CN115717255A - Zero-stress electrolytic metal foil preparation method, system used thereby and application of method - Google Patents
Zero-stress electrolytic metal foil preparation method, system used thereby and application of method Download PDFInfo
- Publication number
- CN115717255A CN115717255A CN202211518053.3A CN202211518053A CN115717255A CN 115717255 A CN115717255 A CN 115717255A CN 202211518053 A CN202211518053 A CN 202211518053A CN 115717255 A CN115717255 A CN 115717255A
- Authority
- CN
- China
- Prior art keywords
- conductive medium
- metal foil
- electrolytic
- foil
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011888 foil Substances 0.000 title claims abstract description 163
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 115
- 239000002184 metal Substances 0.000 title claims abstract description 115
- 238000000034 method Methods 0.000 title claims abstract description 67
- 238000002360 preparation method Methods 0.000 title claims abstract description 54
- 239000003792 electrolyte Substances 0.000 claims abstract description 34
- 238000004070 electrodeposition Methods 0.000 claims abstract description 17
- 230000008602 contraction Effects 0.000 claims abstract description 4
- 239000000126 substance Substances 0.000 claims abstract description 4
- 230000008859 change Effects 0.000 claims abstract description 3
- 238000004090 dissolution Methods 0.000 claims abstract description 3
- 238000000151 deposition Methods 0.000 claims description 63
- 230000008021 deposition Effects 0.000 claims description 60
- 239000012298 atmosphere Substances 0.000 claims description 33
- 238000012805 post-processing Methods 0.000 claims description 25
- 239000002904 solvent Substances 0.000 claims description 20
- 238000002485 combustion reaction Methods 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000005507 spraying Methods 0.000 claims description 10
- 230000005484 gravity Effects 0.000 claims description 9
- 239000000306 component Substances 0.000 claims description 7
- 238000001723 curing Methods 0.000 claims description 4
- 239000002002 slurry Substances 0.000 claims description 4
- 238000011068 loading method Methods 0.000 claims description 3
- 238000003848 UV Light-Curing Methods 0.000 claims description 2
- 230000001680 brushing effect Effects 0.000 claims description 2
- 239000012533 medium component Substances 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 238000004381 surface treatment Methods 0.000 claims description 2
- 238000011049 filling Methods 0.000 claims 1
- 238000004513 sizing Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 20
- 238000010924 continuous production Methods 0.000 abstract description 10
- 230000008901 benefit Effects 0.000 abstract description 9
- 230000006872 improvement Effects 0.000 abstract description 3
- 230000005518 electrochemistry Effects 0.000 abstract description 2
- 239000013028 medium composition Substances 0.000 abstract 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 77
- 239000011889 copper foil Substances 0.000 description 73
- 239000010408 film Substances 0.000 description 39
- 239000000047 product Substances 0.000 description 31
- 239000007789 gas Substances 0.000 description 27
- 239000000243 solution Substances 0.000 description 23
- 238000004519 manufacturing process Methods 0.000 description 21
- 229910000881 Cu alloy Inorganic materials 0.000 description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 19
- 239000001301 oxygen Substances 0.000 description 19
- 229910052760 oxygen Inorganic materials 0.000 description 19
- 239000008151 electrolyte solution Substances 0.000 description 16
- 239000004814 polyurethane Substances 0.000 description 16
- 238000010586 diagram Methods 0.000 description 12
- 206010040844 Skin exfoliation Diseases 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 238000007781 pre-processing Methods 0.000 description 11
- 238000012512 characterization method Methods 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 8
- 238000005868 electrolysis reaction Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000007921 spray Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000012071 phase Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000001066 destructive effect Effects 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 230000037303 wrinkles Effects 0.000 description 5
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910001431 copper ion Inorganic materials 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- ZQKKGHXDMUVUFH-UHFFFAOYSA-N cyclohexanone;propan-2-one Chemical compound CC(C)=O.O=C1CCCCC1 ZQKKGHXDMUVUFH-UHFFFAOYSA-N 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000002203 pretreatment Methods 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000003678 scratch resistant effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003075 superhydrophobic effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
本发明属于电化学领域,尤其涉及一种零应力电解金属箔制备法,及其所用的系统和方法的应用。所述方法包括:1)设置可动的导电介质,所述导电介质能够动态地通过电解液,且在电解液中时导电介质与设于电解液中的阳极电连接,以导电介质作为阴极在导电介质上进行金属箔的电沉积制备,得到导电介质‑金属箔;2)以相态改变和/或化学法和/或溶解和/或胀缩法的方式分离去除导电介质‑金属箔中的导电介质成分,即完成电解金属箔的零应力制备。本发明通过工艺的改进,能够实现对电解金属箔的制备厚度、尺寸规格等进行有效控制且进行连续生产,适用性极强,产品的良品率高,经济效益高。
The invention belongs to the field of electrochemistry, and in particular relates to a preparation method of zero-stress electrolytic metal foil, and the application of the system and method thereof. The method includes: 1) setting a movable conductive medium, the conductive medium can dynamically pass through the electrolyte, and when in the electrolyte, the conductive medium is electrically connected to the anode provided in the electrolyte, and the conductive medium is used as the cathode in the electrolyte. Carry out the electrodeposition preparation of metal foil on the conductive medium to obtain the conductive medium-metal foil; 2) separate and remove the conductive medium-metal foil by phase change and/or chemical method and/or dissolution and/or expansion and contraction Conductive medium composition, that completes zero-stress preparation of electrolytic metal foil. Through the improvement of the process, the present invention can effectively control the preparation thickness and size specifications of the electrolytic metal foil and carry out continuous production, has strong applicability, high yield rate of products, and high economic benefits.
Description
技术领域technical field
本发明属于电化学领域,尤其涉及一种零应力电解金属箔制备法,及其所用的系统和方法的应用。The invention belongs to the field of electrochemistry, and in particular relates to a preparation method of zero-stress electrolytic metal foil, and the application of the system and method thereof.
背景技术Background technique
金属箔是一种薄片状金属制品,如铜箔其通常由铜加一定比例的其他金属制成。一般市售铜箔的铜含量分别为80wt%或90wt%,分别对应80箔和90箔。其在以往的市场环境中,最为广泛的用途是作为装饰材料使用,因为其具有低表面氧气特性,可以附着与各种不同基材,如金属,绝缘材料等,拥有较宽的温度使用范围。Metal foil is a thin sheet metal product, such as copper foil, which is usually made of copper plus a certain proportion of other metals. Generally, the copper content of commercially available copper foils is 80wt% or 90wt%, corresponding to 80wt% and 90wt% respectively. In the past market environment, its most widely used is as a decorative material, because it has low surface oxygen characteristics, can be attached to various substrates, such as metals, insulating materials, etc., and has a wide temperature range.
但是,随着金属箔的发展,市场产生了各式各样的需求。如在铜箔领域,其发展出的铜含量≥99.7wt%的高纯电子级铜箔由于其所具有的优良的导通性,并提供电磁屏蔽的效果,也被普遍用于电子设备。电子级铜箔是电子工业的基础材料之一,电子信息产业快速发展,电子级铜箔的使用量越来越大,产品广泛应用于工业用计算器、通讯设备、QA设备、锂离铜箔、铜箔子蓄电池,民用电视机、录像机、CD播放机、复印机、电话、冷暖空调、汽车用电子部件、游戏机等。国内外市场对电子级铜箔,尤其是高性能电子级铜箔的需求日益增加。However, with the development of metal foil, various demands have been generated in the market. For example, in the field of copper foil, the developed high-purity electronic-grade copper foil with copper content ≥ 99.7wt% is also widely used in electronic equipment due to its excellent conductivity and electromagnetic shielding effect. Electronic grade copper foil is one of the basic materials of the electronics industry. With the rapid development of the electronic information industry, the use of electronic grade copper foil is increasing. The products are widely used in industrial calculators, communication equipment, QA equipment, lithium-ion copper foil , Copper foil storage battery, civil TV, video recorder, CD player, copier, telephone, heating and cooling air conditioner, electronic components for automobiles, game consoles, etc. There is an increasing demand for electronic-grade copper foil, especially high-performance electronic-grade copper foil, in domestic and foreign markets.
在此前,就金属箔制备工艺本发明人已进行相应的研发,并已经在早先于相应合作单位联合申报有CN202111335008.X、CN202111335007.5和CN202111335012.6等三项发明专利申请,在以上三项专利申请中,实现了超薄、超高纯度的金属箔的有效无损制备,能够非常地用于高标准超薄特种金属箔的制备。但是在实际产业化过程中却也发现,通过上述三项发明专利技术进行大厚度、大规格金属箔的生产制备时,其非常容易出现褶皱、断裂等问题,其对于1~3μm甚至于1μm以下的小规格超薄特种铜箔等金属箔具有良好的生产适配性,能够实现良好的量化生产并且产生巨大的经济效益,但对于常规需求的3~8μm厚度的金属箔连续生产,尤其是大规格金属箔卷的生产适配性较差,无法有效实现,且成本相对高昂。Prior to this, the inventor has carried out corresponding research and development on the metal foil preparation process, and has jointly applied for three invention patent applications, CN202111335008. In the patent application, the effective and non-destructive preparation of ultra-thin, ultra-high-purity metal foil has been realized, which can be very suitable for the preparation of high-standard ultra-thin special metal foil. However, in the actual industrialization process, it is also found that when the above three patented technologies are used for the production and preparation of large-thickness and large-scale metal foils, it is very prone to problems such as wrinkles and fractures. For 1-3μm or even below 1μm Metal foils such as small-sized ultra-thin special copper foils have good production adaptability, can achieve good quantitative production and generate huge economic benefits, but for the continuous production of metal foils with a thickness of 3-8 μm that is conventionally required, especially for large The production adaptability of standard metal foil rolls is poor, it cannot be realized effectively, and the cost is relatively high.
而现有技术中,对于4~6μm厚度的电解金属箔生产却也存在着较为明显的缺陷,即现有电解法将金属箔直接沉积在阴极辊上或阴极辊表面的中间材料上,但其剥离时仅剥离金属箔,导致金属箔也非常容易产生撕裂,导致量化生产效果不佳,目前现有的电解工艺即便是高标准精细化生产也仅能够基本适用、适配于6μm以上的金属箔卷连续生产,甚至于大部分无法实现高精度、精细化制备的设备仅能够制备18μm以上的厚铜箔。However, in the prior art, there are also obvious defects in the production of electrolytic metal foil with a thickness of 4-6 μm, that is, the existing electrolytic method deposits the metal foil directly on the cathode roll or the intermediate material on the surface of the cathode roll, but its When peeling off, only the metal foil is peeled off, so the metal foil is also very easy to tear, resulting in poor quantitative production effect. The current existing electrolysis process can only be basically applicable and suitable for metals above 6 μm even in high-standard fine-grained production. Foil rolls are produced continuously, and even most equipment that cannot achieve high-precision and fine-grained preparation can only prepare thick copper foil above 18 μm.
发明内容Contents of the invention
为解决现有电解金属箔制备工艺在剥离金属箔时金属箔承受较大的应力导致其容易断裂损坏,而现有的其余工艺无法有效适配于3~6μm金属箔高效无损的连续生产等问题,本发明提供了一种零应力电解金属箔制备法,以及其应用和所得的金属箔。In order to solve the problem that the existing electrolytic metal foil preparation process is subjected to a large stress when the metal foil is peeled off, causing it to be easily broken and damaged, and the remaining existing processes cannot be effectively adapted to the efficient and non-destructive continuous production of 3-6 μm metal foil. , the invention provides a zero-stress electrolytic metal foil preparation method, its application and the obtained metal foil.
本发明的首要目的在于:The primary purpose of the present invention is to:
一、能够有效适配于现有任意种类金属箔的电解制备;1. It can be effectively adapted to the electrolytic preparation of any existing metal foil;
二、能够实现零应力剥离金属箔,提高金属箔的良品率;2. It can realize zero-stress peeling of metal foil and improve the yield rate of metal foil;
三、能够实现2~8μm金属箔的连续化生产;3. It can realize the continuous production of 2-8μm metal foil;
四、降低高品质金属箔的生产成本;4. Reduce the production cost of high-quality metal foil;
五、能够自主实现对金属箔表面微观形貌和织构系数的控制和调整。Fifth, it can independently realize the control and adjustment of the microscopic morphology and texture coefficient of the metal foil surface.
为实现上述目的,本发明采用以下技术方案。In order to achieve the above object, the present invention adopts the following technical solutions.
一种零应力电解金属箔制备法,A zero-stress electrolytic metal foil preparation method,
所述方法包括:The methods include:
1)设置可动的导电介质,所述导电介质能够动态地通过电解液,且在电解液中时导电介质与设于电解液中的阳极电连接,以导电介质作为阴极在导电介质上进行金属箔的电沉积制备,得到导电介质-金属箔;1) A movable conductive medium is provided, and the conductive medium can dynamically pass through the electrolyte, and when in the electrolyte, the conductive medium is electrically connected to the anode provided in the electrolyte, and the conductive medium is used as the cathode to carry out metallurgy on the conductive medium. Electrodeposition preparation of foil to obtain conductive medium-metal foil;
2)以相态改变和/或化学法和/或溶解和/或胀缩法的方式分离去除导电介质-金属箔中的导电介质成分,即完成电解金属箔的零应力制备。2) Separating and removing the conductive medium component in the conductive medium-metal foil by means of phase change and/or chemical method and/or dissolution and/or expansion and contraction method, that is to complete the zero-stress preparation of electrolytic metal foil.
作为优选,步骤1)所述可动的导电介质呈带状和/或目标形状的片状和/或定型固化的浆料进入到电解液中。Preferably, the movable conductive medium in step 1) enters the electrolyte solution in the form of strips and/or target-shaped sheets and/or shaped and solidified slurry.
作为优选,所述定型固化的浆料在填入特定载体进行重力流平和/或形貌压制,固化后作为导电介质。Preferably, the shaped and solidified slurry is filled into a specific carrier for gravity leveling and/or shape pressing, and then used as a conductive medium after curing.
作为优选,As a preference,
步骤1)所述电解液中含有目标金属箔成分的可溶性金属盐;Step 1) The electrolyte contains a soluble metal salt of the target metal foil component;
步骤1)所述阳极为不溶性阳极。Step 1) The anode is an insoluble anode.
对于本发明的方法而言,其核心在于彻底避免传统制备方法中的剥离过程,且确保方案实施和使用的高度灵活性。并且本发明的技术构思核心与在先的基础方案也有着显著的不同,在前述本申请发明人研制的CN202111335008.X、CN202111335007.5和CN202111335012.6三个原子法(或说气相法)方案中,其核心在于重力剥离,通过重力作用实现金属箔的脱离和获取,因而其实际更加适用于一定规格内的片状制备,且由于其采用蒸镀这种原子沉积法制备实现了超高精度的制备同时也限制了其生产的规格尺寸、厚度,且提高了工艺难度和成本,其核心在于中间层的制备、消除和重力剥离,实现金属箔的自发性脱落。而本申请的核心则是在于选用适当的导电介质,以导电介质作为模板首先进行电解,再以消失模的方法核心实现导电介质的去除,彻底避免了“剥离”这一过程,而原子法仍未脱离“剥离”过程,其提供了新颖的剥离形式并结合气相沉积法实现超薄金属箔的有效无损制备,但金属箔仍受到较大的剥离应力作用,本发明能够实现完全避免剥离应力,实现彻底无损的介质-金属箔分离。For the method of the present invention, its core is to completely avoid the stripping process in the traditional preparation method, and to ensure a high degree of flexibility in the implementation and use of the scheme. And the core of the technical concept of the present invention is also significantly different from the previous basic scheme. In the three atomic method (or gas phase method) schemes of CN202111335008.X, CN202111335007.5 and CN202111335012.6 developed by the inventor of the aforementioned application , its core lies in gravity peeling, which realizes the detachment and acquisition of metal foil through gravity, so it is actually more suitable for sheet preparation within a certain specification, and because it is prepared by the atomic deposition method of evaporation deposition, it achieves ultra-high precision. At the same time, the preparation also limits the size and thickness of its production, and increases the difficulty and cost of the process. The core lies in the preparation, elimination and gravity peeling of the middle layer, so as to realize the spontaneous detachment of the metal foil. The core of this application is to select an appropriate conductive medium, use the conductive medium as a template to carry out electrolysis first, and then use the method of lost foam to realize the removal of the conductive medium, completely avoiding the process of "stripping", while the atomic method is still Without breaking away from the "stripping" process, it provides a novel peeling form and combines the vapor deposition method to realize the effective and non-destructive preparation of ultra-thin metal foil, but the metal foil is still subject to a large peeling stress. The present invention can completely avoid the peeling stress. Achieve complete and non-destructive media-foil separation.
应力作用无论对于超薄金属箔的制备还是大规格金属箔的制备,其影响都是非常显著的。原有的气相法方案减少了金属箔的应力作用并配合特定的沉积形式实现了超薄特种金属箔的制备,但无法克服重力应力作用下对大规格金属箔的影响且无法克服其所用沉积方式对于厚度的局限性,而本发明实现了完全零应力的连续化生产并结合成熟的电解工艺实现了连续化、厚度可控的生产。Whether the stress effect is on the preparation of ultra-thin metal foil or the preparation of large-scale metal foil, its influence is very significant. The original gas phase method reduces the stress of metal foil and realizes the preparation of ultra-thin special metal foil with a specific deposition form, but it cannot overcome the influence of gravity stress on large-scale metal foil and cannot overcome the deposition method used. Regarding the limitation of thickness, the present invention realizes continuous production with complete zero stress and realizes continuous production with controllable thickness in combination with a mature electrolysis process.
此外,本发明方法还综合了各个技术优点,如结合了电解法的低成本、高效率和简单易行的优点,又如导电介质带来的微观形貌可控的优点,采用表面具有纳米碗结构的镀锌铝箔作为导电中间层,则能够实现2~6μm超薄且具备超疏水性能的金属箔。In addition, the method of the present invention also integrates various technical advantages, such as combining the advantages of low cost, high efficiency and simplicity of electrolysis, and the advantages of controllable microscopic morphology brought by conductive media. The galvanized aluminum foil with the structure is used as the conductive intermediate layer, and a metal foil with ultra-thin thickness of 2-6 μm and super-hydrophobic properties can be realized.
此外,在各个技术有效结合的情况下,大大拓宽了导电介质的选择范畴,因为导电介质的厚度选用较薄,因而甚至能够选择部分有机膜材作为导电介质,使得低导电率不再作为电解沉积金属箔的技术障碍,且本发明通过导电介质在电解液中的行程控制、行进速率控制、电流密度控制等,能够实现电解金属箔厚度的控制,甚至能够实现单程多箔的制备,大大提高了制备效率和制备效果。In addition, in the case of the effective combination of various technologies, the selection of conductive media has been greatly expanded. Because the thickness of the conductive media is thinner, it is even possible to select some organic film materials as the conductive media, so that low conductivity is no longer used as electrolytic deposition. The technical obstacle of metal foil, and the present invention can realize the control of the thickness of the electrolytic metal foil through the stroke control, travel speed control, current density control, etc. of the conductive medium in the electrolyte, and can even realize the preparation of multiple foils in one pass, which greatly improves the Preparation efficiency and preparation effect.
一种零应力电解金属箔系统,A zero-stress electrolytic metal foil system,
所述系统用于对导电介质进行电沉积,其包括沉积装置和后处理装置;The system is used for electrodeposition of a conductive medium, which includes a deposition device and a post-processing device;
所述沉积装置包括电解池、阴极、阳极和电源;The deposition device includes an electrolytic cell, a cathode, an anode and a power supply;
所述阴极、阳极和电源电连接;The cathode, anode and power supply are electrically connected;
所述电解池用于容纳电解液,阳极设置在电解池中,阴极与所述导电介质电连接,将导电介质作为阴极的延伸部分,使得导电介质在电解池中作为阴极存在进行电沉积;The electrolytic cell is used to accommodate the electrolyte, the anode is arranged in the electrolytic cell, the cathode is electrically connected to the conductive medium, and the conductive medium is used as an extension of the cathode, so that the conductive medium exists as a cathode in the electrolytic cell for electrodeposition;
所述后处理装置用于去除导电介质,其包括溶剂池和/或加热装置和/或制冷装置和/或燃烧装置和/或气氛处理装置。The post-processing device is used to remove the conductive medium, which includes a solvent pool and/or a heating device and/or a refrigeration device and/or a combustion device and/or an atmosphere treatment device.
作为优选,As a preference,
所述系统还包括用于实现对导电介质的运输的传送装置。The system also includes a conveyor for enabling transport of the conductive medium.
作为优选,As a preference,
所述系统还包括前处理装置;The system also includes a pre-processing device;
所述前处理装置将导电介质负载于载体上和/或导电介质的表面处理;The pre-treatment device loads the conductive medium on the carrier and/or surface treatment of the conductive medium;
所述载体在传送装置的带动下进行运动,载动导电介质依次经过沉积装置和后处理装置。The carrier moves under the drive of the conveying device, and the conductive medium is carried through the deposition device and the post-processing device in sequence.
作为优选,所述前处理装置包括喷涂装置和/或刷涂装置和/或溶剂池和/或加热装置和/或制冷装置和/或UV固化装置和/或喷淋装置。Preferably, the pre-treatment device includes a spraying device and/or a brushing device and/or a solvent pool and/or a heating device and/or a cooling device and/or a UV curing device and/or a spraying device.
对于本发明所用的系统而言,最为核心的部分即在于沉积装置和后处理装置,而由于本发明方法方案的高度灵活性,实际使用时可根据需求进行自由的调整和选择,因而本发明仅对核心、不可替代的部分进行详细的描述说明。For the system used in the present invention, the core part is the deposition device and the post-processing device, and due to the high flexibility of the method scheme of the present invention, free adjustment and selection can be carried out according to requirements during actual use, so the present invention only Describe the core and irreplaceable parts in detail.
如对于沉积装置而言,实际与常规的电沉积装置较为接近,但最为不同的一点在于,常规的电沉积装置需要至少确保阴极至少一半浸没在电解液中,且所形成的电解金属箔直接在阴极上剥离得到,而本发明则是将导电介质作为阴极的延伸部分,实际作为“不断运动且可以被消耗”的“第二阴极”,因而阴极是可以完全离开电解液且优选也是完全离开电解液的,甚至于可以将阴极本质视作一个导电接头,其所起的作用也仅仅是导电以及区分阳极,这也避免了阴极置于电解液中阴极表面沉积消耗金属离子,且导致阴极表面沉积物不断累积改变导电介质的行进进程等。As for the deposition device, it is actually closer to the conventional electrodeposition device, but the most different point is that the conventional electrodeposition device needs to ensure that at least half of the cathode is immersed in the electrolyte, and the formed electrolytic metal foil is directly in the It is obtained by peeling off the cathode, while the present invention uses the conductive medium as an extension of the cathode, actually as a "second cathode" that is "constantly moving and can be consumed", so the cathode can completely leave the electrolyte and preferably completely leave the electrolysis Liquid, even the cathode can be regarded as a conductive joint in essence, its function is only to conduct electricity and distinguish the anode, which also prevents the cathode from being placed in the electrolyte and the deposition of metal ions on the surface of the cathode, which leads to deposition on the surface of the cathode The continuous accumulation of substances changes the progress of the conductive medium, etc.
此外,后处理装置则是更加灵活地根据导电介质的材质进行选择使用。如对于导电碳布作为导电介质的情况,能够以气氛处理装置控制低氧分压,配合燃烧装置进行不完全燃烧,既确保了碳布成分的彻底去除,不完全燃烧所形成的CO气体也能够避免金属箔的氧化,同时也能够一定程度上对金属箔进行内应力的消除。又如PAN/PMMA导电薄膜则能够通过溶剂快速溶解去除,能够对金属箔进行有效的保护和清洁。还如以铜合金等合金带作为导电介质进行金属箔的制备时,合理设置能够使得合金带与金属箔的线性热膨胀系数差异巨大,甚至于能够通过适当的冷热交替处理实现分离,同时还能够有效改善金属箔的内应力。可见对于本发明技术方案而言,通过已知材料性质的合理应用,在本发明技术构思核心的基础上,是能够采用任意多种方式组合实现金属箔的无损分离的。In addition, the post-processing device is more flexibly selected and used according to the material of the conductive medium. For example, in the case of conductive carbon cloth as the conductive medium, the low oxygen partial pressure can be controlled by the atmosphere treatment device, and the incomplete combustion can be carried out in conjunction with the combustion device, which not only ensures the complete removal of the carbon cloth components, but also the CO gas formed by the incomplete combustion. Avoid the oxidation of the metal foil, and at the same time relieve the internal stress of the metal foil to a certain extent. Another example is the PAN/PMMA conductive film, which can be quickly dissolved and removed by solvents, and can effectively protect and clean the metal foil. For example, when copper alloy and other alloy strips are used as the conductive medium to prepare metal foil, reasonable settings can make the linear thermal expansion coefficients of the alloy strip and the metal foil have a huge difference, and even separation can be achieved through appropriate alternating cold and heat treatment. Effectively improve the internal stress of metal foil. It can be seen that for the technical solution of the present invention, through the reasonable application of known material properties, on the basis of the core of the technical concept of the present invention, it is possible to use any combination of various methods to realize the non-destructive separation of metal foil.
对于传送装置,也是根据导电介质和载体可进行自由的选择。如带状的导电介质能够简单采用辊轴带动传送。For the transmission device, it is also free to choose according to the conductive medium and carrier. For example, a strip-shaped conductive medium can be simply driven by a roller to be transported.
而前处理装置则是本发明系统的另一个特点,由于部分导电介质由于不易大面积制备、使用或强度不足,有或对金属箔形状有特殊需求等原因,需要配合载体使用,因而通过前处理装置将导电介质首先制备在载体上,再通过后处理装置去除载体上的导电介质分离得到金属箔。配合载体进行制备的工艺与在先研制的方案表面上最为接近,但需要注意的是,本发明该方案仅针对于需要实现特定形状或特定形貌制备金属箔采用该方案,即通过复形法将强度不足的导电介质表面的微观形貌“对称刻印”在金属箔的表面,实现对金属箔微观形貌的调控,或需要针对性地实现如正六边形金属箔的制备等,其仍是结合本发明技术方案整体进行多方面优化的改进方案。采用原子沉积法均无法实现上述效果。The pre-processing device is another feature of the system of the present invention. Because some conductive media are not easy to prepare in large areas, use or have insufficient strength, or have special requirements for the shape of metal foil, etc., they need to be used with carriers, so through pre-processing The device prepares the conductive medium on the carrier first, and then removes the conductive medium on the carrier through the post-processing device to separate and obtain the metal foil. The preparation process with the carrier is the closest to the previously developed scheme on the surface, but it should be noted that this scheme of the present invention is only used for the preparation of metal foils that need to achieve a specific shape or specific shape, that is, through the complex method The microscopic topography of the conductive medium surface with insufficient strength is "symmetrically imprinted" on the surface of the metal foil to realize the regulation of the microscopic topography of the metal foil, or it is necessary to realize the preparation of a regular hexagonal metal foil in a targeted manner, which is still a An improvement scheme that is optimized in various aspects in combination with the technical scheme of the present invention. The above-mentioned effects cannot be achieved by atomic deposition methods.
前处理装置的另一用途则是用于对导电介质的表面进行处理,如通过添加剂处理能够实现对金属箔织构的控制等,通过添加剂进一步增强本发明金属箔的制备效果。Another purpose of the pre-treatment device is to treat the surface of the conductive medium, such as controlling the texture of the metal foil through the additive treatment, and further enhancing the preparation effect of the metal foil of the present invention through the additive.
一种零应力电解金属箔制备法的应用,Application of a zero-stress electrolytic metal foil preparation method,
所述方法用于生产厚度尺寸≥2μm的金属箔,和/或用于生产长度尺寸规格≥3m、宽度尺寸规格≥1.2m的大尺寸金属箔,和/或用于连续生产金属箔卷。The method is used for the production of metal foil with a thickness dimension ≥ 2 μm, and/or for the production of large-sized metal foil with a length dimension ≥ 3 m and a width dimension ≥ 1.2 m, and/or for continuous production of metal foil rolls.
本发明技术方案在具体生产试验中,能够实现超长、超大规格金属箔卷的连续生产制备,金属箔卷所含的金属箔厚度为4.2μm,宽度达到1.35m,总长度达到220m。可以看出其实际能够用于超大规格金属箔的量化生产。达到工业成熟的标准。In specific production tests, the technical solution of the present invention can realize the continuous production and preparation of ultra-long and ultra-large metal foil rolls. The metal foil contained in the metal foil roll has a thickness of 4.2 μm, a width of 1.35 m, and a total length of 220 m. It can be seen that it can actually be used in the quantitative production of super-sized metal foils. Meet industrial maturity standards.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明通过工艺的改进,能够实现对电解金属箔的制备厚度、尺寸规格等进行有效控制且进行连续生产,适用性极强,产品的良品率高,经济效益高,同时,本发明技术方案还能够有效控制金属箔的表面形貌,具有适用范围广、工艺灵活性强、产业化成熟度高等优势。Through the improvement of the process, the present invention can effectively control the preparation thickness and size specifications of the electrolytic metal foil and carry out continuous production, with strong applicability, high product yield, and high economic benefits. It can effectively control the surface morphology of the metal foil, and has the advantages of wide application range, strong process flexibility, and high industrialization maturity.
附图说明Description of drawings
图1为本发明实施例1的系统示意图;Fig. 1 is the system schematic diagram of embodiment 1 of the present invention;
图2为本发明实施例1沉积装置的部分结构示意图之一;Figure 2 is one of the partial structural schematic diagrams of the deposition device in Example 1 of the present invention;
图3为本发明实施例1沉积装置的部分结构示意图之一;Fig. 3 is one of the partial structural schematic diagrams of the deposition device in Example 1 of the present invention;
图4为本发明实施例1沉积装置的部分结构示意图之一;FIG. 4 is one of the partial structural schematic diagrams of the deposition device in Embodiment 1 of the present invention;
图5为本发明实施例3的导电载体示意图;5 is a schematic diagram of a conductive carrier according to Embodiment 3 of the present invention;
图6为本发明实施例3的系统示意图;Fig. 6 is a schematic diagram of the system of Embodiment 3 of the present invention;
图7为本发明实施例4的系统示意图;Fig. 7 is a schematic diagram of the system of Embodiment 4 of the present invention;
图8为本发明实施例4沉积装置的部分结构示意图;Fig. 8 is a partial structural schematic diagram of the deposition device of Embodiment 4 of the present invention;
图9为本发明实施例5的系统示意图;Fig. 9 is a schematic diagram of the system of Embodiment 5 of the present invention;
图10为本发明实施例5沉积装置的部分结构示意图。FIG. 10 is a partial structural schematic diagram of a deposition device according to Embodiment 5 of the present invention.
图中:100传送装置,200前处理装置,201处理液喷头,202油墨滴头,203UV灯,204介质料喷头,205冷风筒,300沉积装置,301阴极,302阳极,第一阳极302a,第二阳极302b,303电源,304电解池,3041主槽,3042辅槽,3043通槽,305沉积辊筒,306刮刀,400后处理装置,401火焰喷头,402箱式气氛炉,4021进气管,4022出气管,403喷淋装置,500卷筒,A导电介质,A01导电铜合金带,A011模槽,A012绝缘层,B介质-箔,B01导电介质层,B02箔层,C产品箔,C01第一电解铜箔,C02第二电解铜箔。In the figure: 100 conveying device, 200 pre-processing device, 201 treatment liquid nozzle, 202 ink dropper, 203 UV lamp, 204 medium material nozzle, 205 cold air cylinder, 300 deposition device, 301 cathode, 302 anode,
具体实施方式Detailed ways
以下结合具体实施例和说明书附图对本发明作出进一步清楚详细的描述说明。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。此外,下述说明中涉及到的本发明的实施例通常仅是本发明一部分的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In the following, the present invention will be further clearly and detailedly described in conjunction with specific embodiments and accompanying drawings. Those skilled in the art will be able to implement the present invention based on these descriptions. In addition, the embodiments of the present invention referred to in the following description are generally only some embodiments of the present invention, not all of them. Therefore, based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在本发明的描述中,需要理解的是,术语“厚度”、“上”、“下”、“水平”、“顶”、“底”、“内”、“外”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定,“若干”的含义是表示一个或者多个。In describing the present invention, it is to be understood that the terms "thickness", "upper", "lower", "horizontal", "top", "bottom", "inner", "outer", "circumferential" etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, or in a specific orientation. construction and operation, therefore, should not be construed as limiting the invention. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise specifically defined, and "several" means one or more.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly specified and limited, terms such as "installation", "connection", "connection" and "fixation" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrated; can be mechanically connected, can also be electrically connected or can communicate with each other; can be directly connected, can also be indirectly connected through an intermediary, can be the internal communication of two components or the interaction relationship between two components, Unless expressly defined otherwise. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
如无特殊说明,本发明实施例所用原料均为市售或本领域技术人员可获得的原料;如无特殊说明,本发明实施例所用方法均为本领域技术人员所掌握的方法。Unless otherwise specified, the raw materials used in the examples of the present invention are commercially available or available to those skilled in the art; unless otherwise specified, the methods used in the examples of the present invention are all methods mastered by those skilled in the art.
实施例1Example 1
以一套普适性较强且工业化成熟度高的系统进行示例说明本发明技术方案,如图1简图所示,本发明系统包括传送装置100、前处理装置200、沉积装置300和后处理装置400;The technical scheme of the present invention is illustrated by a system with strong universality and high industrialization maturity. As shown in the schematic diagram of FIG.
本套系统于2022年1月~2022年5月间运行状况良好,具体用于无氧电解铜箔的制备;于本系统中,所述传送装置100采用市售的辊筒传送装置100,以电动辊筒作为传送装置100进行输送传送,本发明所用的导电介质A为市售PU导电膜卷,尺寸规格为1.2m×60m;在传送装置100的作用下,本实施例导电介质A(PU导电膜)首先被送至前处理装置200,在前处理装置200中,本实施例设置有雾化喷头作为处理液喷头201,处理液喷头201向导电介质A薄膜的沉积面均匀喷涂50wt%的聚乙烯亚胺水溶液,通过传送装置100的送料速率控制以及处理液喷头201的流量控制,使得导电介质A薄膜沉积面表面的喷涂量约为12~15g/m2,随后再在传送装置100的带动下,导电介质A薄膜进入到沉积装置300,从图1中可以看出,本实施例系统的沉积装置300阴极301设置在电解池304的外侧,导电介质A薄膜首先经过阴极301且与阴极301贴合,当导电介质A薄膜进入到电解池304的电解液中之后能够作为阴极301的延伸部分形成电沉积;This set of system is in good condition from January 2022 to May 2022, and it is specifically used for the preparation of oxygen-free electrolytic copper foil; The electric roller is used as the conveying
所述阳极302为市售石墨阳极302、设置在电解池304底部,电源303为购自SanRex的可控硅电源303,所述电解池304内注入电解液,电解液中电解液为280~320g/L五水硫酸铜溶液,其还含有120g/L的硫酸和10mg/L的明胶,电解液通过投料添加五水硫酸铜对其中的铜离子浓度进行动态控制;The
所述导电介质A薄膜进入电解池304时沉积面朝下、朝向阳极302,在开启电源303后电解池304工作实现在导电介质A薄膜的沉积面上进行电沉积,进行电解铜箔的制备,随后在导电介质A薄膜的沉积面完成电解铜箔的制备后通过传送装置100将介质-箔B(即PU导电膜介质-电解铜箔复合体)送出沉积装置300,送入至后处理装置400中;When the conductive medium A film enters the
具体的,所构建的沉积装置300的除电源303部分外的部分结构示意图如图2、图3和图4所示,能够清楚地看到,通过沉积装置300以及特定设置的阳极302,能够实现在导电介质A薄膜沉积面的有效沉积,在沉积后形成由导电介质A和产品箔C(铜箔)所构成的介质-箔B;本实施例中,所述后处理装置400由气氛处理装置和燃烧装置构成,所述气氛处理装置为箱式气氛炉402,所述燃烧装置为火焰喷头401且火焰喷头401延伸至箱式气氛炉402中,所述箱式气氛炉402设有进气管4021和出气管4022,进气管4021送入低氧分压气体,气体中氧浓度≤14%VOL,本实施例控制所通气体中氧气浓度为12~14%VOL,所述出气管4022用于排除燃烧气,所述进气管4021设置在箱式气氛炉402顶端、出气管4022设置在箱式气氛炉402底端,形成更加有利于电解铜箔除氧、避免氧化的环境,火焰喷头401对准介质-箔B的导电介质A薄膜层,进行连续喷焰,对PU薄膜进行燃烧去除,控制进气管4021的气体流速和出气管4022的气体流速且对出气管4022所排气体进行检测,确保所出气体中含有至少2%VOL的CO,以确保箱式气氛炉402内为不完全燃烧,但需要确保PU薄膜的完全燃烧去除,经过该过程后得到产品箔C(即金属箔,无氧铜箔),所得产品箔C再经传送装置100带动牵引至后处理装置400外并借助卷筒500成卷收纳,即得到无氧铜箔产品。Specifically, the partial structural schematic diagrams of the constructed
对无氧铜箔产品进行氧含量表征,表征结果显示所制得的产品箔C中氧含量为3.1~3.5ppm,符合无氧铜箔标准,氧含量极低;The oxygen content of the oxygen-free copper foil product was characterized, and the characterization results showed that the oxygen content in the prepared product foil C was 3.1-3.5ppm, which met the standard of oxygen-free copper foil, and the oxygen content was extremely low;
此外,从介质-箔B这一中间产物取样并撕剥分离铜箔对其进行氧含量表征,表征结果显示其氧含量为2.8~3.2,可见在后续的后处理过程中,并未显著增大氧含量。In addition, samples were taken from the intermediate product of medium-foil B, and the copper foil was peeled off to characterize its oxygen content. The characterization results showed that its oxygen content was 2.8-3.2. It can be seen that in the subsequent post-treatment process, it did not increase significantly oxygen content.
此外,本实施例控制电流密度为3A/dm2,电解液温度为50℃,通过传送装置100控制导电介质A由进入电解液起算至出电解液为止计算负载时间,本实施例负载时间为4min,所得产品箔C的厚度为3.3μm,对其抗拉强度进行表征,表征结果显示其抗拉强度能够达到462MPa,具有十分优异的抗拉性能。In addition, in this embodiment, the current density is controlled to be 3A/dm 2 , the temperature of the electrolyte is 50°C, and the load time of the conductive medium A is controlled by the
实施例2Example 2
在实施例1的基础上,对产品的电沉积参数以及部分变量参数进行调整试验,并对产品箔C进行表征,得到下表所示结果。其中,产品厚度表征时当厚度最大值(δmax)和厚度最小值(δmin)满足δmax-δmin≤0.03μm时,以十次测量的平均厚度记录,若不满足,则记录最大值和最小值区间。产品表征精度为0.05μm。On the basis of Example 1, the electrodeposition parameters of the product and some variable parameters were adjusted and tested, and the product foil C was characterized, and the results shown in the following table were obtained. Among them, when the thickness of the product is characterized, when the maximum thickness (δ max ) and the minimum thickness (δ min ) meet δ max -δ min ≤ 0.03μm, the average thickness of ten measurements is recorded; if not, the maximum value is recorded and the minimum interval. Product characterization accuracy is 0.05μm.
上述各试验组均试生产2卷铜箔卷,其宽度规格为0.8m,长度均为62m,除2A/dm2/3min试验组所得铜箔存在一定褶皱以外,其余试验组生产所得的铜箔均无破损、褶皱。Each of the above-mentioned test groups tried to produce 2 rolls of copper foil, with a width specification of 0.8m and a length of 62m. Except that the copper foil obtained by the 2A/dm 2 /3min test group had certain wrinkles, the copper foil produced by the other test groups No damage or wrinkle.
从上表可以看出,对于本发明技术方案而言,可以通过对电流密度和负载时间的调整控制产品箔C的厚度,并且呈一定的系数相关。综合以往的各个试验,能够在实际生产中以经验公式控制所制得产品箔C的厚度。具体经验公式如下:It can be seen from the above table that for the technical solution of the present invention, the thickness of the product foil C can be controlled by adjusting the current density and loading time, and there is a certain coefficient correlation. Based on previous tests, the thickness of the manufactured product foil C can be controlled by empirical formulas in actual production. The specific empirical formula is as follows:
d=A+B×J+C×Td=A+B×J+C×T
式中:d为产品箔C厚度,单位为μm,A、B、C均为经验系数,A受金属箔成分影响,单位为μm,B、C受阳极302与沉积面间距、阳极302设置位置、导电介质A沉积面行进路线等因素影响,B单位为μm·dm2/A,C单位为μm/min,J为电流密度,单位为A/dm2,T为负载时间,单位为min。In the formula: d is the thickness of the product foil C, the unit is μm, A, B, and C are empirical coefficients, A is affected by the composition of the metal foil, and the unit is μm, B and C are affected by the distance between the
上述公式能够在三次试生产后进行运算求得A、B、c经验系数并进行简单拟合得到实际生产的参考公式用于指导实际生产,试生产次数越多所得参考公式精度越高。The above formula can be calculated after three trial productions to obtain the empirical coefficients of A, B, and c, and then simply fit to obtain the reference formula for actual production to guide actual production. The more trial production times, the higher the accuracy of the reference formula.
此外,通过其他变量试验可以看出,对于本发明技术方案而言,前处理装置200并不对产品箔C生产的厚度产生影响,即本实施例处理剂对铜箔厚度无明显影响,但对于铜箔的力学性能有较为显著的影响。如本实施例通过聚乙烯亚胺的喷涂和使用能够有效改善铜箔的抗拉强度,可见前处理装置200对于改善铜箔性能方面具有良好表现,本实施例中的前处理方案是基于产学研合作项目成果所公开的202110636882.0、202110638177.4等技术调整所得。In addition, it can be seen from other variable tests that for the technical solution of the present invention, the
对比例1Comparative example 1
基于实施例1技术方案,仅有以下不同:Based on the technical solution of embodiment 1, there are only the following differences:
通过传送装置100,将沉积装置300制得的介质-箔B送至全自动撕剥机(市售:迈达普全自动撕铜箔机),进行导电介质A和产品箔C(铜箔)的撕剥分离处理。Through the conveying
对比实施例1技术方案,实施例1通过后处理装置400分离制备1.2m×60m的铜箔所需时长为26min,对比例1采用全自动撕剥机撕剥分离处理时长为2h 11min,可见效率上存在巨大的差异性。此外,实施例1后处理装置400全程铜箔无破损、无褶皱,产品良品率达到100%,而对比例1采用全自动撕剥机出现铜箔6处轻微破损,且有若干处褶皱。对两者所制得的铜箔抗拉强度进行表征,实施例1表征结果为462MPa,而对比例1表征结果仅约为417MPa,可见撕剥处理将对铜箔的力学性能产生一定的不良影响,且容易导致铜箔的破损,处理效率低下,可见本发明技术方案相较于常规电解金属箔制备方案具有明显的优越性。Compared with the technical solution of Example 1, the time required for the separation and preparation of 1.2m×60m copper foil by the
对比例2Comparative example 2
基于在先研制的原子法方案,与本申请技术方案进行横向对比制备试验。Based on the previously developed atomic method scheme, a horizontal comparative preparation test was carried out with the technical scheme of the present application.
基于202111335007.5技术方案中实施例3的具体方案,通过调整气相沉积时间控制原子层(铜箔)厚度,分别制备厚度为1.2μm、3.2μm和6.8μm,尺寸规格为0.8m×1.0m的铜箔片,以及连续生产厚度为3.2μm、尺寸规格为0.6m×22m的箔卷。Based on the specific scheme of Example 3 in the 202111335007.5 technical scheme, by adjusting the vapor deposition time to control the thickness of the atomic layer (copper foil), respectively prepare copper foils with a thickness of 1.2 μm, 3.2 μm and 6.8 μm and a size specification of 0.8m×1.0m Sheets, and continuous production of foil rolls with a thickness of 3.2 μm and a size of 0.6m×22m.
基于实施例1技术方案,不进行前处理的情况下生产同样厚度为3.2μm、尺寸规格为0.6m×22m的箔卷。Based on the technical solution of Example 1, a foil roll with the same thickness of 3.2 μm and a size of 0.6 m×22 m was produced without pretreatment.
实施例3Example 3
搭建金属箔片的生产系统:Build a production system for metal foil:
以导电铜合金带A01作为导电载体,导电铜合金带A01厚度为2.2cm,具有良好的柔韧性和导电性;The conductive copper alloy strip A01 is used as the conductive carrier, and the thickness of the conductive copper alloy strip A01 is 2.2cm, which has good flexibility and conductivity;
具体的,如图5所示,在导电铜合金带A01(C17000牌号铍青铜合金带)的一面开有0.8m×1.0m规格的模槽A011,导电铜合金带A01开有模槽A011的一面做绝缘处理形成绝缘层A012,且模槽A011的侧壁面也同样做绝缘处理形成绝缘层A012;Specifically, as shown in Figure 5, a die groove A011 with a size of 0.8m × 1.0m is opened on one side of the conductive copper alloy strip A01 (C17000 grade beryllium copper alloy strip), and the conductive copper alloy strip A01 has a mold groove A011 on one side Perform insulation treatment to form insulation layer A012, and the side wall surface of mold cavity A011 is also subjected to insulation treatment to form insulation layer A012;
所述模槽A011内填充UV固化导电油墨至能够通过重力流平铺满模槽A011底部,本实施例UV固化导电油墨为市售,购自宇希新材料;The mold cavity A011 is filled with UV curable conductive ink to the bottom of the mold cavity A011 that can be leveled by gravity flow. The UV curable conductive ink in this embodiment is commercially available and purchased from Yuxi New Materials;
整体系统如图6所示,包括与实施例1相同的电动辊筒作为传送装置100,用于输送作为导电载体的导电铜合金带A01;The overall system is shown in Figure 6, including the same motorized roller as in Embodiment 1 as a conveying
所述导电铜合金带A01首先进入到前处理装置200中,对于本实施例而言,前处理装置200设有油墨滴头202和UV灯203,油墨滴头202向导电铜合金带A01的模槽A011内滴入UV固化导电油墨,随着导电铜合金带A01的输送过程在抵达UV灯203照射范围前实现重力流平,随后以UV等固化,如图6中局部放大图所示,在模槽A011中形成导电介质A薄膜(UV固化导电油墨薄膜),随后再在传送装置100的带动下进入到沉积装置300中,本实施例沉积装置300与实施例1类似,包括阴极301、阳极302、电解池304和电源303;The conductive copper alloy strip A01 first enters the
所述阴极301设置在电解池304的外侧,导电铜合金带A01的背面(设有模槽A011的一面为正面,相对面为背面)首先经过阴极301且与阴极301贴合,当导电铜合金带A01进入到电解池304的电解液中之后,导电铜合金带A01和UV固化导电油墨薄膜(导电介质A薄膜)能够作为阴极301的延伸部分形成电沉积;The
所述阳极302为市售石墨阳极302、设置在电解池304底部,电源303为购自SanRex的可控硅电源303,所述电解池304内注入电解液,电解液中电解液为280~320g/L五水硫酸铜溶液,其还含有120g/L的硫酸和10mg/L的明胶,电解液通过投料添加五水硫酸铜对其中的铜离子浓度进行动态控制;The
所述导电介质A薄膜进入电解池304时沉积面朝下、朝向阳极302,在开启电源303后电解池304工作实现在导电介质A薄膜的沉积面上进行电沉积,进行电解铜箔的制备,随后在导电介质A薄膜的沉积面完成电解铜箔的制备后通过传送装置100将负载有介质-箔B(即UV固化导电油墨薄膜-电解铜箔复合体)的导电铜合金带A01送出沉积装置300,送入至后处理装置400中;When the conductive medium A film enters the
所述后处理装置400包括溶剂池,溶剂池与加热装置配合对溶剂池内的溶剂进行加热,所述溶剂池内灌注丙酮-环己酮溶液,其中丙酮和环己酮以体积比1:3的比例混合,加热装置将溶剂池内的丙酮-环己酮溶液加热升温至85℃,将负载有介质-箔B的导电铜合金带A01进入到溶剂池中进行热浸处理,在该处理过程中导电介质A薄膜部分软化、溶解,粘性显著减弱,使得导电介质A薄膜表面的产品箔C脱落至溶剂池中;The
所述溶剂池底部呈斜坡且低坡端设有导流开口,丙酮-环己酮溶液从该导流开口流出且带动脱落的电解铜箔离开溶剂池以对产品箔C进行回收,回收可先将溶剂和电解铜箔全部预存至回收桶中降温至常温后捞出电解铜箔,也可如本实施例采用更优的方案,本实施例采用斜板分离器,使得电解铜箔能够在斜板分离器的斜坡板上受表面张力和摩擦力截留而溶剂部分则流至坡底分离,采用斜板分离器相较于回收桶打捞回收的方式更不易对电解铜箔造成损伤,尤其对于超低厚度的铜箔而言,打捞过程容易导致电解铜箔产生一定程度的弯折或褶皱,此外本实施例还配合斜板分离器设有液泵,液泵将分离后所得的溶剂再次泵入至溶剂池中使用;而从图6中可以看出,在溶剂池中导电介质A也会被大量去除,而导电铜合金带A01能够再次在传送装置100的带动下进入到前处理装置200,实现导电铜合金带A01的单带循环利用;虽然后处理装置400无法彻底有效地对导电介质A薄膜成分(UV固化导电油墨薄膜)进行去除和清洁,但由于与之配套的前处理装置200特点,UV固化导电油墨在滴入模槽A011后会经历重力流平过程,能够在一定周期内确保所形成的导电介质A薄膜平整性,仅需要定期对模槽A011进行清洁即可,工艺成本低、能够快速搭建系统实现中小批量电解金属箔的生产制备。The bottom of the solvent pool is sloped and a diversion opening is provided at the lower slope end. The acetone-cyclohexanone solution flows out from the diversion opening and drives the shedding electrolytic copper foil to leave the solvent pool to recycle the product foil C. The recovery can be done first Pre-store all the solvent and electrolytic copper foil in the recovery bucket and cool down to normal temperature to remove the electrolytic copper foil. You can also adopt a more optimal solution as in this example. This example uses a slanting plate separator so that the electrolytic copper foil can The sloping plate of the plate separator is trapped by surface tension and friction, while the solvent part flows to the bottom of the slope for separation. The use of the sloping plate separator is less likely to cause damage to the electrolytic copper foil than the recovery method of recycling barrels, especially for ultra- For low-thickness copper foil, the salvage process will easily lead to a certain degree of bending or wrinkling of the electrolytic copper foil. In addition, this embodiment is equipped with a liquid pump in conjunction with the inclined plate separator, and the liquid pump pumps the solvent obtained after separation into the to be used in the solvent pool; and as can be seen from FIG. 6, the conductive medium A will also be removed in a large amount in the solvent pool, and the conductive copper alloy strip A01 can enter the
此外,前处理装置200还能够以贴膜的形式实现在导电铜合金带A01上负载导电介质A,如贴附实施例1所记载的PU导电膜,此时导电铜合金带A01的正面全部进行氧化绝缘处理,并且结合导电铜合金带A01的热胀特点,后处理装置400首先对应设置加热装置、制冷装置、气氛处理装置和燃烧装置,通过加热装置和制冷装置以胀缩法首先实现导电介质A薄膜与导电载体的分离,再回收介质-箔B进行以气氛处理装置和燃烧装置进行处理去除导电介质A,实现金属箔的有效制备,该方式适用于尺寸更小、更精细、数量要求更多的小型单片金属箔制备。In addition, the
对实施例3和对比例2所制的金属箔(铜箔)进行表征和分析,如下表所示。The metal foils (copper foils) produced in Example 3 and Comparative Example 2 were characterized and analyzed, as shown in the table below.
此外,单片箔(0.8m×1.0m单片箔)各取十片,划分5×5cm的判定区,若判定区内存在坏点(包括变形,明显折、划痕,破洞,明显腐蚀痕迹,或明显难以去除的污垢等),则判定该区损坏,处于若干判定区边界处,则仅计算一个判定区损坏。In addition, take ten pieces of single-piece foil (0.8m×1.0m single-piece foil) and divide it into a judgment area of 5×5cm. If there are bad spots (including deformation, obvious folds, scratches, holes, and obvious corrosion) in the judgment area traces, or dirt that is obviously difficult to remove, etc.), then it is judged that the area is damaged, and if it is at the boundary of several judgment areas, only one judgment area is damaged.
以此计算坏点率。结果如下表所示。Use this to calculate the dead point rate. The results are shown in the table below.
表中:气相法即202111335007.5技术方案中实施例3所记载方法(碘中间层),零应力法即本发明方法。In the table: the gas phase method is the method described in Example 3 in the technical scheme of 202111335007.5 (iodine intermediate layer), and the zero stress method is the method of the present invention.
从上表可以看出零应力法相较于气相法而言,本身具有电解制备铜箔的优势,电解铜箔的织构特征相对于气相沉积铜箔的织构特征更加优秀,具有更大的(220)晶面织构系数,因而抗拉强度相较于气相法更高,即机械性能更加优异,但实际还进行氧含量表征的情况下,气相法由于其对气氛把控更加严格,其氧含量要更低。而从坏点率数据可以看出,气相法对于制备一定规格内的单片金属箔,坏点率更低,但一旦进行长箔卷的制备,其坏点率急剧升高,可见其对于长箔卷的制备并不具备良好的适用性,而本发明制备特种超薄(1.2μm厚度)的金属箔时,坏点率在一定程度上上升,但结合实施例2的对比试验可以看出,本发明技术方案基本对于2μm以上的电解金属箔均具有良好的制备效果。It can be seen from the above table that the zero stress method itself has the advantage of electrolytically preparing copper foil compared with the vapor phase method. The texture characteristics of the electrolytic copper foil are better than those of the vapor deposition copper foil, and have a greater ( 220) crystal surface texture coefficient, so the tensile strength is higher than that of the gas phase method, that is, the mechanical properties are better. The content is lower. From the dead point rate data, it can be seen that the gas phase method has a lower dead point rate for the preparation of a single piece of metal foil within a certain specification, but once the long foil roll is prepared, the dead point rate rises sharply. The preparation of foil rolls does not have good applicability, and when the present invention prepares special ultra-thin (1.2 μm thickness) metal foils, the dead point rate rises to a certain extent, but it can be seen in conjunction with the comparative test of Example 2 that, The technical solution of the present invention basically has a good preparation effect on electrolytic metal foils with a thickness of more than 2 μm.
实施例4Example 4
本发明技术方案所述方法和系统还能够实现单系统双箔材的同步制备,构建如图7所示的双箔系统;The method and system described in the technical solution of the present invention can also realize the simultaneous preparation of single-system double-foil materials, and construct a double-foil system as shown in Figure 7;
所述双箔系统包括传送装置100、沉积装置300和后处理装置400;The dual-foil system includes a conveying
如图7所示,在传送装置100的作用下,本实施例导电介质A选用低熔点PU导电膜,其熔点≤136℃,导电介质A进入到沉积装置300,从图7和图8中可以看出,本实施例系统的沉积装置300阴极301设置在电解池304的外侧,导电介质A薄膜首先经过阴极301且与阴极301贴合,当导电介质A薄膜进入到电解池304的电解液中之后能够作为阴极301的延伸部分形成电沉积;As shown in Figure 7, under the action of the conveying
所述阳极302为市售石墨阳极302,本系统为双阳极302系统,第一阳极302a设置在电解池304底部,第二阳极302b设置在电解池304顶部,第一阳极302a和第二阳极302b分别朝向导电介质A相对的两面,电源303为购自SanRex的可控硅电源303,所述电解池304内注入电解液,电解液中电解液为280~320 g/L五水硫酸铜溶液,其还含有120 g/L的硫酸和10mg/L的明胶,电解液通过投料添加五水硫酸铜对其中的铜离子浓度进行动态控制;Described
所述导电介质A薄膜进入电解池304时第一沉积面朝下、朝向第一阳极302a,第二沉积面斜向上朝向第二阳极302b,在开启电源303后电解池304工作实现在导电介质A薄膜的两个沉积面上进行电沉积,进行电解铜箔的制备,随后在导电介质A薄膜的沉积面完成电解铜箔的制备后通过传送装置100将介质-箔B(即第一电解铜箔C01-PU导电膜介质-第二电解铜箔C02复合体)送出沉积装置300,送入至后处理装置400中;When the conductive medium A film enters the
本实施例所述后处理装置400由气氛处理装置和喷淋装置403构成,所述气氛处理装置为箱式气氛炉402,所述喷淋装置403设置在箱式气氛炉402中且设置在箱式气氛炉402料带的出口侧,确保介质-箔B进入到箱式气氛炉402首先经过气氛处理后再经过喷淋装置403,所述箱式气氛炉402设有进气管4021和出气管4022,进气管4021送入热保护气,本实施例控制所通热保护气为150℃氮气,所述出气管4022用于排出气体以及熔化后的PU或PU颗粒,所述进气管4021设置在箱式气氛炉402顶端、出气管4022设置在箱式气氛炉402底端,形成更加有利于电解铜箔排出熔化后的PU或PU颗粒,热吹扫熔融PU导电膜导电介质A后实现对第一电解铜箔C01和第二电解铜箔C02的零应力分离,且喷淋装置403有利于更彻底地去除残余的熔融聚氨酯,所述喷淋装置403所喷淋的液体为加热至135℃的环己醇,环己醇具有难挥发和高沸点的特性,对本发明技术方案具有良好的适配性,但由于其有轻微毒性和轻微刺激性,使用时需要注意回收以及工作人员防护;The
所得产品箔C(第一电解铜箔C01和第二电解铜箔C02)再共同经传送装置100带动牵引至后处理装置400外并由两个卷筒500分别收纳。The obtained product foils C (the first electrolytic copper foil C01 and the second electrolytic copper foil C02 ) are jointly driven by the conveying
此外,本实施例控制电流密度为2.5A/dm2,电解液温度为50℃,通过传送装置100控制导电介质A由进入电解液起算至出电解液为止计算负载时间,本实施例负载时间为5min,所得第一电解铜箔C01的厚度为3.8μm,对其抗拉强度进行表征,表征结果显示其抗拉强度能够达到386MPa,所得第二电解铜箔C02的厚度为3.2μm,对其抗拉强度进行表征,表征结果显示其抗拉强度达到369MPa。In addition, in this embodiment, the current density is controlled to be 2.5A/dm 2 , the temperature of the electrolyte is 50°C, and the
另外,对第一阳极302a、第二阳极302b相对导电介质A的位置,导电介质A在电解池304中的行进路程等多方面进行控制,能够实现对第一电解铜箔C01和第二电解铜箔C02厚度的同时调控,大大提高了实际生产制备效率,能够简洁高效地实现单系统双箔材同步制备,这也是常规电解金属箔技术和气相法金属箔制备技术所无法实现的。In addition, the position of the
实施例5Example 5
本发明技术方案所述方法还能够与常规金属箔电解系统相结合,构成如图9和图10所示的连续撕剥型零应力电解金属箔系统;The method described in the technical solution of the present invention can also be combined with a conventional metal foil electrolysis system to form a continuous tear-off type zero-stress electrolysis metal foil system as shown in Figures 9 and 10;
所述连续撕剥型零应力电解金属箔系统包括传送装置100、沉积装置300和后处理装置400;如图9所示,首先本实施例系统的沉积装置300包括电解池304、阴极301、阳极302和电源303,以及特殊设置的沉积辊筒305和刮刀306;The continuous tear-off type zero-stress electrolytic metal foil system includes a conveying
具体的,沉积辊筒305由电机制动进行控速转动,其优选采用绝缘材质且耐刮擦的材质进行制备,如本实施例中沉积辊筒305具体采用耐磨刚玉陶瓷进行制备,其具有极高的表面平整度,且高强、高硬、耐酸碱腐蚀,表面不容易沉积污垢,因而可以作为良好的载体用于负载导电介质A;Specifically, the
所述阳极302为市售石墨阳极302、设置在电解池304底部,电源303为购自SanRex的可控硅电源303,所述电解池304内注入电解液,电解液中电解液为280~320g/L五水硫酸铜溶液,其还含有120g/L的硫酸和10mg/L的明胶,电解液通过投料添加五水硫酸铜对其中的铜离子浓度进行动态控制;The
本实施例所述的电解池304为双槽电解池304,其分别有主槽3041和辅槽3042,主槽3041用于实现电沉积,辅槽3042用于配合控制电解液的液位以及电解质的浓度,主槽3041和辅槽3042之间设有通槽3043连通;The
而本实施例所用阴极301为导电阴极301辊,其能够自由转动并靠近沉积辊筒305,导电阴极301辊与沉积辊筒305的最小间距即导电介质A厚度,在沉积辊筒305的转动方向上,阴极301的前端设有前处理装置200,前处理装置200包括介质料喷头204和冷风筒205,所述介质料喷头204喷涂导电介质A材料(熔融PU母粒)在沉积辊筒305的表面,冷风筒205吹扫固化后由阴极301压制平整形成导电介质A薄膜并在沉积辊筒305的带动下进入到电解池304的电解液中,在导电介质A表面进行电沉积形成介质-箔B;The
所述刮刀306设置在沉积辊筒305旋转方向的后端、刃部抵接在沉积辊筒305表面,可以与阴极301对称设置,且设置在电解液的上方,用于刮离、分离介质-箔B和沉积辊筒305;The
所述分离后的介质-箔B由传送装置100带动送至后处理装置400;The separated medium-foil B is driven by the conveying
本实施例中,所述后处理装置400由气氛处理装置和燃烧装置构成,所述气氛处理装置为箱式气氛炉402,所述燃烧装置为火焰喷头401且火焰喷头401延伸至箱式气氛炉402中,所述箱式气氛炉402设有进气管4021和出气管4022,进气管4021送入低氧分压气体,气体中氧浓度≤14%VOL,本实施例控制所通气体中氧气浓度为12~14%VOL,所述出气管4022用于排除燃烧气,所述进气管4021设置在箱式气氛炉402顶端、出气管4022设置在箱式气氛炉402底端,形成更加有利于电解铜箔除氧、避免氧化的环境,火焰喷头401对准介质-箔B的导电介质A薄膜层,进行连续喷焰,对PU薄膜进行燃烧去除,控制进气管4021的气体流速和出气管4022的气体流速且对出气管4022所排气体进行检测,确保所出气体中含有至少2%VOL的CO,以确保箱式气氛炉402内为不完全燃烧,但需要确保PU薄膜的完全燃烧去除,经过该过程后得到产品箔C(即金属箔,无氧铜箔),所得产品箔C再经传送装置100带动牵引至后处理装置400外并借助卷筒500成卷收纳,即得到无氧铜箔产品。In this embodiment, the
对无氧铜箔产品进行氧含量表征,表征结果显示所制得的产品箔C中氧含量为2.8~3.0ppm,符合无氧铜箔标准,氧含量极低;The oxygen content of the oxygen-free copper foil product was characterized, and the characterization results showed that the oxygen content in the prepared product foil C was 2.8-3.0ppm, which met the standard of oxygen-free copper foil, and the oxygen content was extremely low;
此外,从介质-箔B这一中间产物取样并撕剥分离铜箔对其进行氧含量表征,表征结果显示其氧含量为2.6~2.9,可见在后续的后处理过程中,并未显著增大氧含量。In addition, samples were taken from the intermediate product of medium-foil B, and the copper foil was peeled off to characterize its oxygen content. The characterization results showed that its oxygen content was 2.6-2.9, which shows that in the subsequent post-treatment process, it did not increase significantly. oxygen content.
此外,本实施例控制电流密度为3A/dm2,电解液温度为50℃,通过传送装置100控制导电介质A由进入电解液起算至出电解液为止计算负载时间,本实施例负载时间为4min,所得产品箔C的厚度为3.0μm,对其抗拉强度进行表征,表征结果显示其抗拉强度能够达到366MPa,具有十分优异的抗拉性能。In addition, in this embodiment, the current density is controlled to be 3A/dm 2 , the temperature of the electrolyte is 50°C, and the load time of the conductive medium A is controlled by the
可见,本发明技术方案能够直接简单有效地应用于现有的电沉积系统上,对其进行一定程度的改进即可形成上述的装置配合、系统。It can be seen that the technical solution of the present invention can be directly, simply and effectively applied to the existing electrodeposition system, and the above-mentioned device coordination and system can be formed by improving it to a certain extent.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211518053.3A CN115717255A (en) | 2022-11-29 | 2022-11-29 | Zero-stress electrolytic metal foil preparation method, system used thereby and application of method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211518053.3A CN115717255A (en) | 2022-11-29 | 2022-11-29 | Zero-stress electrolytic metal foil preparation method, system used thereby and application of method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115717255A true CN115717255A (en) | 2023-02-28 |
Family
ID=85257121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211518053.3A Pending CN115717255A (en) | 2022-11-29 | 2022-11-29 | Zero-stress electrolytic metal foil preparation method, system used thereby and application of method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115717255A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1458987A (en) * | 2000-09-18 | 2003-11-26 | 瑟基特·弗依卢森堡贸易公司 | Method for electroplating strip of foam |
TW200407060A (en) * | 2002-02-13 | 2004-05-01 | Gould Electronics Inc | Process for manufacturing copper foil on a metal carrier substrate |
CN103930599A (en) * | 2011-11-15 | 2014-07-16 | Posco公司 | High speed horizontal electroforming apparatus for manufacturing metal foil and method for manufacturing metal foil |
CN104818503A (en) * | 2015-04-15 | 2015-08-05 | 同济大学 | Preparation method of porous copper full-impregnated film of three-dimensional network structure |
CN105142897A (en) * | 2013-03-29 | 2015-12-09 | Jx日矿日石金属株式会社 | Copper foil with carrier, printed circuit board, copper clad laminated sheet, electronic device, and printed circuit board fabrication method |
CN107043949A (en) * | 2016-02-09 | 2017-08-15 | 温伯格医学物理有限公司 | Method and apparatus for manufacturing particle |
CN114107889A (en) * | 2021-11-11 | 2022-03-01 | 杭州四马化工科技有限公司 | Metal foil demoulding method |
-
2022
- 2022-11-29 CN CN202211518053.3A patent/CN115717255A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1458987A (en) * | 2000-09-18 | 2003-11-26 | 瑟基特·弗依卢森堡贸易公司 | Method for electroplating strip of foam |
TW200407060A (en) * | 2002-02-13 | 2004-05-01 | Gould Electronics Inc | Process for manufacturing copper foil on a metal carrier substrate |
CN103930599A (en) * | 2011-11-15 | 2014-07-16 | Posco公司 | High speed horizontal electroforming apparatus for manufacturing metal foil and method for manufacturing metal foil |
CN105142897A (en) * | 2013-03-29 | 2015-12-09 | Jx日矿日石金属株式会社 | Copper foil with carrier, printed circuit board, copper clad laminated sheet, electronic device, and printed circuit board fabrication method |
CN104818503A (en) * | 2015-04-15 | 2015-08-05 | 同济大学 | Preparation method of porous copper full-impregnated film of three-dimensional network structure |
CN107043949A (en) * | 2016-02-09 | 2017-08-15 | 温伯格医学物理有限公司 | Method and apparatus for manufacturing particle |
CN114107889A (en) * | 2021-11-11 | 2022-03-01 | 杭州四马化工科技有限公司 | Metal foil demoulding method |
Non-Patent Citations (1)
Title |
---|
董守信, 杨志强, 徐忠艳: "真空蒸发沉积特薄铝箔", 轻合金加工技术, no. 01, 20 January 1998 (1998-01-20) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102278579B1 (en) | Copper-aluminum composite conductive material with high bonding strength and manufacturing method thereof | |
CN109735878A (en) | A kind of lithium electricity electrolytic copper foil manufacturing equipment | |
JP3135000B2 (en) | Method for producing copper metal powder, copper oxide and copper foil | |
CN101397691B (en) | Apparatus and technology for controlling and improving plating solution PH value on fingerprint resistant production chain | |
CN109778246A (en) | A kind of electrolytic copper foil manufacturing equipment | |
CN103143565B (en) | A kind of production technology of copper-aluminum bimetal composite plate | |
KR101325359B1 (en) | Method and Apparatus for Manufacturing Metal Foil | |
US20220280966A1 (en) | Gravure coating device for preparing large-width ultrathin metal lithium strip and method therefor | |
CN102031469B (en) | Method for heating large titanium and titanium alloy slabs | |
CN106216423B (en) | A kind of production technology of the highly conductive oxygen-free copper stripe of ceramic copper-clad base plate | |
WO2014180268A1 (en) | Ultrahigh current density electrolysis or electro-deposition groove | |
CN102005574A (en) | Light plate grid for lead-acid storage battery and preparation method thereof | |
CN115717255A (en) | Zero-stress electrolytic metal foil preparation method, system used thereby and application of method | |
CN115992374A (en) | Preparation method and production system of copper foil special for semi-solid battery | |
CN213327877U (en) | Intelligent electroplating equipment is used in production of FPC flexible circuit board | |
CN1189544A (en) | Method and appts. for continuously electrolytic deposition on conductive multiporous mesh belt | |
CN107740173A (en) | Edge quality control method of high-tin-content tin plate | |
CN101397687A (en) | Production process of non-chromium alkaline phosphating roll bending and improvement of plating solution formula | |
CN110421004A (en) | A kind of preparation method of alumina dispersion-strenghtened copper bulk board carrying material | |
CN112138961B (en) | Method for producing multi-roll coated composite metal strip | |
CN204672926U (en) | A kind of device preparing large-scale wallboard section bar | |
CN212309975U (en) | Production equipment of multi-roller double-side coating composite metal belt | |
WO2021190027A1 (en) | Ammonia method-based electrolysis device and using method thereof | |
CN113333496A (en) | Production process of copper-aluminum composite material | |
JPS5952717B2 (en) | Continuous manufacturing method for tin-plated strips |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |