮油原料中,难以避免地存在重金属元素。这些重金属元素具有富集性,当其被人体摄入后难以降解,进而在人体内逐渐累积,且当其达到一定浓度之后会对人体造成具大的伤害。依据统计数据,铅、镉等有害重金属元素超标是粮油原料质量安全问题之一。超量的重金属易伤害人体细胞,尤其是极为敏感的神经系统。
现有大量检测铅、镉金属元素含量的方法,不但需要借助大型仪器,且检测工序复杂,无法结合往期检测结果进行预测。
激光诱导击穿光谱(LIBS)技术是一种同时具有快速、非接触式、多元素同时测定等优点的无损光谱分析技术,如能将其与数据库相结合,不但可以用于重金属的含量检测,还能进行预测。进而提高检测的主动性、前瞻性、预防性。
发明内容
针对背景技术所指出的不足,本发明提供一种用于粮油原料的铅、镉快速检测方法。其主要步骤如下:
一种用于粮油原料的铅、镉快速检测方法,按如下步骤操作:
步骤1:获取不含重金属的背景样品。
步骤2:获取含有重金属的比较样品。
步骤3:获取单一粮油原料的原始样品:将需要检测的粮油制备成待检测的粮油样品,包括:待检测的液态粮油首检样品和待检测的固态粮油备份样品。
步骤4:获取对单一粮油原料进行检测的结果:对背景样品、含有重金属的比较样品、待检测的粮油样品进行光谱检测,获得单一粮油原料的检测结果。
更进一步说,本发明还包括建立粮油动态监控与预测的方法,具体为:
步骤S1:建立粮油检测数据库:基于步骤4的检测结果,按培育厂家、粮油作物类型、种植年份、种植地域对前述单一粮油原料的检测结果进行归类,构建数据库。
步骤S2:对粮油加工单位的粮油产品品质进行预测:
S2.1:知晓粮油原料的采购地域就可确定种植区域。知晓粮油原料的采购年份就可确定种植年份。在同一种植区域、种植年份的粮油作物的产出品质是相对一致的。
而在粮油加工时,粮油加工单位会混杂不同采购时期的、不同采购地域的相同粮油作物种子以控制最终成品的品质。因此,调取粮油原料的采购地域、采购年份与加工配比数据,就可以反推出同一加工批次的各培育厂家、各种植年份、各种植地域的粮油原料的占比。
S2.2:调取由步骤S1所建立的数据库中的对应的粮油物种、培育厂家、种植年份、种植地域的检测数据,按照S2.1反对的占比进行数据拟合,获得初步预测的重金属占比与含量。
S2.3:在粮油原料的存储过程中,其品质的长期趋势是逐步下降。粮油检测数据库的数据逐日累计之后,数据值也会调整。故需要对S2.2获得的初步预测值进行修正,获得修正后的重金属占比与含量预测值。
步骤S3:对粮油加工单位的粮油产品品质进行监管:
当修正后的重金属占比与含量预测值与含量超出国家标准的限制时,该修正后的重金属占比与含量预测值向农业、市场监管部门发出预警,提示相关部门进行现场抽检,排除粮油风险。相关部门进行现场抽检的结果,用以调教S2.3的修正参数的设置。
当修正后的重金属占比与含量预测值与含量未超出国家标准的限制时,定期获取该粮油加工单位的成品,并采用光谱仪进行检测,所获得的检测结果调教S2.3的修正参数的设置。
有益的技术效果
本发明将实验室检测与远程监控预防相结合,通过对单独样品的激光采样获得精准数据,并结合厂家信息、产品信息、年份信息、地域信息,建立多维度标签的粮油原料数据库。由此对于粮油加工单位不同配方的产品进行模型预期、模型修正,进而实现对粮油产品安全进行监控、预警、主动干预,提前规划抽检的频度与区域,达到宏观加速检测效率的目的。
本发明留存液体与固体样品,能否满足食品安全的备份与复检的需求。
本发明采用激光光谱法,同时具有快速、非接触式、多元素同时测定等优点的无损光谱分析技术,可以同时对铅、镉等金属元素含量进行检测,且不会损伤样品本身,确保检测样品的完整性、可重复性、可追溯性。
附图说明
图1是本发明检测方法的流程框图。
图2是本发明监控-预测方法的流程框图。
具体实施方法
现结合附图,详细说明本发明的技术特点。
参见图1,一种用于粮油原料的铅、镉快速检测方法,按如下步骤操作:
步骤1:获取不含重金属的背景样品。
步骤2:获取含有重金属的比较样品。
步骤3:获取单一粮油原料的原始样品:将需要检测的粮油制备成待检测的粮油样品,包括:待检测的液态粮油首检样品和待检测的固态粮油备份样品。
步骤4:获取对单一粮油原料进行检测的结果:对背景样品、含有重金属的比较样品、待检测的粮油样品进行光谱检测,获得单一粮油原料的检测结果。
进一步说,步骤1的具体步骤为:
步骤1.1:收集所在检测区域的常见粮油植物的种植用种子。
步骤1.2:采用无土栽培法,对种植用种子进行培育,待其成熟后获得对应的榨油种子。
步骤1.3:采用非金属的榨汁设备,将榨油种子榨油,制备成不含重金属的背景样品Nn,并密封在玻璃试剂瓶中。n为常见粮油植物的种类数。
进一步说,步骤2的具体步骤为:
步骤2.1:收集所在检测区域的常见粮油植物的种植用种子。所述常见粮油植物的种植用种子的种类为n个。
步骤2.2:采用无土栽培法,对种植用种子进行培育,待其成熟后获得对应的榨油种子。
步骤2.3:将榨油种子榨油,并掺杂微量重金属,获得含有重金属的比较样品Nnm,并密封在玻璃试剂瓶中。n为粮油植物的种类数、m为掺杂重金属的数量。备注每个含有重金属的比较样品中所含重金属的种类、含量、以及榨油种子的来源、名称、生产编号、销售单位、种植地点。
进一步说,步骤3的具体步骤为:步骤3的具体步骤为:
步骤3.1:取需要检测的粮油原料,分成5等份。
步骤3.2:取其中2份榨油后密封在玻璃试剂瓶中,获得待检测的液态粮油首检样品,并做标记。标记内容包括:种子来源、名称、生产编号、销售单位、种植地点。
步骤3.3:余下3份干燥处理后,分别密封在玻璃试剂瓶中,获得待检测的固态粮油备份样品,并做标记。所标记内容同上。
进一步说,步骤4的具体步骤为:
步骤4.1:使用光谱仪,分别对背景样品、含有重金属的比较样品进行检测。对光谱仪的检测结果进行记录,并人工确认:
如果对背景样品或含有重金属的比较样品的多次检测结果的平均误差高于1.0~20.0%,则判定光谱仪工作状态异常,进入步骤4.2。
如果对背景样品、含有重金属的比较样品的多次检测结果的平均误差低于1.0~20.0%,则判定光谱仪工作状态稳定,进入步骤4.3。
步骤4.2:对光谱仪进行校准,随后返回步骤4.1。
步骤4.3:使用光谱仪对待检测的液态粮油样品进行检测,获得待检测的液态粮油样品原始检测数据。
步骤4.4:选取与待检测的液态粮油样品的检测值最接近的含有重金属的比较样品,以该含有重金属的比较样品、背景样品为归一化的基准,对统一检测批次的待检测的液态粮油样品的数据进行归一化处理。获得的数据进行标记后,作为检测数据库的参考数据。此时标记的内容包括:光谱仪型号、设备编号、检测日期、检测环境参数、背景样品的编号、含有重金属的比较样品的掺杂量与编号、种子来源、名称、生产编号、销售单位、种植地点。
步骤4.5:将步骤4.4获得的结果,与采用国家食品标准的安全要求进行比对:
如果符合国家食品标准的要求,则以待检测的液态粮油样品原始检测数据作为初步的检测结果。
如果不符合国家食品标准的要求,则进入步骤4.6。
步骤4.6:对待检测的固态粮油备份样品进行榨油,并密封在玻璃试剂瓶中后,采用光谱仪进行检测,获得待检测的液态粮油样品二次检测数据:
如检测的结果与待检测的液态粮油样品原始检测数据相差幅度低于1.0~20.0%,则以待检测的液态粮油样品原始检测数据作为初步的检测结果。
如检测的结果与待检测的液态粮油样品原始检测数据相差幅度大于1.0~20.0%,则提示检测结果存在异常,需要人工判断。
参见图2,本发明还包括建立粮油动态监控与预测的方法,具体为:
步骤S1:建立粮油检测数据库:基于步骤4的检测结果,按培育厂家、粮油作物类型、种植年份、种植地域对前述单一粮油原料的检测结果进行归类,构建数据库。
步骤S2:对粮油加工单位的粮油产品品质进行预测:
S2.1:知晓粮油原料的采购地域就可确定种植区域。知晓粮油原料的采购年份就可确定种植年份。在同一种植区域、种植年份的粮油作物的产出品质是相对一致的。
而在粮油加工时,粮油加工单位会混杂不同采购时期的、不同采购地域的相同粮油作物种子以控制最终成品的品质。因此,调取粮油原料的采购地域、采购年份与加工配比数据,就可以反推出同一加工批次的各培育厂家、各种植年份、各种植地域的粮油原料的占比。
S2.2:调取由步骤S1所建立的数据库中的对应的粮油物种、培育厂家、种植年份、种植地域的检测数据,按照S2.1反对的占比进行数据拟合,获得初步预测的重金属占比与含量。
S2.3:在粮油原料的存储过程中,其品质的长期趋势是逐步下降。粮油检测数据库的数据逐日累计之后,数据值也会调整。故需要对S2.2获得的初步预测值进行修正,获得修正后的重金属占比与含量预测值。
步骤S3:对粮油加工单位的粮油产品品质进行监管:
当修正后的重金属占比与含量预测值与含量超出国家标准的限制时,该修正后的重金属占比与含量预测值向农业、市场监管部门发出预警,提示相关部门进行现场抽检,排除粮油风险。相关部门进行现场抽检的结果,用以调教S2.3的修正参数的设置。
当修正后的重金属占比与含量预测值与含量未超出国家标准的限制时,定期获取该粮油加工单位的成品,并采用光谱仪进行检测,所获得的检测结果调教S2.3的修正参数的设置。
进一步说,在步骤4中对不含重金属的背景样品、含有重金属的比较样品、待检测的液态粮油样品进行铅含量检测的具体方法为:
1)在常温环境下,用超声波雾化器将样品雾化。随后将雾化的样品通入光谱仪的检测室内。所述检测室为石英容器,且已排除完空气。
2)启动光谱仪的微波发生器,产生1064nm激光束照射到雾化的样品,产生的等离子体光谱信号,再经凸透射汇聚、高精度光谱仪获取后获得样品对应的LIBS光谱。
3)通过查询NIST光谱数据库,确定上述各样品光谱中碳元素的特征谱线位置。
4)采用碳元素的谱线强度对样品光谱做分段校正:将样品光谱等分为3-10个区段,将每个区段的光谱强度除以位于该光谱区段内的碳元素的谱线强度。若该区段内没有碳元素谱线存在,则选择与该区段最近的碳元素谱线。若该区段内有多于1个碳元素谱线存在,则取该区段内所有碳元素谱线强度的平均值。
5)消除样品本身的背景光谱的噪音影响,将分段校正后的含有重金属的比较样品、待检测的液态粮油样品的光谱分别与不含重金属的背景样品光谱相减,获得去噪后的样品光谱。
6)选取重金属铅元素的特征谱线波长,依照国家标准方法GB/T5009.12测定样品中的真实重金属铅含量。
7)采用多元线性回归方法,建立重金属铅含量的定标模型
Figure BDA0003959321610000071
其中,t为特征谱线的数量,at是第t个特征谱线的系数,λt是第t个特征谱线的波长,b为常数项。
8)对于待测未知样品P,首先采集未知样品的光谱,并如上方法对光谱进行校正得到去噪后光谱,获取不同波长的谱线强度数据后代入定标模型M即可获得未知样品的重金属铅含量,从而实现待测未知样品重金属铅含量。
进一步说,对重金属铅进行检测时,采用的特征波长为:143.39nm、151.23nm、172.68nm、182.20nm、220.35nm、368.34nm、405.78nm。
进一步说,在步骤4中对不含重金属的背景样品、含有重金属的比较样品、待检测的液态粮油样品进行镉含量检测的具体方法为:
1)在常温环境下,用超声波雾化器将样品雾化。随后将雾化的样品通入光谱仪的检测室内。所述检测室为石英容器,且已排除完空气。
2)启动光谱仪的微波发生器,产生的光束照射到雾化的样品上,获得等离子体光谱信号,再经凸透射汇聚、高精度光谱仪获取后获得样品对应的LIBS光谱。
3)通过查询NIST光谱数据库,确定上述各样品光谱中碳元素的特征谱线位置。
4)对样品光谱做分段校正。
5)消除样品本身的背景光谱的噪音影响,将分段校正后的含有重金属的比较样品、待检测的液态粮油样品的光谱分别与不含重金属的背景样品光谱相减,获得去噪后的样品光谱。
6)选取重金属镉元素的特征谱线波长,依照国家标准方法GB/T 5009.15测定样品中的真实重金属镉含量。
7)采用多元线性回归方法,建立重金属镉含量的定标模型。
8)对于待测未知样品,首先采集未知样品的光谱,并如上方法对光谱进行校正得到去噪后光谱,获取不同波长的谱线强度数据后代入定标模型即可获得未知样品的重金属镉含量,从而实现待测未知样品重金属镉含量。

Claims (9)

1.一种用于粮油原料的铅、镉快速检测方法,其特征在于,按如下步骤操作:
步骤1:获取不含重金属的背景样品;
步骤2:获取含有重金属的比较样品;
步骤3:获取单一粮油原料的原始样品:将需要检测的粮油制备成待检测的粮油样品,包括:待检测的液态粮油首检样品和待检测的固态粮油备份样品;
步骤4:获取对单一粮油原料进行检测的结果:对背景样品、含有重金属的比较样品、待检测的粮油样品进行光谱检测,获得单一粮油原料的检测结果。
2.根据权利要求1所述的一种用于粮油原料的铅、镉快速检测方法,其特征在于,步骤1的具体步骤为:
步骤1.1:收集所在检测区域的常见粮油植物的种植用种子;
步骤1.2:采用无土栽培法,对种植用种子进行培育,待其成熟后获得对应的榨油种子;
步骤1.3:采用非金属的榨汁设备,将榨油种子榨油,制备成不含重金属的背景样品Nn,并密封在玻璃试剂瓶中;n为常见粮油植物的种类数。
3.根据权利要求1所述的一种用于粮油原料的铅、镉快速检测方法,其特征在于,步骤2的具体步骤为:
步骤2.1:收集所在检测区域的常见粮油植物的种植用种子;所述常见粮油植物的种植用种子的种类为n个;
步骤2.2:采用无土栽培法,对种植用种子进行培育,待其成熟后获得对应的榨油种子;
步骤2.3:将榨油种子榨油,并掺杂微量重金属,获得含有重金属的比较样品Nnm,并密封在玻璃试剂瓶中;n为粮油植物的种类数、m为掺杂重金属的数量;备注每个含有重金属的比较样品中所含重金属的种类、含量、以及榨油种子的来源、名称、生产编号、销售单位、种植地点。
4.根据权利要求1所述的一种用于粮油原料的铅、镉快速检测方法,其特征在于,步骤3的具体步骤为:步骤3的具体步骤为:
步骤3.1:取需要检测的粮油原料,分成5等份;
步骤3.2:取其中2份榨油后密封在玻璃试剂瓶中,获得待检测的液态粮油首检样品,并做标记;标记内容包括:种子来源、名称、生产编号、销售单位、种植地点;
步骤3.3:余下3份干燥处理后,分别密封在玻璃试剂瓶中,获得待检测的固态粮油备份样品,并做标记;所标记内容同上。
5.根据权利要求1所述的一种用于粮油原料的铅、镉快速检测方法,其特征在于,步骤4的具体步骤为:
步骤4.1:使用光谱仪,分别对背景样品、含有重金属的比较样品进行检测;对光谱仪的检测结果进行记录,并人工确认:
如果对背景样品或含有重金属的比较样品的多次检测结果的平均误差高于1.0~20.0%,则判定光谱仪工作状态异常,进入步骤4.2;
如果对背景样品、含有重金属的比较样品的多次检测结果的平均误差低于1.0~20.0%,则判定光谱仪工作状态稳定,进入步骤4.3;
步骤4.2:对光谱仪进行校准,随后返回步骤4.1;
步骤4.3:使用光谱仪对待检测的液态粮油样品进行检测,获得待检测的液态粮油样品原始检测数据;
步骤4.4:选取与待检测的液态粮油样品的检测值最接近的含有重金属的比较样品,以该含有重金属的比较样品、背景样品为归一化的基准,对统一检测批次的待检测的液态粮油样品的数据进行归一化处理;获得的数据进行标记后,作为检测数据库的参考数据;此时标记的内容包括:光谱仪型号、设备编号、检测日期、检测环境参数、背景样品的编号、含有重金属的比较样品的掺杂量与编号、种子来源、名称、生产编号、销售单位、种植地点;
步骤4.5:将步骤4.4获得的结果,与采用国家食品标准的安全要求进行比对:
如果符合国家食品标准的要求,则以待检测的液态粮油样品原始检测数据作为初步的检测结果;
如果不符合国家食品标准的要求,则进入步骤4.6;
步骤4.6:对待检测的固态粮油备份样品进行榨油,并密封在玻璃试剂瓶中后,采用光谱仪进行检测,获得待检测的液态粮油样品二次检测数据:
如检测的结果与待检测的液态粮油样品原始检测数据相差幅度低于1.0~20.0%,则以待检测的液态粮油样品原始检测数据作为初步的检测结果;
如检测的结果与待检测的液态粮油样品原始检测数据相差幅度大于1.0~20.0%,则提示检测结果存在异常,需要人工判断。
6.根据权利要求1所述的一种用于粮油原料的铅、镉快速检测方法,其特征在于,还包括建立粮油动态监控与预测的方法,具体为:
步骤S1:建立粮油检测数据库:基于步骤4的检测结果,按培育厂家、粮油作物类型、种植年份、种植地域对前述单一粮油原料的检测结果进行归类,构建数据库;
步骤S2:对粮油加工单位的粮油产品品质进行预测:
S2.1:知晓粮油原料的采购地域就可确定种植区域;知晓粮油原料的采购年份就可确定种植年份;在同一种植区域、种植年份的粮油作物的产出品质是相对一致的;
而在粮油加工时,粮油加工单位会混杂不同采购时期的、不同采购地域的相同粮油作物种子以控制最终成品的品质;因此,调取粮油原料的采购地域、采购年份与加工配比数据,就可以反推出同一加工批次的各培育厂家、各种植年份、各种植地域的粮油原料的占比;
S2.2:调取由步骤S1所建立的数据库中的对应的粮油物种、培育厂家、种植年份、种植地域的检测数据,按照S2.1反对的占比进行数据拟合,获得初步预测的重金属占比与含量;
S2.3:在粮油原料的存储过程中,其品质的长期趋势是逐步下降;粮油检测数据库的数据逐日累计之后,数据值也会调整;故需要对S2.2获得的初步预测值进行修正,获得修正后的重金属占比与含量预测值;
步骤S3:对粮油加工单位的粮油产品品质进行监管:
当修正后的重金属占比与含量预测值与含量超出国家标准的限制时,该修正后的重金属占比与含量预测值向农业、市场监管部门发出预警,提示相关部门进行现场抽检,排除粮油风险;相关部门进行现场抽检的结果,用以调教S2.3的修正参数的设置;
当修正后的重金属占比与含量预测值与含量未超出国家标准的限制时,定期获取该粮油加工单位的成品,并采用光谱仪进行检测,所获得的检测结果调教S2.3的修正参数的设置。
7.根据权利要求6所述的一种用于粮油原料的铅、镉快速检测方法,其特征在于,在步骤4中对不含重金属的背景样品、含有重金属的比较样品、待检测的液态粮油样品进行铅含量检测的具体方法为:
1)在常温环境下,用超声波雾化器将样品雾化;随后将雾化的样品通入光谱仪的检测室内;所述检测室为石英容器,且已排除完空气;
2)启动光谱仪的微波发生器,产生1064nm激光束照射到雾化的样品,产生的等离子体光谱信号,再经凸透射汇聚、高精度光谱仪获取后获得样品对应的LIBS光谱;
3)通过查询NIST光谱数据库,确定上述各样品光谱中碳元素的特征谱线位置;
4)采用碳元素的谱线强度对样品光谱做分段校正:将样品光谱等分为3-10个区段,将每个区段的光谱强度除以位于该光谱区段内的碳元素的谱线强度;若该区段内没有碳元素谱线存在,则选择与该区段最近的碳元素谱线;若该区段内有多于1个碳元素谱线存在,则取该区段内所有碳元素谱线强度的平均值;
5)消除样品本身的背景光谱的噪音影响,将分段校正后的含有重金属的比较样品、待检测的液态粮油样品的光谱分别与不含重金属的背景样品光谱相减,获得去噪后的样品光谱;
6)选取重金属铅元素的特征谱线波长,依照国家标准方法GB/T5009.12测定样品中的真实重金属铅含量;
7)采用多元线性回归方法,建立重金属铅含量的定标模型
Figure FDA0003959321600000041
其中,t为特征谱线的数量,at是第t个特征谱线的系数,λt是第t个特征谱线的波长,b为常数项;
8)对于待测未知样品P,首先采集未知样品的光谱,并如上方法对光谱进行校正得到去噪后光谱,获取不同波长的谱线强度数据后代入定标模型M即可获得未知样品的重金属铅含量,从而实现待测未知样品重金属铅含量。
8.根据权利要求7所述的一种用于粮油原料的铅、镉快速检测方法,其特征在于,对重金属铅进行检测时,采用的特征波长为:143.39nm、151.23nm、172.68nm、182.20nm、220.35nm、368.34nm、405.78nm。
9.根据权利要求6所述的一种用于粮油原料的镉、镉快速检测方法,其特征在于,在步骤4中对不含重金属的背景样品、含有重金属的比较样品、待检测的液态粮油样品进行镉含量检测的具体方法为:
1)在常温环境下,用超声波雾化器将样品雾化;随后将雾化的样品通入光谱仪的检测室内;所述检测室为石英容器,且已排除完空气;
2)启动光谱仪的微波发生器,产生的光束照射到雾化的样品上,获得等离子体光谱信号,再经凸透射汇聚、高精度光谱仪获取后获得样品对应的LIBS光谱;
3)通过查询NIST光谱数据库,确定上述各样品光谱中碳元素的特征谱线位置;
4)对样品光谱做分段校正;
5)消除样品本身的背景光谱的噪音影响,将分段校正后的含有重金属的比较样品、待检测的液态粮油样品的光谱分别与不含重金属的背景样品光谱相减,获得去噪后的样品光谱;
6)选取重金属镉元素的特征谱线波长,依照国家标准方法GB/T 5009.15测定样品中的真实重金属镉含量;
7)采用多元线性回归方法,建立重金属镉含量的定标模型;
8)对于待测未知样品,首先采集未知样品的光谱,并如上方法对光谱进行校正得到去噪后光谱,获取不同波长的谱线强度数据后代入定标模型即可获得未知样品的重金属镉含量,从而实现待测未知样品重金属镉含量。
CN202211475964.2A 2022-11-23 2022-11-23 一种用于粮油原料的铅、镉快速检测方法 Pending CN115753677A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211475964.2A CN115753677A (zh) 2022-11-23 2022-11-23 一种用于粮油原料的铅、镉快速检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211475964.2A CN115753677A (zh) 2022-11-23 2022-11-23 一种用于粮油原料的铅、镉快速检测方法

Publications (1)

Publication Number Publication Date
CN115753677A true CN115753677A (zh) 2023-03-07

Family

ID=85336126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211475964.2A Pending CN115753677A (zh) 2022-11-23 2022-11-23 一种用于粮油原料的铅、镉快速检测方法

Country Status (1)

Country Link
CN (1) CN115753677A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101520421A (zh) * 2009-04-08 2009-09-02 北京农产品质量检测与农田环境监测技术研究中心 一种土壤重金属含量检测模型的建模方法及其应用
CN103245628A (zh) * 2012-02-13 2013-08-14 辽宁省分析科学研究院 食用植物油品质的快速检测方法
CN103544550A (zh) * 2013-11-08 2014-01-29 湖南科技大学 一种金属矿区土-水界面重金属污染负荷的预测方法
CN204705588U (zh) * 2015-06-16 2015-10-14 江西农业大学 一种食用油中重金属铅含量的快速高精度检测装置
CN105092540A (zh) * 2015-06-16 2015-11-25 江西农业大学 一种食用油中重金属铅含量的快速高精度检测方法及装置
AU2020101288A4 (en) * 2020-03-26 2020-08-13 Zhejiang University Method and System for Quantitatively Detecting Copper in Rice Leaves

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101520421A (zh) * 2009-04-08 2009-09-02 北京农产品质量检测与农田环境监测技术研究中心 一种土壤重金属含量检测模型的建模方法及其应用
CN103245628A (zh) * 2012-02-13 2013-08-14 辽宁省分析科学研究院 食用植物油品质的快速检测方法
CN103544550A (zh) * 2013-11-08 2014-01-29 湖南科技大学 一种金属矿区土-水界面重金属污染负荷的预测方法
CN204705588U (zh) * 2015-06-16 2015-10-14 江西农业大学 一种食用油中重金属铅含量的快速高精度检测装置
CN105092540A (zh) * 2015-06-16 2015-11-25 江西农业大学 一种食用油中重金属铅含量的快速高精度检测方法及装置
AU2020101288A4 (en) * 2020-03-26 2020-08-13 Zhejiang University Method and System for Quantitatively Detecting Copper in Rice Leaves

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴宜青;欧阳静怡;孙通;莫欣欣;刘津;刘木华;: "双脉冲激光诱导击穿光谱结合多元定标法定量分析大豆油中的铅", 分析测试学报, no. 08, 25 August 2016 (2016-08-25), pages 100 - 105 *

Similar Documents

Publication Publication Date Title
Pierna et al. NIR hyperspectral imaging spectroscopy and chemometrics for the detection of undesirable substances in food and feed
Wedding et al. Effects of seasonal variability on FT-NIR prediction of dry matter content for whole Hass avocado fruit
Fan et al. Individual wheat kernels vigor assessment based on NIR spectroscopy coupled with machine learning methodologies
Paz et al. Instantaneous quantitative and qualitative assessment of pear quality using near infrared spectroscopy
Torres et al. Fast and accurate quality assessment of Raf tomatoes using NIRS technology
Suchat et al. Rapid moisture determination for cup lump natural rubber by near infrared spectroscopy
Lu et al. A feasibility quantitative analysis of NIR spectroscopy coupled Si-PLS to predict coco-peat available nitrogen from rapid measurements
Lin et al. Quantitative analysis of colony number in mouldy wheat based on near infrared spectroscopy combined with colorimetric sensor
Li et al. Identification of aged-rice adulteration based on near-infrared spectroscopy combined with partial least squares regression and characteristic wavelength variables
Jun et al. Identification of pesticide residue level in lettuce based on hyperspectra and chlorophyll fluorescence spectra
Darusman et al. Rapid determination of mixed soil and biochar properties using a shortwave near infrared spectroscopy approach
Jayaselan et al. Application of spectroscopy for nutrient prediction of oil palm
Wang et al. The early, rapid, and non-destructive detection of citrus Huanglongbing (HLB) based on microscopic confocal Raman
de Carvalho et al. Assessment of macadamia kernel quality defects by means of near infrared spectroscopy (NIRS) and nuclear magnetic resonance (NMR)
Wei et al. Monitoring the freshness of pork during storage via near-infrared spectroscopy based on colorimetric sensor array coupled with efficient multivariable calibration
Wang et al. Discriminant analysis and comparison of corn seed vigor based on multiband spectrum
Munawar et al. Fast and robust quality assessment of honeys using near infrared spectroscopy
Smith et al. Measurement of the concentration of nutrients in grapevine petioles by attenuated total reflectance F ourier transform infrared spectroscopy and chemometrics
CN115753677A (zh) 一种用于粮油原料的铅、镉快速检测方法
Jie et al. Determination of Nitrogen Concentration in Fresh Pear Leaves by Visible/Near‐Infrared Reflectance Spectroscopy
CN111650154A (zh) 一种基于近红外透反射光谱技术的油脂定量分析方法
Wang et al. Monitoring model for predicting maize grain moisture at the filling stage using NIRS and a small sample size
Yang et al. Application of near infrared spectroscopy to detect mould contamination in tobacco
CN108693136B (zh) 一种快速检测花粉活力的方法
CN107860747A (zh) 一种食品残留农药的检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination