CN115690340A - 一种基于二、三维实时联动的交叉地质剖面界线调整方法 - Google Patents

一种基于二、三维实时联动的交叉地质剖面界线调整方法 Download PDF

Info

Publication number
CN115690340A
CN115690340A CN202211229078.1A CN202211229078A CN115690340A CN 115690340 A CN115690340 A CN 115690340A CN 202211229078 A CN202211229078 A CN 202211229078A CN 115690340 A CN115690340 A CN 115690340A
Authority
CN
China
Prior art keywords
geological
dimensional
boundary
section
intersection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211229078.1A
Other languages
English (en)
Inventor
吴雪超
毛小平
吴冲龙
田宜平
武永进
李岩
张志庭
吴文明
任厚州
申兴林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
2015 Geological Team Of Guizhou Provincial Bureau Of Geology And Mineral Exploration And Development
Wuhan Dida Quanty Technology Co ltd
China University of Geosciences
Original Assignee
2015 Geological Team Of Guizhou Provincial Bureau Of Geology And Mineral Exploration And Development
Wuhan Dida Quanty Technology Co ltd
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 2015 Geological Team Of Guizhou Provincial Bureau Of Geology And Mineral Exploration And Development, Wuhan Dida Quanty Technology Co ltd, China University of Geosciences filed Critical 2015 Geological Team Of Guizhou Provincial Bureau Of Geology And Mineral Exploration And Development
Priority to CN202211229078.1A priority Critical patent/CN115690340A/zh
Publication of CN115690340A publication Critical patent/CN115690340A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明涉及一种基于二、三维实时联动的交叉地质剖面界线调整方法,属于地质勘查领域。本发明提供的基于二、三维实时联动的交叉地质剖面界线调整方法通过二维图件编绘系统绘制交叉地质剖面初稿,并将交叉地质剖面导入三维建模系统,通过三维建模系统判断地质界线整体协调性,并在二维图件编绘系统中进行实时修改,本发明能够实时对交叉地质剖面界线进行三维和二维的联动调整,给地质剖面绘制人员提供一种高效、实时、精确的剖面绘制调整方法。

Description

一种基于二、三维实时联动的交叉地质剖面界线调整方法
技术领域
本发明涉及一种基于二、三维实时联动的交叉地质剖面界线调整方法,属于地质勘查领域。
背景技术
多年以来,随着资源和环境压力的增大,世界各国早就已经把眼光投向地壳深部,不断增加矿产资源的勘查深度。让地球深部透明化,已经成为越来越多国家关注的焦点。特别是国际合作的“地质一体化”(one geology)活动的开展,更把“玻璃地球”建设推向国际合作进程,引起了各国地质科学界和政府的高度重视。在一个国家或一个地区,“玻璃地球”也称玻璃国土,其核心工作内容是构建多尺度、多要素的三维地质模型。
地质剖面是三维地质建模的主要数据源。在断裂构造复杂、地层起伏变化大的建模区域中,必须采用两个方向不同的系列交叉地质剖面,才能有效地控制住区域地质结构,使所建立的三维地质模型真正成为该区域的数字孪生体。
交叉地质剖面编绘相对复杂,特别是在多人协同作业的情况下,由于地质认识的差异,既要保证同一属性的地质界线的一致性,又要保证复杂的地层系统和断裂系统空间分布和形态的合理性。这就需要反复在二维图件编绘系统中调整剖面中的地质界线。需要强调的是,这是一个非常繁琐的过程,在二维图件编绘系统和三维建模系统之间没有联动之前,每一轮修改调整后不能及时看到修改的效果,无法及时发现问题,费时费力且效果不佳,不利于区域地质结构的数字孪生和“玻璃国土”建设的快速高效推进。
发明内容
本发明为解决上述现有技术中存在的问题,提供了一种基于二、三维实时联动的交叉地质剖面界线调整方法,本发明能够实时对交叉地质剖面界线进行三维和二维的联动调整,给地质剖面绘制人员提供一种高效、实时、精确的剖面修改调整方法。
为实现上述目的,本发明提供的技术方案为:一种基于二、三维实时联动的交叉地质剖面界线调整方法,至少包括以下步骤:
(1)二维地质剖面的三维映射:利用二维图件中已预先编绘的交叉地质剖面初稿,将其中两个不同方向的交叉地质剖面数据,按控制点立剖面的方式进行三维映射;
(2)初步判断地质界线的合理性:在三维建模系统中对交叉地质剖面地质界线整体上空间形态和接触关系的协调合理性进行判断,选择整体空间形态和接触关系不协调合理的交叉地质剖面,对其一个方向的地质界线从三维建模系统实时返回到二维图件编绘系统,并将另外一个方向所有地质剖面中地质界线与当前剖面在相交处的位置,以短横线标记在当前剖面上;
(3)初步修改地质界线:在二维图件编绘系统中修改步骤(2)中的地质界线,将修改后的地质界线映射到三维建模系统中进行动态显示,并重复步骤(2)操作,直到所有交叉地质剖面上的地质界线整体上协调合理;
(4)复查交叉地质剖面线条一致性:利用三维建模系统中对经过步骤(2)和步骤(3)中初步整体协调合理的交叉地质剖面进行交叉剖面线条一致性检查,返回并计算地质剖面相交处的同一属性地层界线的高程差和同一属性断层界线的高程差,如果所得高程差超过所预设界定的允许误差范围,则将相应地质剖面从三维建模系统返回到二维图件编绘系统中进行修改,修改后再实时联动到三维建模系统中,以确保两个方向的所有地质剖面在交叉处地质界线的高程差,不超过所设定的精度误差范围;
(5)增加用于提高精度的控制点:在三维建模系统中,对已经过步骤(4)的一致性检查后整体协调合理的交叉地质剖面进行检查,查找地质界线相交处规定范围内是否存在控制点,若地质界线在相交处的规定范围内存在控制点,则将其转移至地质界线相交处;若地质界线相交处的规定范围内不存在控制点,则在相应地质界线的相交处增加控制点;
(6)地质剖面自动校正:在三维建模系统中,将经过步骤(5)处理后的地质界线,根据区域地质情况将其中一个方向的地质剖面作为主方向剖面,另外一个地质剖面为次方向剖面,利用三维建模系统自动捕捉次方向地质剖面上的交叉处控制点,并将其统一平移到主方向地质剖面交叉处的控制点上,使主次两交叉剖面在交叉处的高程误差为零。
在步骤(1)中的交叉地质剖面两端点坐标为,在二维图件编绘系统中查询交叉地质剖面顶部起点图纸坐标(X1,Y1),并在配置文件中记录起点图纸坐标和与之对应的三维空间真实坐标(X1’,Y1’,H1’),按照相同的步骤查询交叉地质剖面顶部终点图纸坐标(X2,Y2)在配置文件中记录顶部终点图纸坐标和与之对应的三维空间真实坐标(X2’,Y2’,H2’),将配置文件和交叉地质剖面一起导入三维建模系统中,使二维剖面图纸坐标映射到三维空间中,得到含有真实坐标的三维剖面。
在步骤(2)中,利用三维建模系统返回到二维图件编绘系统时采用控制点切剖面的思想,即在三维建模系统中选中剖面上的任意一根地质界线以后,系统会根据选中的地质界线的走向生成一个二维投影面,当前剖面上的其它地质界线就会投影到二维面上,从而达到三维实时返回到二维的目的。
在步骤(4)中,三维建模系统根据预设的精度误差范围对同一属性地层界线的高程差和同一属性断层界线的高程差进行判断,并将高程差超过精度误差范围的相应地质剖面返回至二维图件编绘系统中进行后续修改。
在步骤(5)中,在比例尺为1:2000的地质剖面的地质界线相交处规定范围误差精度小于2米;在比例尺为1:10000地质剖面的地质界线相交处规定范围误差精度小于10米。
在步骤(6)中,通过三维建模系统以一个方向的地质剖面为基础,对另外一个地质剖面交叉处控制点统一平移,消除高程误差。
根据上述技术方案可知,本发明提供的基于二、三维实时联动的交叉地质剖面界线调整方法通过对二维图件编绘系统绘制交叉地质剖面初稿,并将交叉地质剖面导入三维建模系统,通过三维建模系统判断地质界线整体协调性,并在二维图件编绘系统中进行实时修改,因为本方法通过二、三维实时联动动态的调整地质剖面界线,所以本发明所给出的方法和软件,大大降低了交叉地质剖面修改调整的难度,提高了工作效率并保障了建模工作的精度。
附图说明
图1本发明的总体流程;
图2二维剖面导入三维建模系统所需坐标配置文件制作方式示意图;
图3二维剖面和坐标配置文件共同导入三维建模系统的对话框示意图;
图4单个二维剖面按照控制点立剖面的方式立入三维建模系统后的效果示意图;
图5二维交叉地质剖面导入到三维建模系统空间分布图;
图6当前选中交叉地质剖面从三维建模系统实时返回到二维图件编绘系统示意图;
图7交叉地质剖面相交处同一地质属性地质界线高程差统计表格;
图8对整体协调合理的交叉地质剖面相交处地质界线上增加控制点示意图;
图9次方向剖面交叉处控制点自动捕捉平移到主方向交叉处控制点后高程差为零时的统计表格。
具体实施方式
下面结合附图和具体实施例对本发明作详细具体的说明,但本发明的保护范围不限于下述的实施例。
在本发明所提供的技术方案一种基于二、三维实时联动的交叉地质剖面界线调整方法,如图1所示,至少包括以下步骤:
(1)二维地质剖面的三维映射:利用二维图件中已预先编绘的交叉地质剖面初稿,将其中两个不同方向的交叉地质剖面数据,按控制点立剖面的方式进行三维映射;本步骤为将已经过绘制完成的交叉地质剖面初稿进行三维映射转换,在本申请中不涉及如何绘制二维的交叉地质剖面初稿。
在本实施例中,在步骤(1)中的交叉地质剖面两端点坐标为,如图2和图3所示,在二维图件编绘系统中查询交叉地质剖面顶部起点图纸坐标(X1,Y1),并在配置文件中记录起点图纸坐标和与之对应的三维空间真实坐标(X1’,Y1’,H1’),配置文件记录在计算机中的TXT文本中,按照相同的步骤查询交叉地质剖面顶部终点图纸坐标(X2,Y2)在配置文件中记录顶部终点图纸坐标和与之对应的三维空间真实坐标(X2’,Y2’,H2’),将配置文件和交叉地质剖面一起导入三维建模系统中,使二维剖面图纸坐标映射到三维空间中,得到含有真实坐标的三维剖面,具体如图4和5所示。
(2)初步判断地质界线的合理性:在三维建模系统中对交叉地质剖面地质界线整体上空间形态、接触关系的协调性和合理性进行判断,如图6所示,选择整体空间形态、接触关系不协调合理的交叉地质剖面,对其一个方向的地质界线从三维建模系统实时返回到二维图件编绘系统,并将另外一个方向所有地质剖面中地质界线与当前剖面在相交处的位置,以短横线标记在当前剖面上;其中整体空间形态、接触关系不协调合理的交叉地质剖面根据地质人员自行判断,此步骤为初步筛查,对交叉地质剖面地质界线所存在的明显错误进行排查。
在步骤(2)中,利用三维建模系统返回到二维图件编绘系统时采用控制点切剖面的思想,即在三维建模系统中选中剖面上的任意一根地质界线以后,系统会根据选中的地质界线的走向生成一个二维投影面,当前剖面上的其它地质界线就会投影到二维面上,从而达到三维实时返回到二维的目的。
(3)初步修改地质界线:在二维图件编绘系统中修改步骤(2)中的地质界线,将修改后的地质界线映射到三维建模系统中进行动态显示,并重复步骤(2)操作,直到所有交叉地质剖面上的地质界线整体上协调合理;
(4)复查交叉地质剖面线条一致性:利用三维建模系统中对经过步骤(2)和步骤(3)中初步整体协调合理的交叉地质剖面进行交叉剖面线条一致性检查,返回并计算地质剖面相交处的同一属性地层界线的高程差和同一属性断层界线的高程差,如图7所示,如果所得高程差超过所预设界定的允许误差范围,则将相应地质剖面从三维建模系统返回到二维图件编绘系统中进行修改,修改后再实时联动到三维建模系统中,以确保两个方向的所有地质剖面在交叉处地质界线的高程差,不超过所设定的精度误差范围;
在步骤(4)中,三维建模系统根据预设的精度误差范围对同一属性地层界线的高程差和同一属性断层界线的高程差进行判断,并将高程差超过精度误差范围的相应地质剖面返回至二维图件编绘系统中。其中精度误差根据实际使用时的所需预设值进行设置。
(5)增加用于提高精度控制点:在三维建模系统中,对已经过步骤(4)的一致性检查后整体协调合理的交叉地质剖面进行检查,如图8所示,查找地质界线相交处规定范围内是否存在控制点,若地质界线在相交处的规定范围内存在控制点,则将其转移至地质界线相交处;若地质界线相交处的规定范围内不存在控制点,则在相应地质界线的相交处增加控制点;本步骤通过查找在地质界线相交处有无控制点,若存在控制点则将其转移至地质界线相交处以节省控制点资源,若此处的规定范围内无控制点,则新增控制点进行控制。
在步骤(5)中的规定范围在实际使用时按实际情况进行选择,在本实施例中,在比例尺为1:2000地质剖面的地质界线相交处规定范围误差精度小于2米,则此处的精度范围取值为0~2米;在比例尺为1:10000地质剖面的地质界线相交处规定范围误差精度小于10米,则此处的精度范围取值为0~10米。
(6)地质剖面自动校正:在三维建模系统中,将经过步骤(5)处理后的地质界线,如图9所示,地质人员根据区域地质情况将其中一个方向的地质剖面作为主方向剖面,另外一个方向的地质剖面为次方向剖面,利用三维建模系统自动捕捉次方向地质剖面上的交叉处控制点,并将其统一平移到主方向地质剖面交叉处的控制点上,使主次两交叉剖面在交叉处的高程误差为零。
在步骤(6)中,通过三维建模系统以一个方向的地质剖面为基础,对外一个方向的地质剖面交叉处控制点统一平移,经过步骤(1)至步骤(5)的操作后,此时可以将仍然存在的高程差视为误差,将控制点统一平移以达到消除高程误差的目的。

Claims (6)

1.一种基于二、三维实时联动的交叉地质剖面界线调整方法,其特征在于至少包括以下步骤:
(1)二维地质剖面的三维映射:利用二维图件编绘系统中已预先编绘的交叉地质剖面初稿,将其中两个不同方向的交叉地质剖面数据,按控制点立剖面的方式进行三维映射;
(2)初步判断地质界线的合理性:在三维建模系统中对交叉地质剖面地质界线整体上空间形态和接触关系的协调合理性进行判断,选择整体空间形态和接触关系不协调合理的交叉地质剖面,对其一个方向的地质界线从三维建模系统实时返回到二维图件编绘系统,并将另外一个方向所有地质剖面中地质界线与当前剖面在相交处的位置,以短横线标记在当前剖面上;
(3)初步修改地质界线:在二维图件编绘系统中修改步骤(2)中的地质界线,将修改后的地质界线映射到三维建模系统中进行动态显示,并重复步骤(2)操作,直到所有交叉地质剖面上的地质界线整体上协调合理;
(4)复查交叉地质剖面线条一致性:利用三维建模系统中对经过步骤(2)和步骤(3)中初步整体协调合理的交叉地质剖面进行交叉剖面线条一致性检查,返回并计算地质剖面相交处的同一属性地层界线的高程差和同一属性断层界线的高程差,如果所得高程差超过所预设界定的允许误差范围,则将相应地质剖面从三维建模系统返回到二维图件编绘系统中进行修改,修改后再实时联动到三维建模系统中,以确保两个方向的所有地质剖面在交叉处地质界线的高程差,不超过所设定的精度误差范围;
(5)增加用于提高精度的控制点:在三维建模系统中,对已经过步骤(4)的一致性检查后整体协调合理的交叉地质剖面进行检查,查找地质界线相交处规定范围内是否存在控制点,若地质界线在相交处的规定范围内存在控制点,则将其转移至地质界线相交处;若地质界线相交处的规定范围内不存在控制点,则在相应地质界线的相交处增加控制点;
(6)地质剖面自动校正:在三维建模系统中,将经过步骤(5)处理后的地质界线,根据区域地质情况将其中一个方向的地质剖面作为主方向剖面,另外一个地质剖面为次方向剖面,利用三维建模系统自动捕捉次方向地质剖面上的交叉处控制点,并将其统一平移到主方向地质剖面交叉处的控制点上,使主次两交叉剖面在交叉处的高程误差为零。
2.根据权利要求1所述的基于二、三维实时联动的交叉地质剖面界线调整方法,其特征在于:步骤(1)中的交叉地质剖面两端点坐标为,在二维图件编绘系统中查询交叉地质剖面顶部起点图纸坐标(X1,Y1),并在配置文件中记录起点图纸坐标和与之对应的三维空间真实坐标(X1’,Y1’,H1’),按照相同的步骤查询交叉地质剖面顶部终点图纸坐标(X2,Y2)在配置文件中记录顶部终点图纸坐标和与之对应的三维空间真实坐标(X2’,Y2’,H2’),将配置文件和交叉地质剖面一起导入三维建模系统中,使二维剖面图纸坐标映射到三维空间中,得到含有真实坐标的三维剖面。
3.根据权利要求1所述的基于二、三维实时联动的交叉地质剖面界线调整方法,其特征在于:在步骤(2)中,利用三维建模系统返回到二维图件编绘系统时采用控制点切剖面的思想,即在三维建模系统中选中剖面上的任意一根地质界线以后,系统会根据选中的地质界线的走向生成一个二维投影面,当前剖面上的其它地质界线就会投影到二维面上,从而达到三维实时返回到二维的目的。
4.根据权利要求1所述的基于二、三维实时联动的交叉地质剖面界线调整方法,其特征在于:在步骤(4)中,三维建模系统根据预设的精度误差范围对同一属性地层界线的高程差和同一属性断层界线的高程差进行判断,并将高程差超过精度误差范围的相应地质剖面返回至二维图件编绘系统中进行后续修改。
5.根据权利要求1所述的基于二、三维实时联动的交叉地质剖面界线调整方法,其特征在于:在步骤(5)中,在比例尺为1:2000的地质剖面的地质界线相交处规定范围误差精度小于2米;在比例尺为1:10000地质剖面的地质界线相交处规定范围误差精度小于10米。
6.根据权利要求1所述的基于二、三维实时联动的交叉地质剖面界线调整方法,其特征在于:步骤(6)中,通过三维建模系统以一个方向的地质剖面为基础,对另外一个地质剖面交叉处控制点统一平移,消除高程误差。
CN202211229078.1A 2022-10-09 2022-10-09 一种基于二、三维实时联动的交叉地质剖面界线调整方法 Pending CN115690340A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211229078.1A CN115690340A (zh) 2022-10-09 2022-10-09 一种基于二、三维实时联动的交叉地质剖面界线调整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211229078.1A CN115690340A (zh) 2022-10-09 2022-10-09 一种基于二、三维实时联动的交叉地质剖面界线调整方法

Publications (1)

Publication Number Publication Date
CN115690340A true CN115690340A (zh) 2023-02-03

Family

ID=85064181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211229078.1A Pending CN115690340A (zh) 2022-10-09 2022-10-09 一种基于二、三维实时联动的交叉地质剖面界线调整方法

Country Status (1)

Country Link
CN (1) CN115690340A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117292079A (zh) * 2023-11-27 2023-12-26 浙江城市数字技术有限公司 应用于数字孪生的多维度场景坐标点位转换及映射方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117292079A (zh) * 2023-11-27 2023-12-26 浙江城市数字技术有限公司 应用于数字孪生的多维度场景坐标点位转换及映射方法
CN117292079B (zh) * 2023-11-27 2024-03-05 浙江城市数字技术有限公司 应用于数字孪生的多维度场景坐标点位转换及映射方法

Similar Documents

Publication Publication Date Title
US20210248816A1 (en) Embedded urban design scene emulation method and system
US11302072B2 (en) System for constructing urban design digital sand table
CN106372293B (zh) 一种基于三维基准线的构筑物bim模型创建方法
CN108597020A (zh) 一种三维地下管线探测数据快速成图方法及系统
CN110189409B (zh) 一种基于plaxis的快速真三维地质建模方法及系统
CN110030972A (zh) 基于ExcelVBA的隧道超欠挖检测方法
CN104091005B (zh) 一种架空送电线路工程测量内外业一体化系统
CN102760160B (zh) 一种在空间信息库中进行多尺度地形图缩编的系统
CN105760536A (zh) 一种基于地理数据库的地质图件建库装置及方法
CN104299269A (zh) 一种三维地质模型的地质剖面输出方法
CN102708587A (zh) 一种快速获取三维建筑信息的方法及系统
CN110516015B (zh) 基于地图图形数据和dlg制作地理pdf地图的方法
CN105184865A (zh) 基于地质三维建模流程的地质图件编绘方法
CN112288844B (zh) 一种基于bim的三维工程曲线自动拟合方法
CN105205864A (zh) 基于多源数据的地质结构面三维模型自动建模方法和系统
CN106874610A (zh) 一种基于vb和catia的斜心墙土石坝建模方法
CN109102564A (zh) 一种复杂地质体数值模型的耦合建模方法
CN110489890A (zh) 钢岔管结构自动出图方法
CN104361025A (zh) 一种多源空间数据融合与集成的方法
CN115690340A (zh) 一种基于二、三维实时联动的交叉地质剖面界线调整方法
CN106777779A (zh) 一种基于bim的铁路涵洞设计方法
CN109741449A (zh) 一种基于三维空间坐标变换的地质剖面竖立方法
CN113987659A (zh) 一种基于bim技术的建筑设计方法
CN105957146A (zh) 线状工程三维地质建模方法
CN113486429B (zh) 一种基于插值算法的空间汇交结构自动化建造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination