CN115698345A - 经冷轧和热处理的钢板及其制造方法 - Google Patents

经冷轧和热处理的钢板及其制造方法 Download PDF

Info

Publication number
CN115698345A
CN115698345A CN202080101400.5A CN202080101400A CN115698345A CN 115698345 A CN115698345 A CN 115698345A CN 202080101400 A CN202080101400 A CN 202080101400A CN 115698345 A CN115698345 A CN 115698345A
Authority
CN
China
Prior art keywords
steel sheet
equal
percent
less
cold rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080101400.5A
Other languages
English (en)
Inventor
艾蒂安·奥夫曼
韦罗妮克·埃贝尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Publication of CN115698345A publication Critical patent/CN115698345A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0457Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明涉及经冷轧和热处理的钢板,所述钢以重量百分比计包含:0.17%≤碳≤0.25%,2%≤锰≤3%,0.9%≤硅≤2%,0%≤铝≤0.09%,0.01%≤钼≤0.2%,0%≤磷≤0.02%,0%≤硫≤0.03%,0%≤氮≤0.09%,和任选的以下元素中的一者或更多者:0%≤铬≤0.3%,0%≤铌≤0.06%,0%≤钛≤0.06%,0%≤钒≤0.1%,0%≤钙≤0.005%,0%≤硼≤0.010%,0%≤镁≤0.05%,0%≤锆≤0.05%,0%≤铈≤0.1%,以及余量包含铁和不可避免的杂质,该钢板具有包含以下的显微组织:以面积分数计,50%至80%的贝氏体、10%至30%的残余奥氏体、15%至50%的配分马氏体、0%至10%的铁素体和0%至5%的新鲜马氏体,以及从所述钢板的两个表面延伸多至50微米的富铁素体层,这样的富铁素体层的平均铁素体含量以面积分数计为55%至80%。

Description

经冷轧和热处理的钢板及其制造方法
本发明涉及经冷轧和热处理的钢板,其适合用作车辆用钢板。
汽车部件需要满足两个不一致的需求,即,易于成形和强度,但是近年来,考虑到全球环境问题,还给予汽车以改善燃料消耗的第三个要求。因此,现在汽车部件必须由具有高可成形性的材料制成,以便符合复杂汽车组件的易于装配的标准,并且同时必须针对车辆耐撞性和耐久性而提高强度,同时减轻车辆的重量以改善燃料效率,对其更进一步,钢部件必须是可焊接的,同时不经受液态金属脆化。
因此,投入了大量的研究和开发努力以通过增加材料的强度来减少汽车中使用的材料的量。相反地,钢板的强度的增加使可成形性降低,因此必须开发具有高强度和高可成形性二者的材料。
高强度和高可成形性钢板领域中的早期研究和开发已经产生了数种用于生产高强度和高可成形性钢板的方法,本文中列举其中的一些方法以用于对本发明的明确理解。
专利EP3287539描述了一种多层产品,其具有富含铁素体的表面以改善可弯曲性但无法达到高的扩孔,存在铁素体与诸如马氏体或奥氏体的硬质相之间的界面。此外,EP3287539的钢不具有足够的抗LME性,特别是对于经冷轧涂覆的钢板。
专利US2019/0040487描述了一种抗LME性的钢板,但没有描述可以实现的诸如拉伸强度、总延伸率的机械特性。
由于与高强度和高成形性钢板的制造有关的已知现有技术具有一个或另一个缺陷,因此需要强度大于1100MPa的冷轧钢板及其制造方法。
本发明的目的是通过使得可获得同时具有以下的经冷轧和热处理的钢板来解决这些问题:
-大于或等于1170MPa,并且优选高于1180MPa,或者甚至高于1200MPa的极限拉伸强度,
-大于或高于30%,并且优选高于35%的扩孔率,
-足够的抗液态金属脆化性。
在一个优选的实施方案中,经冷轧和热处理的钢板显示出大于或高于780MPa,并且优选高于800MPa的屈服强度值。
在另一个优选的实施方案中,经冷轧和热处理的钢板显示出大于或高于12.0%的总延伸率值。
优选地,这样的钢还可以具有对于成形,特别是对于轧制的良好适应性以及良好的可焊性和可涂覆性。
本发明的另一个目的还在于使得可获得与常规工业应用相容同时对制造参数变化稳健的用于制造这些钢板的方法。
本发明的经冷轧热处理的钢板涂覆有锌或锌合金,或者涂覆有铝或铝合金,以改善其耐腐蚀性。
本发明的其他特征和优点将根据本发明的以下详细描述而变得明显。
碳以0.17%至0.25%存在于钢中。碳是通过使退火之后的冷却期间铁素体和贝氏体的形成延迟来提高钢板的强度所必需的元素。此外,碳也在奥氏体稳定中起关键作用。小于0.17%的含量无法使奥氏体稳定,从而降低了强度和延性。另一方面,在碳含量超过0.25%时,焊接区和热影响区显著硬化,并因此损害了焊接区的机械特性。碳的优选限度为0.18%至0.23%,并且更优选的限度为0.18%至0.21%。
本发明的钢的锰含量为2%至3%。锰是赋予强度以及使奥氏体稳定以获得残余奥氏体的元素。为了通过延迟铁素体的形成来提供钢板的强度和淬透性以及为了使奥氏体稳定,需要至少2%量的锰。因此,较高百分比的锰例如2.2%至2.9%是优选的,并且更优选为2.5%至2.8%。但是当锰大于3%时,这产生诸如在用于贝氏体转变的等温保持期间减缓奥氏体向贝氏体的转变的不利影响,导致延性降低。另外地,当锰高于3%时,无法形成足够的贝氏体,并且马氏体的形成超过了目标限度,因此延伸率下降。此外,锰含量高于3%也会使本发明钢的可焊性降低。
本发明的钢的硅含量为0.9%至2%。作为成分的硅延缓从高温冷却之后的均热期间碳作为贝氏体中的碳化物的析出。因此,在形成无碳化物贝氏体期间,奥氏体富含碳。因此,由于0.9%硅的存在,奥氏体在室温下是稳定的。另外地,硅延缓马氏体中的碳化物析出。在这两种情况中,贝氏体中的碳化物或马氏体中的碳化物也是引起延伸率下降的原因。通过存在Si来防止碳化物是如此重要。然而,添加大于2%的硅不会改善所提到的效果并且导致诸如热轧脆化的问题,以及在本发明的钢中大于2%的硅使锌不溶于晶粒中。因此,在焊接时,液体锌沿着晶界行进,而不是进入晶粒,引起液态金属脆化。因此,将浓度控制在2%的上限内。对本发明钢的硅的优选限度为1%至1.9%,并且更优选为1.1%至1.8%。
本发明的钢的铝的含量为0%至0.09%。在炼钢期间添加铝用于使钢脱氧以捕获氧。高于0.09%将提高Ac3点,从而降低生产率。另外,在这样的范围内,铝结合钢中的氮以形成氮化铝,使得晶粒的尺寸减小。但是,在本发明中每当铝的含量超过0.09%时,氮化铝的量和尺寸总是有害于扩孔和弯曲。铝的优选限度为0%至0.06%,并且更优选为0%至0.05%。
钼是必需元素,其以0.01%至0.2%存在于本发明的钢中;当以至少0.01%的量添加时,钼在改善淬透性和硬度方面起着有效作用,使退火之后的冷却期间铁素体和贝氏体的形成延缓。Mo还对热轧产品的韧性有利,使得更容易制造。然而,过量地添加钼增加了合金元素的添加成本,使得出于经济原因将其含量限制为0.2%。钼还有利于距外表面测量的多至50微米厚度深度的表面上的铁素体显微组织的形成,因为对于相同的均热温度和露点温度,Ac3提高了一点,从而增加了在本发明的表面钢上铁素体的形成。钼的优选限度为0.05%至0.15%,并且更优选为0.06%至0.12%。
本发明的钢的磷含量被限制为0.02%。磷为在固溶体中硬化的元素。因此,至少0.002%的少量的磷可以是有利的,但是磷特别是由于其在晶界处偏析或者与锰共偏析的倾向而也具有其不利影响,例如点焊性和热延性的降低。由于这些原因,其含量优选被限制为最大0.015%。
硫不是必需元素,但可以作为杂质包含在钢中。从制造成本的角度出发,硫含量优选地尽可能低,但为0.03%或更少,并且优选地为至多0.005%。此外,如果钢中存在较高的硫,则其尤其与Mn和Ti结合以形成硫化物,这对本发明的钢的弯曲、扩孔和伸长是不利的。
氮被限制为0.09%以避免材料的老化并且以使对钢的机械特性不利的凝固期间氮化物的析出最小化。
铬是本发明的钢的任选元素,为0%至0.3%。铬为钢提供强度和硬化,但当使用高于0.3%时,损害钢的表面光洁度。铬的优选限度为0.01%至0.25%,并且更优选为0.01%至0.1%。
铌是可以以0%至0.06%,优选0.0010%至0.03%添加到钢中的任选元素。铌适合于通过沉淀硬化来形成碳氮化物以赋予根据本发明的钢以强度。由于铌延迟加热期间的再结晶,因此在保持温度结束时以及因此在完全退火之后所形成的显微组织更细,这导致产品的硬化。但是,当铌含量高于0.06%时,碳氮化物的量对于本发明是不利的,因为大量的碳氮化物倾向于降低钢的延性。
钛是可以以0%至0.06%,优选0.001%至0.03%添加到本发明的钢中的任选元素。与铌一样,其参与碳氮化物,因此在硬化中起作用。但是其也参与形成在铸造产品的凝固期间出现的TiN。Ti的量因此被限制为0.06%,以避免对扩孔不利的粗TiN。在钛含量低于0.001%的情况下,其不对本发明的钢产生任何影响。
钒是可以以0%至0.1%,优选0.001%至0.1%添加到本发明的钢中的任选元素。与铌一样,其参与碳氮化物,因此在硬化中起作用。但是其也参与形成在铸造产品的凝固期间出现的VN。V的量因此被限制为0.1%,以避免对扩孔不利的粗VN。在钒含量低于0.001%的情况下,其不对本发明的钢产生任何影响。
钙是可以以0%至0.005%,优选0.001%至0.005%添加到本发明的钢中的任选元素。钙尤其是在夹杂物处理期间作为任选元素而添加到本发明的钢中。钙通过在对钢进行球化处理中捕获有害的硫内容物而有助于钢的精炼。
硼是可以以0%至0.010%,优选0.001%至0.004%添加以使钢硬化的任选元素。
诸如铈、镁或锆的其他元素可以以以下比例单独添加或者组合添加:Ce≤0.1%,Mg≤0.05%以及Zr≤0.05%。直至所示的最大含量水平,这些元素使得能够在凝固期间细化夹杂物晶粒。
钢的组成的剩余部分由铁和由加工产生的不可避免的杂质组成。
根据本发明的钢板的显微组织以面积分数计包含50%至80%的贝氏体、15%至50%的配分马氏体、10%至30%的残余奥氏体、0%至10%的铁素体、0%至5%的新鲜马氏体。
显微组织中相的表面分数通过以下方法来确定:从钢板中切割试样,抛光和用本身已知的试剂进行蚀刻,以露出显微组织。之后通过扫描电子显微镜例如用带有场发射枪的扫描电子显微镜(“FEG-SEM”)以大于5000×的放大倍率在二次电子模式下检测截面。
铁素体的表面分数的确定在硝酸乙醇腐蚀液(Nital)或苦味酸/硝酸乙醇腐蚀液(Picral/Nital)试剂蚀刻之后根据SEM观察来进行。
残余奥氏体的体积分数的确定根据X-射线衍射来进行,以及块状奥氏体的百分比和膜状奥氏体的百分比通过图像分析来确定。
贝氏体是钢的基体并且以50%至80%存在,在本发明的框架内,贝氏体可以包括无碳化物贝氏体和/或板条贝氏体。当存在时,板条贝氏体呈厚度为1微米至5微米的板条的形式。当存在时,无碳化物贝氏体为这样的贝氏体:其具有非常低的碳化物密度,低于每100μm2的面积单位100个碳化物,并且可能包含奥氏体岛。当被控制在本发明范围内时,贝氏体为本发明的钢提供改善的延伸率以及扩孔。贝氏体优选以55%至75%,并且更优选以55%至70%存在。
残余奥氏体以10%至30%的量包含在内,并赋予本发明钢延性。在本发明的框架内,残余奥氏体可以包括膜状奥氏体和/或块状奥氏体。本发明的膜状奥氏体可以存在于贝氏体和配分马氏体之间,并且显示出高于3的纵横比。块状奥氏体可以以贝氏体中显示出低于2的纵横比的岛的形式存在,以及可以充当有效的碳捕集器(carbon trap),从而帮助形成无碳化物贝氏体,块状奥氏体在晶粒的最大尺寸上小于5微米,并且优选小于3微米,以及可以在过时效保持期间形成。
本发明的残余奥氏体优选包含0.9%至1.15%的碳,其中奥氏体中的平均碳含量为1.00%。优选具有12%至25%、并且更优选12%至20%的残余奥氏体。优选具有4%或更多的膜状奥氏体,以及4%或更多的块状奥氏体。
配分马氏体以15%至50%的量包含在内,以实现1170MPa或更大的强度水平。如果马氏体的量达到超过50%,其将对延性具有不利影响。本发明钢的配分马氏体可以呈板条的形式,其中板条厚度大于0.1微米。在退火之后的冷却期间形成的马氏体,在加热至过时效温度期间转变为配分马氏体。本发明的钢的配分马氏体优选以15%至45%并且更优选以20%至40%存在。
新鲜马氏体和铁素体可以作为独立的相存在于根据本发明的钢中。除了在富含铁素体的表面层处,铁素体可以以0%至10%存在于钢中。这样的铁素体可以包括多边形铁素体、板条铁素体、针状铁素体、板状铁素体或外延铁素体。本发明中铁素体的存在可以赋予钢可成形性和延伸率。铁素体的存在由于以下事实也具有负面影响:铁素体增加了与诸如马氏体和贝氏体的硬质相在硬度上的差距并且降低了局部延性。如果铁素体以高于10%存在,则由于铁素体与硬质相之间界面的量增加,目标拉伸强度无法实现,以及扩孔率可能下降。因此,优选以0%至5%,并且更优选以0%至2%存在。新鲜马氏体也可以以0%至5%并且优选以0%至2%存在。
除了钢板的芯中的这种显微组织外,钢板还包括富铁素体层,所述富铁素体层从钢板的两个表面延伸多至50微米深度,并且显示出以面积分数计55%至80%,优选为60%至78%,更优选为65%至75%的铁素体百分比。形成在表面上的富铁素体层优选包括任何或所有可能的铁素体种类,并且值得注意的是多边形铁素体、板条铁素体、针状铁素体、板状铁素体或外延铁素体。该铁素体层赋予本发明的钢板抵抗液态金属脆化(LME)的抗性。
该表面层的剩余部分包含贝氏体和/或残余奥氏体和/或马氏体。
图1为根据本发明并与试验I1对应的冷轧钢板的示意图,该冷轧钢板具有富含铁素体的层,其中从表面延伸多至50微米的层中的平均铁素体百分比为70%。命名为10的铁素体层显示铁素体以70%存在的铁素体层。
图2为没有根据本发明的冷轧钢板的示意图,该冷轧钢板具有富含铁素体的层,其中从表面延伸多至50微米的层中的平均铁素体百分比为43%。命名为20的铁素体层显示铁素体以43%存在的铁素体层。
根据本发明的钢板可以通过任何合适的方法来生产。优选的方法包括提供具有根据本发明的化学组成的钢的半成品铸件。可以将铸件制成锭或者连续地制成薄板坯或薄带材的形式,即,厚度范围从对于板坯的约220mm直至对于薄带材的数十毫米。
例如,板坯将被认为是半成品。具有上述化学组成的板坯通过连铸来制造,其中板坯优选地在铸造期间经历直接轻压下,以确保消除中心偏析和孔隙率降低。通过连铸工艺提供的板坯可以在连铸之后直接在高温下使用,或者可以首先冷却至室温然后被再加热用于进行热轧。
经受热轧的板坯的温度优选为至少1000℃,优选高于1200℃,并且必须低于1280℃。在板坯的温度低于1000℃的情况下,对轧机施加过大的负荷,此外,钢的温度在精轧期间可能降低至铁素体转变温度,因此钢将在组织中包含转变铁素体的状态下被轧制。此外,该温度不得高于1280℃,因为在工业上是昂贵的。
板坯的温度优选足够高,使得热轧可以完全在奥氏体范围内完成,精轧热轧温度保持高于850℃,并且优选高于900℃。终轧必须高于850℃进行,因为低于该温度钢板表现出可轧制性的显著下降。优选900℃至950℃的终轧温度,以具有对再结晶和轧制有利的组织。
然后将以这种方式获得的钢板以高于30℃/秒的冷却速率冷却至低于550℃的温度。将冷却温度保持低于550℃以避免诸如锰、硅和铬的合金元素的氧化。优选地,冷却速率将小于或等于65℃/秒且高于35℃/秒。此后,将热轧钢板卷取并且必须将经卷取的热轧钢板的温度保持低于500℃,以避免热轧卷材表面上的硅、锰、铝和铬的氧化,因为这些氧化物在热轧钢板的表面上形成裂纹。此后使经卷取的热轧钢板冷却至室温。然后,使热轧钢板经受任选的氧化皮去除过程例如酸洗,以除去在热轧期间形成的氧化皮,并且确保在使热轧钢板经受任选的热带退火之前在热轧钢板的表面上没有氧化皮。
可以使热轧钢板经受任选的在350℃至750℃温度下1小时至96小时的时间的热带退火。选择这样的热带退火的温度和时间以确保热轧钢板的软化,以促进热轧钢板的冷轧。
然后将热轧钢板冷却至室温,此后,然后对热轧钢板以35%至70%的厚度压下率进行冷轧以获得冷轧钢板。
然后使冷轧钢板经受退火,以赋予本发明的钢目标显微组织和机械特性。
在退火中,冷轧钢板经受两步加热以达到Ac3-10℃至Ac3+100℃的均热温度TA,在两步加热期间,将露点保持为-15℃至+15℃,以提供在表面上具有富铁素体层的本发明的钢,以具有足够的抗液态金属脆化性,优选的露点保持为-10℃至+10℃,并且更优选为-10℃至+5℃。本发明钢的Ac3通过膨胀法测试根据发表在期刊中M.Murat的文章“TECHNIQUESDE L'INGENIEUR,MESURES ET ANALYSE;FRA;PARIS:TECH.-ING.;DA.1981;第20卷;第59期;第1280页”中描述的方法来确定。
在步骤一中,将冷轧钢板以2℃/秒至70℃/秒的加热速率HR1从室温加热到在600℃至800℃范围内的温度HT1。优选地具有5℃/秒至60℃/秒、并且更优选10℃/秒至50℃/秒的HR1速率。优选的HT1温度为625℃至775℃,更优选为640℃至750℃。
此后,在随后的第二步加热中,将冷轧钢板以0.1℃/秒至10℃/秒的加热速率HR2从温度HT1加热到在Ac3-10℃至Ac3+100℃温度范围内的均热温度TA,优选地具有0.1℃/秒至8℃/秒、并且更优选0.1℃/秒至5℃/秒的HR2速率。
优选的TA温度为Ac3至Ac3+75℃,更优选为Ac3至Ac3+50℃。在均热温度下将露点保持为-10℃至+10℃,并且优选为-5℃至+5℃,以提供表面处具有目标深度的富铁素体层的本发明钢。
如上所述,根据本发明的富铁素体层在退火期间形成。碳与氧反应以形成从钢中逃逸的一氧化碳,导致表面层的脱碳,这样的层具有富含铁素体并从钢板的表面延伸多至50微米深度的显微组织。由于对露点的控制,该富铁素体层在退火之前的加热期间和在均热期间形成。通过使用本领域技术人员已知的常规手段,例如像注水,将露点控制为在退火之前的加热期间为-15℃至+15℃,以及在均热期间为-10℃至+10℃。
然后,将冷轧钢板在退火均热温度TA下保持10秒至1000秒的时间以确保向强加工硬化初始组织的奥氏体显微组织的足够转变。然后以单步冷却将冷轧钢板以大于30℃/秒、并且优选大于40℃/秒、并且更优选大于50℃/秒的冷却速率CR1冷却至Ms-5℃至Ms-100℃、并且优选Ms-5℃至Ms-75℃、并且更优选Ms-10℃至Ms-50℃的冷却终止温度范围CS1。在该冷却步骤期间,形成本发明的马氏体。
在随后的步骤中,将冷轧钢板以1℃/秒至100℃/秒的加热速率HR3从CS1温度加热到250℃至580℃的过时效温度范围TOA。在该步骤期间,退火之后的冷却期间形成的马氏体转变为配分马氏体,从而有助于在TOA温度下保持期间形成贝氏体。然后将冷轧钢板在TOA温度下保持5秒至500秒进行过时效,使得形成本发明的贝氏体。
然后,根据涂覆的性质,可以使冷轧钢板达到热浸镀涂覆浴的温度,其可以为420℃至680℃。可以用锌或基于锌的合金或者用铝或用基于铝的合金进行涂覆。
或者,冷轧钢板也可以通过任何已知的工业工艺例如电镀锌、JVD、PVD、热浸镀(GI)、GA、或ZM等来涂覆,这不需要在过时效之后使钢板达到上述温度范围。在这种情况下,可以使钢板在随后步骤中被涂覆之前冷却至室温。
可以在退火之后对经涂覆的产品进行任选的后分批退火,优选地在170℃至210℃下进行12小时至30小时的时间,以确保经涂覆产品的脱气。
实施例
本文中提供的以下试验和实施例本质上是非限制性的,并且必须仅出于说明的目的而被考虑,并且将显示本发明的有利特征并阐述本发明人在大量实验之后所选择的参数的重要性,并进一步确定了可以由根据本发明的钢实现的特性。
用表1中汇总的组成和表2中汇总的工艺参数制备根据本发明的钢板样品和根据一些比较品级的钢板样品。这些钢板的相应显微组织汇总在表3中并且特性汇总在表4中。
表1描绘了具有以重量百分比表示的组成的钢。
表1:试验的组成
试验 C Mn Si Al Mo P S N Cr Nb Ti B Ac3
1 0.199 2.620 1.270 0.030 0.097 0.0150 0.002 0.0050 0.017 0.002 0.002 0.0004 850
2 0.197 2.630 1.780 0.024 0.093 0.0120 0.001 0.0037 0.015 0.002 0.002 0.0004 880
3 0.198 2.720 1.740 0.025 0.096 0.0120 0.001 0.0041 0.023 0.002 0.002 0.0004 875
4 0.196 2.710 1.780 0.024 0.095 0.0110 0.001 0.0043 0.015 0.021 0.002 0.0004 875
5 0.190 2.720 1.770 0.024 0.096 0.0110 0.001 0.0044 0.015 0.022 0.022 0.0022 880
<u>6</u> 0.193 2.750 1.780 0.024 <u>0.002</u> 0.0110 0.001 0.0038 0.017 0.001 0.002 0.0004 870
<u>7</u> 0.188 2.750 1.680 0.021 <u>0.002</u> 0.0120 0.001 0.0050 0.019 0.020 0.024 0.0026 870
加下划线的值:没有根据本发明
表2汇总了对表1的钢实施的退火工艺参数。
表1还示出了本发明钢和参考钢的贝氏体转变温度Bs和马氏体转变温度Ms。Bs的计算通过使用Materials Science and Technology(2012)第28卷,第4期,第487-495页中公布的Van Bohemen公式来完成,公式如下:
Bs=839-(86*[Mn]+23*[Si]+67*[Cr]+33*[Ni]+75*[Mo])-270*(1-EXP(-1,33*[C]))
Ms是通过膨胀法试验以与Ac3相似的方式来确定。
此外,在对本发明钢和参考钢进行退火处理之前,将样品加热到1000℃至1280℃的温度,然后在高于850℃的精轧温度下经受热轧。热轧之后的冷却速率高于30℃/秒,直到冷却低于550℃。对于所有试验HT1温度为650℃,并且对于所有试验HR2加热速率为0.5℃/秒。将所有冷轧钢板在过时效保持之后在温度460℃的锌浴中涂覆。
Figure BDA0003964739900000101
表3汇总了根据标准在不同显微镜例如扫描电子显微镜上进行的用于确定本发明钢试验和参考试验二者的显微组织组成的测试的结果。
表3:试验的显微组织和铁素体层中铁素体的存在
Figure BDA0003964739900000111
I=根据本发明;R=参考;加下划线的值:没有根据本发明。
从上表中可以看出,根据本发明的试验都满足显微组织目标。
相反,试验R1由于其缺乏最低值的钼而包含超出本发明的范围的组成,显示出铁素体含量不足够高的表面层,因为钼对钢的表面处的铁素体富集具有直接影响。
试验R2由于其缺乏最低值的钼而包含超出本发明的范围的组成,经受高于Ms-5℃的CS1温度,这组合引起太多贝氏体形成。由于加热期间露点的最佳值,铁素体层在目标内。
不进行所要求的露点控制的试验R3和R4显示出铁素体含量明显不足够高的铁素体表面层。
表4汇总了本发明的钢和参考钢二者的机械特性和表面特性。拉伸强度、屈服强度和总延伸率测试按照ISO 6892-1标准进行,以及扩孔率测试按照ISO 16630标准进行。
表4:试验的机械特性和表面特性
通过电阻点焊法评估试验的LME敏感度。为此,对于各试验,将分别对应于试验I1至I5以及分别对应于试验R1至R4的一块钢板与两块另外的钢板点焊,以构建顺序包括以下的三个钢板的堆叠:
-对应于试验I1至I5以及对应于试验R1至R4的一块钢板,
-1.5mm的包含0.003%的碳和0.11%的锰的无间隙镀锌钢的钢板,
-1.5mm的包含0.003%的碳和0.11%的锰的无间隙镀锌钢的钢板。
焊接条件根据标准ISO-18278-2。焊接电极的类型为面直径为6mm的F1;电极的夹持力设置成450daN。焊接周期如下:
Figure BDA0003964739900000121
在Imax至Imax+10%的限定为电流范围的上焊接限度的电流水平下将每个试验再生产10次以产生10个点焊缝,Imax为0.9*Iexp至1.1*Iexp,Iexp为超过焊接期间出现喷溅的强度,根据ISO标准18278-2确定。
然后,在通过表面裂纹进行截面并使用光学显微镜之后对10个点焊接头中的裂纹长度进行评估。如果少于60%的点焊缝具有比200μm更长的裂纹,则品级被认为提供了足够的抗LME性。
屈服强度YS、拉伸强度TS和总延伸率TE根据2009年10月公布的ISO标准ISO 6892-1来测量。扩孔率根据ISO标准16630:2009来测量。
Figure BDA0003964739900000122
I=根据本发明;R=参考;加下划线的值:没有根据本发明。
从上表中可以看出,根据本发明的试验都满足特性目标。
相反,试验R1表现出不足的拉伸强度值,这与品级中低的钼含量有关。此外,由于表面层中低的铁素体富集,抗LME性不好,这也与低的钼含量有关。
尽管低水平的钼,试验R2仍表现出令人满意的TS值。这是由于就强度而言可以补偿低钼的铌含量。然而,由于过量的贝氏体和过低量的奥氏体,扩孔率显著低于目标。
试验3和4没有显示出足够的抗LME性,这通过表面层中低的铁素体量得以解释。

Claims (16)

1.一种经冷轧和热处理的钢板,所述钢以重量百分比计包含:
0.17%≤碳≤0.25%,
2%≤锰≤3%,
0.9%≤硅≤2%,
0%≤铝≤0.09%,
0.01%≤钼≤0.2%,
0%≤磷≤0.02%,
0%≤硫≤0.03%,
0%≤氮≤0.09%,
和任选的以下元素中的一者或更多者:
0%≤铬≤0.3%,
0%≤铌≤0.06%,
0%≤钛≤0.06%,
0%≤钒≤0.1%,
0%≤钙≤0.005%,
0%≤硼≤0.010%,
0%≤镁≤0.05%,
0%≤锆≤0.05%,
0%≤铈≤0.1%,
以及余量包含铁和不可避免的杂质,所述钢板具有包含以下的显微组织:以面积分数计,50%至80%的贝氏体、10%至30%的残余奥氏体、15%至50%的配分马氏体、0%至10%的铁素体和0%至5%的新鲜马氏体,以及从所述钢板的两个表面延伸多至50微米的富铁素体层,这样的富铁素体层的平均铁素体含量以面积分数计为55%至80%。
2.根据权利要求1所述的经冷轧和热处理的钢板,其中组成包含2.2%至2.9%的锰。
3.根据权利要求1或2所述的经冷轧和热处理的钢板,其中所述组成包含0.18%至0.23%的碳。
4.根据权利要求1至3中任一项所述的经冷轧和热处理的钢板,其中所述组成包含1%至1.9%的硅。
5.根据权利要求1至4中任一项所述的经冷轧和热处理的钢板,其中所述组成包含0.05%至0.15%的钼。
6.根据权利要求1至5中任一项所述的经冷轧和热处理的钢板,其中所述显微组织包含55%至75%的贝氏体。
7.根据权利要求1至6中任一项所述的经冷轧和热处理的钢板,其中所述显微组织包含残余的12%至25%的残余奥氏体。
8.根据权利要求1至7中任一项所述的经冷轧和热处理的钢板,其中所述显微组织包含15%至45%的配分马氏体。
9.根据权利要求1至8中任一项所述的经冷轧和热处理的钢板,所述经冷轧和热处理的钢板具有大于或等于1170MPa的拉伸强度,以及30%或更大的扩孔率。
10.根据权利要求1至9所述的经冷轧和热处理的钢板,所述经冷轧和热处理的钢板具有大于或等于780MPa的屈服强度,以及12.0%或更大的总延伸率。
11.根据权利要求1至10所述的经冷轧和热处理的钢板,所述经冷轧和热处理的钢板具有距两个表面多至50微米的以面积分数计包含60%至78%的铁素体的富铁素体层。
12.一种制造经冷轧和热处理的钢板的方法,包括以下顺序步骤:
-提供根据权利要求1至5中任一项中的钢组成以获得半成品,
-将所述半成品再加热到1000℃至1280℃的温度;
-将所述半成品完全在奥氏体范围中轧制以获得热轧钢板,其中热轧精轧温度大于或等于850℃;
-将所述钢板以高于30℃/秒的冷却速率冷却至低于或等于550℃的温度;以及对所述热轧钢板进行卷取并保持经卷取的钢板的温度低于500℃;
-将所述热轧钢板冷却;
-对所述热轧钢板进行任选的氧化皮去除过程;
-使所述热轧钢板经受任选的在350℃至750℃温度下1小时至96小时的时间的退火;
-对所述经热轧退火的钢板进行任选的氧化皮去除过程;
-对所述热轧钢板以35%至70%的压下率进行冷轧以获得冷轧钢板;
-以两步加热对所述冷轧钢板进行退火,在所述两步加热期间将露点控制为-15℃至+15℃,以及其中:
O第一步始于将所述钢板以2℃/秒至70℃/秒的加热速率HR1从室温加热到600℃至800℃的温度HT1,
O第二步始于将所述钢板以0.1℃/秒至10℃/秒或更小的加热速率HR2从HT1进一步加热到Ac3-10℃至Ac3+100℃的均热温度TA,HR2低于HR1,
-然后在TA下进行退火10秒至500秒的时间,选择时间以获得最小百分比为90%的奥氏体,在退火期间将露点控制为-10℃至+10℃,
-然后将所述冷轧钢板以大于30℃/秒的冷却速率CR1从TA冷却到Ms-5℃至Ms-100℃的冷却终止温度CS1,
-然后将所述冷轧钢板以1℃/秒至100℃/秒的平均加热速率HR3从CS1温度加热到250℃至580℃的过时效温度TOA,
-然后将所述冷轧钢板在TOA下进行过时效5秒至500秒的时间。
13.根据权利要求12所述的方法,其中所述HT1温度为625℃至775℃。
14.根据权利要求12至13中任一项所述的方法,其中所述冷轧钢板进一步涂覆有锌或基于锌的合金。
15.根据权利要求1至11中任一项所述的钢板或根据权利要求12至14所述的方法生产的钢板用于制造车辆的结构或安全部件的用途。
16.一种车辆,包括根据权利要求15所获得的部件。
CN202080101400.5A 2020-06-12 2020-06-12 经冷轧和热处理的钢板及其制造方法 Pending CN115698345A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2020/055526 WO2021250450A1 (en) 2020-06-12 2020-06-12 Cold rolled and heat-treated steel sheet and a method of manufacturing thereof

Publications (1)

Publication Number Publication Date
CN115698345A true CN115698345A (zh) 2023-02-03

Family

ID=72148188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080101400.5A Pending CN115698345A (zh) 2020-06-12 2020-06-12 经冷轧和热处理的钢板及其制造方法

Country Status (10)

Country Link
US (1) US20230243007A1 (zh)
EP (1) EP4165222A1 (zh)
JP (1) JP2023529213A (zh)
KR (1) KR20230004787A (zh)
CN (1) CN115698345A (zh)
BR (1) BR112022023758A2 (zh)
CA (1) CA3182757A1 (zh)
MX (1) MX2022015543A (zh)
WO (1) WO2021250450A1 (zh)
ZA (1) ZA202212135B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216683B (zh) * 2022-05-19 2023-05-05 北京科技大学 调控铸坯组织中铁素体形态的方法及所制备的微合金钢
KR20230170171A (ko) * 2022-06-09 2023-12-19 주식회사 포스코 연신율 및 구멍확장성이 우수한 초고강도 강판 및 그 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807368B2 (ja) * 2010-06-16 2015-11-10 新日鐵住金株式会社 圧延方向に対して45°の方向の均一伸びが極めて高い高強度冷延鋼板及びその製造方法
JP5764549B2 (ja) * 2012-03-29 2015-08-19 株式会社神戸製鋼所 成形性および形状凍結性に優れた、高強度冷延鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、ならびにそれらの製造方法
WO2016001710A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel having improved strength and ductility and obtained sheet
TWI606125B (zh) 2015-04-22 2017-11-21 Nippon Steel & Sumitomo Metal Corp Plated steel
KR101758485B1 (ko) * 2015-12-15 2017-07-17 주식회사 포스코 표면품질 및 점 용접성이 우수한 고강도 용융아연도금강판 및 그 제조방법
KR102135839B1 (ko) * 2016-02-25 2020-07-21 닛폰세이테츠 가부시키가이샤 강판의 제조 방법 및 강판의 연속 어닐링 장치
US20180237877A1 (en) * 2017-02-17 2018-08-23 GM Global Technology Operations LLC Mitigating liquid metal embrittlement in zinc-coated press hardened steels
US10329639B2 (en) 2017-08-04 2019-06-25 Gm Global Technology Operations Llc. Multilayer steel and method of reducing liquid metal embrittlement

Also Published As

Publication number Publication date
ZA202212135B (en) 2024-01-31
EP4165222A1 (en) 2023-04-19
KR20230004787A (ko) 2023-01-06
JP2023529213A (ja) 2023-07-07
MX2022015543A (es) 2023-01-18
BR112022023758A2 (pt) 2022-12-20
CA3182757A1 (en) 2021-12-16
US20230243007A1 (en) 2023-08-03
WO2021250450A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
US8657969B2 (en) High-strength galvanized steel sheet with excellent formability and method for manufacturing the same
CN109642288B (zh) 高强度钢板及其制造方法
KR101424859B1 (ko) 고강도 강판 및 그 제조 방법
JP2004332099A (ja) 耐水素脆化、溶接性、穴拡げ性および延性に優れた高強度薄鋼板およびその製造方法
JP2004315900A (ja) 伸びフランジ成形性に優れた高強度鋼板およびその製造方法
US11795519B2 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
CN108779536B (zh) 钢板、镀覆钢板和它们的制造方法
JP4102281B2 (ja) 耐水素脆化、溶接性および穴拡げ性に優れた高強度薄鋼板及びその製造方法
CN115698345A (zh) 经冷轧和热处理的钢板及其制造方法
JP6037087B1 (ja) 高強度冷延鋼板およびその製造方法
KR102658163B1 (ko) 고강도 강판 및 그 제조 방법
CN115698346A (zh) 经热处理的冷轧钢板及其制造方法
WO2022202023A1 (ja) 鋼板
WO2022202020A1 (ja) 鋼板及び溶接継手
CN116034173A (zh) 经冷轧和涂覆的钢板及其制造方法
WO2024121608A1 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
CN118159678A (zh) 经冷轧和热处理的钢板及其制造方法
KR20240075880A (ko) 냉연 열처리 강판 및 그 제조 방법
WO2023073410A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
WO2023073411A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
WO2024111526A1 (ja) 高強度熱延鋼板及びその製造方法
JP2004244675A (ja) 穴拡げ性に優れた溶融亜鉛めっき高強度鋼板およびその製造方法
CN113544301A (zh) 钢板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination