CN115752760A - 一种适用于微振动环境的相位恢复算法 - Google Patents

一种适用于微振动环境的相位恢复算法 Download PDF

Info

Publication number
CN115752760A
CN115752760A CN202211439520.3A CN202211439520A CN115752760A CN 115752760 A CN115752760 A CN 115752760A CN 202211439520 A CN202211439520 A CN 202211439520A CN 115752760 A CN115752760 A CN 115752760A
Authority
CN
China
Prior art keywords
phase recovery
micro
image
recovery algorithm
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211439520.3A
Other languages
English (en)
Inventor
鞠国浩
许博谦
白晓泉
鹿芝荣
郭良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN202211439520.3A priority Critical patent/CN115752760A/zh
Publication of CN115752760A publication Critical patent/CN115752760A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

本发明涉及光学检测技术领域,尤其涉及一种适用于空间微振动环境的相位恢复算法,包括步骤:S1、采集点目标在探测器所成的准单色光点扩散函数图像;S2、建立光学系统成像模型,获得波前像差与所述准单色光点扩散函数图像的强度分布之间的函数关系;S3、对微振动影响的随机过程进行统计学描述,根据光学系统参数及探测器参数,确定与二维高斯函数对应的卷积模板;S4、利用卷积模板,修正函数关系,得到修正后的成像模型;S5、对修正后的成像模型进行去卷积操作,用去卷积的图像代替原始图像,改进迭代过程。本发明的相位恢复算法适用于空间微振动环境的相位恢复算法,保证在空间微振动环境中相位恢复法的精度。

Description

一种适用于微振动环境的相位恢复算法
技术领域
本发明涉及光学检测技术领域,尤其涉及一种适用于空间微振动环境的相位恢复算法。
背景技术
相位恢复法是当前常用的波前探测方法之一,其利用焦面采集的点扩散函数(PSF)强度图像求解光瞳面波前相位分布。由于所需硬件条件相对简单,且精度较高,相位恢复法是空间望远镜常用的波前检测方法。当前著名的詹姆斯韦伯空间望远镜在轨展开后的波前探测与控制过程(WFS&C)即采用相位恢复作为主要检测手段。
然而,相位恢复法精度易受空间微振动扰动因素影响。微振动将引起PSF图像模糊,直接利用模糊图像进行相位恢复时,将引入波前检测误差。当空间望远镜所在处的卫星平台稳定性不够高时,该问题尤其严重。
发明内容
本发明为解决上述问题,提供一种适用于空间微振动环境的相位恢复算法,保证在空间微振动环境中相位恢复法的精度。
本发明提供一种适用于微振动环境的相位恢复算法,所述相位恢复算法包括步骤:
S1、采集点目标在探测器所成的准单色光点扩散函数图像;
S2、根据光学系统参数及探测器参数,建立光学系统的成像模型,获得波前像差与所述准单色光点扩散函数图像的强度分布之间的函数关系;
S3、对微振动影响的随机过程进行统计学描述,根据所述光学系统参数及所述探测器参数,确定与二维高斯函数对应的卷积模板;
S4、利用所述卷积模板,修正所述波前像差与所述准单色光点扩散函数图像的强度分布之间的函数关系,得到修正后的成像模型;
S5、对所述修正后的成像模型进行去卷积操作,用去卷积的图像代替原始图像,改进迭代过程,得到所述相位恢复算法。
优选的,所述准单色光点扩散函数图像的数量为单幅、两幅或者多幅。
优选的,所述光学系统参数包括所述光学系统的口径、所述光学系统的焦距或者所述光学系统的中心波长;所述探测器参数包括像元大小。
优选的,所述对微振动影响的随机过程进行统计学描述包括利用二维高斯函数描述微振动的强度。
优选的,所述卷积模板的大小根据微振动的幅值确定。
优选的,所述卷积模板的大小为3*3或者5*5。
优选的,所述步骤S2中,获得波前像差与所述准单色光点扩散函数图像的强度分布之间的函数关系为:
Figure BDA0003948031070000021
其中,I表示点扩散函数图像强度分布,i是虚数单元,FT-1表示傅立叶逆变换;A表示光瞳函数振幅项,在归一化孔径内为1,其余为0;φ表示出瞳相位分布,为待求解对象;G是一个高斯卷积核,用于表示抖动对点扩散函数强度分布的影响;
Figure BDA0003948031070000022
表示卷积操作。
优选的,所述步骤S4中,修正后的波前像差与所述准单色光点扩散函数图像的强度分布之间的函数关系为:
Figure BDA0003948031070000023
其中,引入γ来抑制FT{G}零点附近噪声的影响,γ为一个正数矩阵。
优选的,所述二维高斯函数的公式为:
Figure BDA0003948031070000024
σ是与微振动强度相关的一个变量,x和y为像面空间的位置坐标。
本发明提供的是一种适用于空间微振动环境的相位恢复算法,改进了如何得到微振动卷积模板的过程,同时,也通过改进迭代过程修正了微振动的影响;能够保证在空间微振动环境中相位恢复法的精度。
附图说明
图1是本发明实施例中采用单幅PSF图像的振动鲁棒性相位恢复算法示意图。
图2是本发明实施例中采用两幅PSF图像的振动鲁棒性相位恢复算法示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,而不构成对本发明的限制。
本发明具体实施方式中,提供一种适用于微振动环境的相位恢复算法,所述相位恢复算法包括步骤:
S1、采集点目标在探测器所成的准单色光点扩散函数图像;所述准单色光点扩散函数图像的数量为单幅、两幅或者多幅;针对不同数量的准单色光点扩散函数图像都可以适用本发明的相位恢复算法。
S2、根据光学系统参数及探测器参数,建立光学系统成像模型,获得波前像差与准单色光点扩散函数(PSF)图像的强度分布之间的函数关系;所述光学系统参数包括所述光学系统的口径、所述光学系统的焦距或者所述光学系统的中心波长;所述探测器参数包括像元大小。
具体的实施方式中,假设物体用非相干准单色光照明,成像系统是线性平移不变系统;根据傅立叶光学,像平面中的点扩散函数可以表示为
I={FT-1{Aexpiφ}2 (1)
虽然微振动的影响呈现一定随机性,但仍遵循一些统计规律。在存在微振动的情况下,在曝光时间内的任何时刻,光轴与图像平面的交点位置服从正态分布。因此,可以引入高斯卷积来描述曝光期间微振动对PSF图像的影响。换言之,在存在抖动的情况下,建立光学系统成像模型,获得波前像差与所述准单色光点扩散函数图像的强度分布之间的函数关系的公式为:
Figure BDA0003948031070000041
其中,I表示点扩散函数图像强度分布,i是虚数单元,FT-1表示傅立叶逆变换;A表示光瞳函数振幅项,在归一化孔径内为1,其余为0;φ表示出瞳相位分布,为待求解对象;G是一个高斯卷积核(即后续提到的高斯卷积模板),用于表示抖动对点扩散函数强度分布的影响;
Figure BDA0003948031070000042
表示卷积操作。为了准确描述微振动对PSF的影响,应根据微振动强度仔细确定卷积模板G中的元素。根据卷积定理,公式(2)可以改写为:
FT{I}=FT{{FT-1{Aexpiφ}2}·FT{G} (3)
S3、对微振动影响的随机过程进行统计学描述,根据所述光学系统参数及所述探测器参数,确定与二维高斯函数对应的卷积模板;所述对微振动影响的随机过程进行统计学描述包括利用二维高斯函数描述微振动的强度;具体的,卷积模板的大小可以根据微振动的幅值来确定。例如,所述卷积模板的大小可以为3*3或者5*5。
具体的实施方式中,所述二维高斯函数的公式为:
Figure BDA0003948031070000043
σ是与微振动强度相关的一个变量,x和y为像面空间的位置坐标。
上述二维高斯函数可以用于描述微振动过程中光轴与像面交点在某位置出现的概率,其中,σ是与微振动强度相关的一个变量,在确定高斯卷积模板G的过程中,需要高斯函数中的σ与实际微振动幅值的方差保持一致。在此基础上,可以先在平面上绘制网格线,网格线之间的间隔等于像素大小;然后,假设高斯函数的中心与网格中心正方形的中心一致,并通过对每个正方形的积分计算网格中每个正方形中高斯函数的权重。网格的大小可以是3*3或者5*5,按以上方法可确定卷积模板G中各个元素的值。
S4、利用所述卷积模板,修正波前像差与探测器所采集的所述准单色光点扩散函数图像的强度分布之间的函数关系,得到修正后的成像模型;修正后的波前像差与所述准单色光点扩散函数图像的强度分布之间的函数关系的公式为:
Figure BDA0003948031070000051
其中,引入γ来抑制FT{G}零点附近噪声的影响,γ为一个正数矩阵。
S5、对所述修正后的成像模型进行去卷积操作,用去卷积的图像代替原始输入图像,改进迭代过程,得到所述相位恢复算法。
本发明所提供的相位恢复算法,其主要原理在于:
(1)微振动对探测器所采集PSF图像的影响可等效为某一高斯核对PSF图像进行高斯卷积的过程:
1)虽然微振动引起视轴位置的改变具有一定的随机性,但是服从一定的统计规律;具体而言,对于任一时刻,视轴与像面的交点位置服从二维高斯分布,此高斯分布的方差与微振动的强度有关。
2)与无微振动环境中的理想PSF相比,受微振动影响并进行一段时间积分后,PSF图像每一个像素灰度值包含其他像素信息,该效应与卷积效应的影响具有本质的相似性。
(2)在微振动参数已知的情况下,通过一定的方式,将去卷积的过程引入相位恢复中,得到对振动具有鲁棒性的相位恢复算法。
本发明提供的是一种适用于空间微振动环境的相位恢复算法,改进了如何得到微振动卷积模板的过程,同时,也通过改进迭代过程修正了微振动的影响;能够保证在空间微振动环境中相位恢复法的精度。
以下结合具体实施例展开进行说明。
实施例1
本实施例中,采用单幅图像的相位恢复算法如图1所示,针对第k次迭代进行说明。光瞳函数振幅项A与相位因子
Figure BDA0003948031070000061
相乘构成广义光瞳,经过傅里叶逆变换到频域,频域振幅项为B,相位因子为
Figure BDA0003948031070000062
保留相位因子,振幅因子用
Figure BDA0003948031070000063
代替,然后进行傅里叶逆变换。傅里叶逆变换后的结果中,A'为振幅项,
Figure BDA0003948031070000064
为相位项。保留相位项,作为第k+1次迭代的相位因子,振幅项继续用A代替。迭代一定次数之后,可以得到准确的相位项。由于该过程考虑由G表征的微振动项,所求解的相位项受振动影响较小。
本方法与传统相位恢复的差异在于,迭代过程中,在频域替代振幅项的不是PSF强度的根号值
Figure BDA0003948031070000065
而是考虑微振动建模之后的
Figure BDA0003948031070000066
实施例2
本实施例中,采用两幅图像的微振动鲁棒性相位恢复算法如图2所示,针对第k次迭代进行说明。光瞳函数振幅项A与相位因子
Figure BDA0003948031070000067
相乘构成广义光瞳,经过傅里叶逆变换到频域,频域振幅项为B,相位因子为
Figure BDA0003948031070000068
保留相位因子,振幅项用
Figure BDA0003948031070000069
代替,其中,I1为第一幅图像的强度分布,然后进行傅里叶逆变换。傅里叶逆变换后的结果中,A'为振幅项,
Figure BDA00039480310700000610
为相位项。相位θk'与两幅PSF图像之间固定的相位差异△相加,得到另一幅图像迭代的相位,振幅项继续用A代替,两者相乘构成广义光瞳,经过傅里叶逆变换到频域,频域振幅项为B',相位因子为
Figure BDA00039480310700000611
此时,保留相位项,振幅项用
Figure BDA00039480310700000612
代替,其中,I2为第二幅图像的强度分布,傅里叶变换后,振幅项A”,相位项
Figure BDA00039480310700000613
将θk”设定为下一次迭代的初始相位θk+1,重复以上过程。迭代一定次数之后,可以得到准确的相位项。由于该过程考虑由G表征的微振动项,所求解的相位项受振动影响较小。
类似地,本方法与传统相位恢复的差异在于,迭代过程中,在频域替代振幅项的不是两幅PSF强度的根号值
Figure BDA0003948031070000071
Figure BDA0003948031070000072
而是考虑微振动建模之后的
Figure BDA0003948031070000073
Figure BDA0003948031070000074
实施例3
实施例1和实施例2仅描述了利用一幅或者两幅PSF图像进行相位恢复时降低微振动影响的方法,利用多幅图像进行相位恢复的方法可以此类推。
在该实施例中,当实际中可以获取超过两幅离焦图像时,多幅图像之间也可以通过迭代求解相位。与两幅图像相位恢复算法类似,利用多幅图像进行相位恢复算法的迭代过程可以分为:
(1)单一图像的光瞳面、像面变换与实部替换;
(2)不同图像之间相位的传递。
单一图像光瞳面、像面的变换通过傅里叶变换实现。按照公式(1)将光瞳函数(包含相位)傅里叶逆变换之后,将变换结果的实部按照公式(4)进行替换(考虑去卷积过程),再进行傅里叶正变换到光瞳面,取相位部分。在此基础上,根据不同图像之间相位的差异,由与一幅图像对应的相位分布得到下一幅图像初始相位分布,然后重新开始单一图像的光瞳面、像面变换与实部替换过程。
本发明提供的是一种适用于空间微振动环境的相位恢复算法,改进了如何得到微振动卷积模板的过程,同时,也通过改进迭代过程修正了微振动的影响;能够保证在空间微振动环境中相位恢复法的精度。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制。本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
以上本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

Claims (9)

1.一种适用于微振动环境的相位恢复算法,其特征在于,所述相位恢复算法包括步骤:
S1、采集点目标在探测器所成的准单色光点扩散函数图像;
S2、根据光学系统参数及探测器参数,建立光学系统的成像模型,获得波前像差与所述准单色光点扩散函数图像的强度分布之间的函数关系;
S3、对微振动影响的随机过程进行统计学描述,根据所述光学系统参数及所述探测器参数,确定与二维高斯函数对应的卷积模板;
S4、利用所述卷积模板,修正所述波前像差与所述准单色光点扩散函数图像的强度分布之间的函数关系,得到修正后的成像模型;
S5、对所述修正后的成像模型进行去卷积操作,用去卷积的图像代替原始输入图像,改进迭代过程,得到所述相位恢复算法。
2.如权利要求1所述的相位恢复算法,其特征在于,所述准单色光点扩散函数图像的数量为单幅、两幅或者多幅。
3.如权利要求1所述的相位恢复算法,其特征在于,所述光学系统参数包括所述光学系统的口径、所述光学系统的焦距或者所述光学系统的中心波长;所述探测器参数包括像元大小。
4.如权利要求1所述的相位恢复算法,其特征在于,所述对微振动影响的随机过程进行统计学描述包括利用二维高斯函数描述微振动的强度。
5.如权利要求1所述的相位恢复算法,其特征在于,所述卷积模板的大小根据微振动的幅值确定。
6.如权利要求1所述的相位恢复算法,其特征在于,所述卷积模板的大小为3*3或者5*5。
7.如权利要求1所述的相位恢复算法,其特征在于,所述步骤S2中,获得波前像差与所述准单色光点扩散函数图像的强度分布之间的函数关系为:
Figure FDA0003948031060000011
其中,I表示点扩散函数图像强度分布,i是虚数单元,FT-1表示傅立叶逆变换;A表示光瞳函数振幅项,在归一化孔径内为1,其余为0;φ表示出瞳相位分布,为待求解对象;G是一个高斯卷积核,用于表示抖动对点扩散函数强度分布的影响;
Figure FDA0003948031060000021
表示卷积操作。
8.如权利要求7所述的相位恢复算法,其特征在于,所述步骤S4中,修正后的波前像差与所述准单色光点扩散函数图像的强度分布之间的函数关系为:
Figure FDA0003948031060000022
其中,引入γ来抑制FT{G}零点附近噪声的影响,γ为一个正数矩阵。
9.如权利要求1所述的相位恢复算法,其特征在于,所述二维高斯函数的公式为:
Figure FDA0003948031060000023
σ是与微振动强度相关的一个变量,x和y为像面空间的位置坐标。
CN202211439520.3A 2022-11-17 2022-11-17 一种适用于微振动环境的相位恢复算法 Pending CN115752760A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211439520.3A CN115752760A (zh) 2022-11-17 2022-11-17 一种适用于微振动环境的相位恢复算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211439520.3A CN115752760A (zh) 2022-11-17 2022-11-17 一种适用于微振动环境的相位恢复算法

Publications (1)

Publication Number Publication Date
CN115752760A true CN115752760A (zh) 2023-03-07

Family

ID=85372534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211439520.3A Pending CN115752760A (zh) 2022-11-17 2022-11-17 一种适用于微振动环境的相位恢复算法

Country Status (1)

Country Link
CN (1) CN115752760A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116880064A (zh) * 2023-09-07 2023-10-13 中国科学院西安光学精密机械研究所 一种复合型光瞳滤波器的非迭代逆向设计方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116880064A (zh) * 2023-09-07 2023-10-13 中国科学院西安光学精密机械研究所 一种复合型光瞳滤波器的非迭代逆向设计方法
CN116880064B (zh) * 2023-09-07 2023-12-08 中国科学院西安光学精密机械研究所 一种复合型光瞳滤波器的非迭代逆向设计方法

Similar Documents

Publication Publication Date Title
Molina et al. Blind deconvolution using a variational approach to parameter, image, and blur estimation
Kee et al. Modeling and removing spatially-varying optical blur
Herbel et al. Fast point spread function modeling with deep learning
Shajkofci et al. Spatially-variant CNN-based point spread function estimation for blind deconvolution and depth estimation in optical microscopy
CN106845024B (zh) 一种基于波前反演的光学卫星在轨成像仿真方法
Nakajima et al. Shear recovery accuracy in weak-lensing analysis with the elliptical gauss-laguerre method
WO2015023610A1 (en) An edge-based full chip mask topography modeling
WO2007113799A2 (en) Digital filtering with noise gain limit
Cantale et al. Firedec: a two-channel finite-resolution image deconvolution algorithm
US7635832B2 (en) Hybrid diversity method utilizing adaptive diversity function for recovering unknown aberrations in an optical system
CN111650738A (zh) 一种基于深度学习的傅里叶叠层显微图像重构方法及装置
CN115752760A (zh) 一种适用于微振动环境的相位恢复算法
CN111079893B (zh) 用于干涉条纹图滤波的生成器网络的获取方法和装置
JPH04299469A (ja) 画像内の物体の認識法および一連の画像内の物体のトラッキングへの応用
US8653454B2 (en) Electron-beam image reconstruction
US10521918B2 (en) Method and device for filtering texture, using patch shift
CN112991205A (zh) 一种日冕图像增强方法、系统、介质、设备及应用
Benfenati et al. Deconvolution of post-adaptive optics images of faint circumstellar environments by means of the inexact Bregman procedure
CN113405676B (zh) 空间望远镜相位差波前探测中微振动影响的修正方法
Baer Circular-edge spatial frequency response test
Yan et al. Extending AMIRAL's blind deconvolution of adaptive optics corrected images with Markov chain Monte Carlo methods
Brown One-Dimensional Multi-Frame Blind Deconvolution Using Astronomical Data for Spatially Separable Objects
Wang et al. Parameterized modeling of spatially varying PSF for lens aberration and defocus
Yu et al. Variational bayes learning of graphical models with hidden variables
CN113192146B (zh) 一种基于深度学习消除栅线投影相移技术中离焦误差的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination