CN115684495A - Herbaceous vegetation canopy interception monitoring test device and method - Google Patents
Herbaceous vegetation canopy interception monitoring test device and method Download PDFInfo
- Publication number
- CN115684495A CN115684495A CN202211381577.2A CN202211381577A CN115684495A CN 115684495 A CN115684495 A CN 115684495A CN 202211381577 A CN202211381577 A CN 202211381577A CN 115684495 A CN115684495 A CN 115684495A
- Authority
- CN
- China
- Prior art keywords
- vegetation
- rainfall
- test
- operation box
- canopy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 167
- 238000012544 monitoring process Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title abstract description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 86
- 238000005286 illumination Methods 0.000 claims abstract description 7
- 239000011148 porous material Substances 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 7
- 238000004088 simulation Methods 0.000 claims description 7
- 238000010998 test method Methods 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 22
- 230000007613 environmental effect Effects 0.000 abstract description 13
- 238000010521 absorption reaction Methods 0.000 abstract description 8
- 238000005259 measurement Methods 0.000 abstract description 8
- 239000002689 soil Substances 0.000 description 27
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 15
- 229910052782 aluminium Inorganic materials 0.000 description 15
- 241000196324 Embryophyta Species 0.000 description 14
- 229910000831 Steel Inorganic materials 0.000 description 12
- 239000010959 steel Substances 0.000 description 12
- 238000009833 condensation Methods 0.000 description 10
- 230000005494 condensation Effects 0.000 description 8
- 230000006378 damage Effects 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 239000004568 cement Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- 229920005372 Plexiglas® Polymers 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000004162 soil erosion Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Landscapes
- Cultivation Of Plants (AREA)
Abstract
Description
技术领域technical field
本发明涉及植被冠层降雨截留监测技术领域,具体涉及一种草本植被冠层截留监测试验装置及方法。The invention relates to the technical field of vegetation canopy rainfall interception monitoring, in particular to a herbaceous vegetation canopy interception monitoring test device and method.
背景技术Background technique
雨水降落到植被冠层后被重新分配为三部分:一部分雨水被叶片吸收或吸附于叶片表面,形成冠层截留;一部分降雨沿着枝干流入地表,形成茎秆流;其余的雨水则通过枝叶间隙降落于地表,形成穿透降雨。因此,冠层截留雨量可采用水量平衡法计算得到,即:冠层截留量=总降雨量-穿透雨量-茎秆流量。但由于草本植物冠层低矮且植株致密,穿透雨量和茎秆流量不易直接测量,目前草本植被冠层截留测定主要采用浸水法、擦拭法和模拟降雨法。After the rainwater falls on the vegetation canopy, it is redistributed into three parts: a part of the rainwater is absorbed by the leaves or adsorbed on the surface of the leaves, forming canopy interception; a part of the rainwater flows into the ground along the branches to form the stalk flow; the rest of the rainwater flows through the branches and leaves. The gap falls to the surface, forming penetrating rainfall. Therefore, canopy intercepted rainfall can be calculated by water balance method, namely: canopy intercepted amount = total rainfall - penetration rainfall - stalk flow. However, due to the low canopy and dense plants of herbaceous plants, it is difficult to directly measure the through-rainfall and stalk flow. At present, the canopy interception of herbaceous vegetation is mainly measured by water immersion method, wiping method and simulated rainfall method.
现有技术中,如CN102918422A中所公开的装置和方法,虽然可在不破坏植被原生状态的情况下对草本植被的冠层截留过程进行监测,但该测量方法会导致部分穿透雨量入渗到土壤中,且由于草本植被和土壤是一个连续体,入渗到土壤中的水量难以准确测量,因此无法消除土壤因子对测量结果的影响;此外,其只能模拟不同自然降雨状态对草本植物截留量的影响。实际上,植被冠层降雨截留是一个非常复杂的过程,除受降雨特征的影响外,草本植被冠层的降雨截留还受环境特性、气象条件以及植被特性等多种因素的影响和制约。现有技术中,如CN212228872U中所公开的装置,虽然消除了土壤因子对测量结果的影响,并可以调整草本植物的密度与坡度,但是该方法需将草本植被叶片剪断或将植物带根拔出才可以固定于铁丝网上,不仅对植被造成了破坏,而且其不能模拟大气温度、湿度、风速、光照以及植被布置方式等对草本植物降雨截留量的影响。In the prior art, although the device and method disclosed in CN102918422A can monitor the canopy interception process of the herbaceous vegetation without destroying the original state of the vegetation, this measurement method will cause part of the penetrating rainfall to infiltrate into the In the soil, and because herbaceous vegetation and soil are a continuum, it is difficult to accurately measure the amount of water infiltrated into the soil, so the influence of soil factors on the measurement results cannot be eliminated; in addition, it can only simulate the interception of herbaceous plants in different natural rainfall states. Quantitative impact. In fact, the rainfall interception of vegetation canopy is a very complicated process. In addition to the influence of rainfall characteristics, the rainfall interception of herbaceous vegetation canopy is also affected and restricted by many factors such as environmental characteristics, meteorological conditions, and vegetation characteristics. In the prior art, although the device disclosed in CN212228872U has eliminated the influence of soil factors on the measurement results, and can adjust the density and slope of herbaceous plants, this method needs to cut off the leaves of herbaceous vegetation or pull out the plants with roots It can only be fixed on the barbed wire, which not only damages the vegetation, but also cannot simulate the influence of atmospheric temperature, humidity, wind speed, light and vegetation arrangement on the rainfall interception of herbaceous plants.
发明内容Contents of the invention
本发明的目的是针对现有技术存在的缺陷,提供一种草本植被冠层截留监测试验装置及方法,通过植被培育箱上设置带孔顶盖供培养的植被茎秆穿过,既不会破坏植被,又能够排除土壤因子的影响,在安装有各类环境组件的试验操作箱内进行降雨试验,通过监测降雨量和未被植被冠层截留的雨量,模拟不同环境条件对草本植物冠层截留过程的影响。The purpose of the present invention is to address the defects in the prior art, to provide a herbaceous vegetation canopy interception monitoring test device and method, by setting a perforated top cover on the vegetation cultivation box for the cultivated vegetation stalks to pass through, which will not damage the Vegetation can exclude the influence of soil factors. Rainfall experiments are carried out in the test operation box equipped with various environmental components. By monitoring the rainfall and the rainfall not intercepted by the vegetation canopy, the impact of different environmental conditions on the interception of the herbaceous canopy can be simulated. process impact.
本发明的第一目的是提供一种草本植被冠层截留监测试验装置,采用以下方案:First object of the present invention is to provide a kind of herbaceous vegetation canopy interception monitoring test device, adopts following scheme:
包括:include:
试验操作箱;Test operation box;
植被培育箱,布置在试验操作箱内,顶部设有供植被茎秆穿过的带孔顶盖;The vegetation cultivation box is arranged in the test operation box, and the top is provided with a perforated top cover for the vegetation stalks to pass through;
降雨组件,输出端位于试验操作箱内,且降雨区域覆盖植被培育箱培育的植被;The rainfall component, the output end is located in the test operation box, and the rainfall area covers the vegetation cultivated in the vegetation cultivation box;
收集组件,收集端位于试验操作箱内,用于获取未被植被冠层截留的雨量。The collection component, the collection end is located in the test operation box, is used to obtain the rainfall not intercepted by the vegetation canopy.
进一步地,还包括环境组件,环境组件包括安装在试验操作箱内的温度控制器、风速调节组件、光照调节组件、湿度调节组件。Further, it also includes an environmental component, which includes a temperature controller installed in the test operation box, a wind speed adjustment component, an illumination adjustment component, and a humidity adjustment component.
进一步地,所述湿度调节组件包括空气抽湿器,空气抽湿器入口端连通试验操作箱,空气抽湿器出口端通过冷凝管连通冷凝水收集装置,以调整植被培育箱所在区域的空气湿度。Further, the humidity adjustment assembly includes an air dehumidifier, the inlet end of the air dehumidifier is connected to the test operation box, and the outlet end of the air dehumidifier is connected to the condensed water collection device through a condensation pipe, so as to adjust the air humidity in the area where the vegetation cultivation box is located. .
进一步地,所述光照调节组件包括遮光板,遮光板可拆卸连接试验操作箱,通过调节数目和/或安装位置调节试验操作箱内植被的光照条件。Further, the illumination adjustment assembly includes a shading plate, which is detachably connected to the test operation box, and adjusts the lighting conditions of the vegetation in the test operation box by adjusting the number and/or installation position.
进一步地,所述风速调节组件包括风力模拟器,风力模拟器的出口端连通试验操作箱,并作用于植被培育箱培育的植被。Further, the wind speed adjustment assembly includes a wind simulator, the outlet of the wind simulator is connected to the test operation box, and acts on the vegetation cultivated in the vegetation cultivation box.
进一步地,所述试验操作箱内安装有第一孔板,第一孔板将试验操作箱内部分隔为降雨腔和收集腔,降雨组件的输出端、植被培育箱位于降雨腔内,收集组件位于收集腔内,且收集组件的收集端通过第一孔板连通降雨腔。Further, a first orifice plate is installed in the test operation box, and the first orifice plate divides the interior of the test operation box into a rain chamber and a collection chamber, the output end of the rain assembly and the vegetation cultivation box are located in the rain chamber, and the collection assembly is located in the rain chamber. The collecting chamber is inside, and the collecting end of the collecting assembly communicates with the rain chamber through the first orifice plate.
进一步地,所述第一孔板上转动连接有承载植被培育箱的第二孔板,第二孔板连接有角度调节机构,以驱动第二孔板转动改变植被培育箱带孔顶盖所在平面与第一孔板所在平面的夹角。Further, the first orifice plate is rotatably connected with the second orifice plate carrying the vegetation cultivation box, and the second orifice plate is connected with an angle adjustment mechanism to drive the second orifice plate to rotate and change the plane where the vegetation cultivation box is located with a hole top cover. Angle with the plane of the first orifice plate.
进一步地,所述降雨组件包括依次连接的降雨喷头、输水导管和蓄水桶,输水导管上安装有流量泵;或,植被培育箱的带孔顶盖设有多种规格,不同规格的带孔顶盖上配置的孔口形状、大小、布置形式和/或密度不同。Further, the rainfall assembly includes sequentially connected rainfall nozzles, water delivery conduits and water storage barrels, and flow pumps are installed on the water delivery conduits; or, the perforated top cover of the vegetation cultivation box is provided with various specifications, different specifications The perforated top covers are configured with orifices that vary in shape, size, arrangement and/or density.
本发明的第二目的是提供一种利用如第一目的所述草本植被冠层截留监测试验装置的试验方法,包括:The second object of the present invention is to provide a kind of test method utilizing herbaceous vegetation canopy interception monitoring test device as described in the first object, comprising:
依据试验选取的草本植被确定带孔顶盖,制备植被培育箱,使植被茎秆穿过带孔顶盖的孔口,封堵植被茎秆与孔口之间孔隙;Determine the roof with holes according to the herbaceous vegetation selected in the test, prepare the vegetation cultivation box, make the vegetation stalks pass through the holes of the roof with holes, and seal the pores between the stalks of the plants and the holes;
调整试验操作箱内环境,调整降雨强度和降雨量,进行冠层降雨截留模拟试验;Adjust the environment in the test operation box, adjust the rainfall intensity and rainfall, and conduct the canopy rainfall interception simulation test;
实时监测降雨组件的降雨量和收集组件的收集雨量,获取冠层截留量。Real-time monitoring of the rainfall of the rainfall component and the collected rainfall of the collection component to obtain the canopy interception.
进一步地,调整植被培育箱在试验操作箱的姿态,重复进行试验;在降雨操作前,使雨水润湿试验操作箱内除植被培育箱的各个组件。Further, adjust the posture of the vegetation cultivation box in the test operation box, and repeat the test; before the rain operation, make the rainwater wet the test operation box and remove the various components of the vegetation cultivation box.
与现有技术相比,本发明具有的优点和积极效果是:Compared with prior art, the advantages and positive effects that the present invention has are:
(1)针对目前草本植被冠层截留过程不便进行监测的问题,通过植被培育箱上设置带孔顶盖供培养的植被茎秆穿过,既不会破坏植被,又能够排除土壤因子的影响,提高对草本植被冠层截留的监测效果;相比于将植被倒置或带根拨出等方法,草本植被在培育箱中进行试验,可以使草本植被处于自然生长状态,不会影响植被正常的吸水功能,使得测量结果更准确。(1) In view of the inconvenient monitoring of the interception process of the herbaceous vegetation canopy, a perforated top cover is set on the vegetation cultivation box for the cultivated vegetation stalks to pass through, which will not damage the vegetation and can eliminate the influence of soil factors. Improve the monitoring effect of herbaceous vegetation canopy interception; compared with methods such as inverting the vegetation or pulling out the roots, the herbaceous vegetation can be tested in the cultivation box, which can make the herbaceous vegetation in a natural growth state without affecting the normal water absorption of the vegetation function, making the measurement results more accurate.
(2)对于目前不能模拟多种环境对草本植物降雨截留量的影响的问题,在安装有各类环境组件的试验操作箱内进行降雨试验,可以全面准确地模拟不同的环境温度、初始湿度、风速、光照、坡度以及植被种植密度和布置方式等对草本植物冠层截留过程的影响,功能更加全面。(2) For the current problem that it is impossible to simulate the impact of various environments on the rainfall interception of herbaceous plants, the rainfall test is carried out in the test operation box equipped with various environmental components, which can comprehensively and accurately simulate different environmental temperatures, initial humidity, The effects of wind speed, light, slope, and vegetation planting density and arrangement on the interception process of herbaceous plant canopy are more comprehensive.
(3)对试验操作箱内的环境组件,通过单一调节或共同调节各环境组件,既可以模拟单一变量对草本植物冠层截留过程的影响,也可以模拟多变量综合作用对草本植物冠层截留过程的影响。(3) For the environmental components in the test operation box, by adjusting each environmental component individually or jointly, it is possible to simulate the influence of a single variable on the interception process of the herbaceous plant canopy, or to simulate the comprehensive effect of multiple variables on the interception process of the herbaceous plant canopy. process impact.
(4)对降雨量和未被植被冠层截留的雨量进行监测,不仅可以得到草本植被的最大冠层截留量,还可以实时监测冠层截留量,获取不同试验条件下草本植被冠层截留量随时间的动态变化过程。(4) Monitoring the rainfall and the rainfall not intercepted by the vegetation canopy can not only obtain the maximum canopy interception of herbaceous vegetation, but also monitor the canopy interception in real time to obtain the canopy interception of herbaceous vegetation under different test conditions A dynamic process of change over time.
(5)植被培育箱使用同一土壤箱,只更换不同孔口形状、大小、布置形式和密度的带孔顶盖便可以进行不同影响因素的试验,简单便利,也可以实现循环利用,节省材料;试验结束后,种植的植被待水分吸收达到新的稳定状态后,可以移出进行新的试验,重复利用;移植的植被可以重新放回取样位置,不破坏环境。(5) The same soil box is used in the vegetation cultivation box, and the test of different influencing factors can be carried out only by replacing the holed top cover with different hole shapes, sizes, layout forms and densities. It is simple and convenient, and can also realize recycling and save materials; After the test, the planted vegetation can be removed for a new test and reused after the water absorption reaches a new stable state; the transplanted vegetation can be put back to the sampling location without damaging the environment.
附图说明Description of drawings
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings constituting a part of the present invention are used to provide a further understanding of the present invention, and the schematic embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute improper limitations to the present invention.
图1为本发明实施例1和2中草本植被冠层截留监测试验装置的结构示意图。Fig. 1 is a schematic structural view of the herbaceous vegetation canopy interception monitoring test device in Examples 1 and 2 of the present invention.
图2为本发明实施例1和2中草本植被冠层截留监测试验装置的正视示意图。Fig. 2 is a schematic front view of the herbaceous vegetation canopy interception monitoring test device in Examples 1 and 2 of the present invention.
图3为本发明实施例1和2中植被培育箱的示意图。Fig. 3 is a schematic diagram of the vegetation cultivation box in Examples 1 and 2 of the present invention.
其中,1-蓄水桶,2-流量泵,3-输水导管,4-温度控制器,5-温湿度传感器,6-透明玻璃板,7-降雨喷头,8-试验操作箱,9-风力模拟器,10-防滑挡条,11-带孔铝板,12-带孔钢板,13-铰接合页,14-空气抽湿器,15-植被培育箱,16-电动千斤顶,17-挡水条,18-遮光板,19-旋转开合门,20-集水漏斗,21-冷凝管,22-带孔盖板,23-冷凝水收集装置,24-雨水收集装置,25-固定支架,26-试验箱底座,27-万向轮,28-角度测量仪,29-带孔顶盖,30-土壤箱。Among them, 1-water storage bucket, 2-flow pump, 3-water delivery conduit, 4-temperature controller, 5-temperature and humidity sensor, 6-transparent glass plate, 7-rainfall nozzle, 8-test operation box, 9- Wind simulator, 10-anti-skid bar, 11-perforated aluminum plate, 12-perforated steel plate, 13-hinge joint, 14-air dehumidifier, 15-vegetation cultivation box, 16-electric jack, 17-water retaining Bar, 18-shading plate, 19-revolving opening and closing door, 20-water collection funnel, 21-condensation pipe, 22-cover with holes, 23-condensation water collection device, 24-rainwater collection device, 25-fixed bracket, 26-test box base, 27-universal wheels, 28-angle measuring instrument, 29-top cover with holes, 30-soil box.
具体实施方式Detailed ways
植被冠层降雨截留是土壤—植被—大气连续体中水循环过程的重要环节之一,直接关系到降雨的分配以及植物对水分的有效利用。植被冠层降雨截留会影响多种生态水文功能,例如,植被冠层通过截留部分降雨,使到达地面的雨量减少,从而改变了地表径流量和土壤入渗水量,影响植被对土壤水分的吸收利用;其次,冠层截留减小了雨滴的动能,可以削弱雨水对地表的侵蚀,减少水土流失;此外,截留在叶片表面的水分通过蒸发作用进入大气中还可以调节大气温度和湿度。因此,明确植被冠层降雨截留特征及其影响因素对研究区域生态环境保护、植被水分有效利用和生态水文过程等具有重要科学意义。Rainfall interception by vegetation canopy is one of the important links in the water cycle process in the soil-vegetation-atmosphere continuum, which is directly related to the distribution of rainfall and the effective use of water by plants. Rainfall interception by vegetation canopy will affect various ecological and hydrological functions. For example, by intercepting part of the rainfall, vegetation canopy reduces the amount of rainfall reaching the ground, thereby changing the surface runoff and soil infiltration, and affecting the absorption and utilization of soil water by vegetation. Secondly, canopy interception reduces the kinetic energy of raindrops, which can weaken the erosion of rainwater on the surface and reduce soil erosion; in addition, the water trapped on the surface of leaves enters the atmosphere through evaporation and can also adjust the temperature and humidity of the atmosphere. Therefore, it is of great scientific significance to clarify the characteristics of rainfall interception by vegetation canopy and its influencing factors for the study of regional ecological environment protection, effective use of vegetation water, and ecohydrological processes.
目前草本植被冠层截留测定主要采用浸水法、擦拭法和模拟降雨法。采用浸水法,大部分研究均是将草本植被的叶片齐地表剪下后浸入水中,根据叶片吸水前后的重量变化来计算冠层截留量,这会对植被造成破坏;为避免对植被的破坏,也有部分研究将草本植被倒置后,再将叶片浸入水中,称取吸水前后的重量变化,但植被倒置后会影响叶片的正常吸水功能,使得测量结果不准确。擦拭法则只能测量吸附于叶片表面的水量,被叶片吸收的水分无法测量,而且在植株致密的草丛中,不便于操作,测量准确性较差。模拟降雨法,需要将草本植被的叶片齐地表剪断或带根拔出后将根清洗干净,然后按照不同密度扦插在铁丝网或者土筛的表面,根据水量平衡法计算得到冠层截留量,但这种方法同样会对植被造成破坏。At present, the canopy interception measurement of herbaceous vegetation mainly adopts water immersion method, wiping method and simulated rainfall method. Using the water immersion method, most of the research is to cut the leaves of herbaceous vegetation evenly on the ground and then immerse them in water, and calculate the canopy interception according to the weight change of the leaves before and after water absorption, which will cause damage to the vegetation; in order to avoid damage to the vegetation, There are also some studies where the herbaceous vegetation is inverted, then the leaves are immersed in water, and the weight change before and after water absorption is weighed, but the normal water absorption function of the leaves will be affected after the vegetation is inverted, making the measurement results inaccurate. The wiping method can only measure the amount of water adsorbed on the surface of the leaves, and the water absorbed by the leaves cannot be measured. Moreover, it is inconvenient to operate in the dense grass of the plants, and the measurement accuracy is poor. In the simulated rainfall method, it is necessary to cut off the leaves of herbaceous vegetation at the surface or pull out the roots, clean the roots, and then cut them on the surface of barbed wire or soil sieves according to different densities, and calculate the canopy interception according to the water balance method. This method will also cause damage to vegetation.
实施例1Example 1
本发明的一个典型实施例中,如图1-图3所示,给出一种草本植被冠层截留监测试验装置。In a typical embodiment of the present invention, as shown in Figures 1-3, a herbaceous vegetation canopy interception monitoring test device is provided.
目前草本植被冠层截留监测试验相关的设备和方法均存在一定的不足,在冠层截留监测试验过程中,容易破坏草本植被,存在土壤因子对监测过程中的影响,无法全面准确的测量草本植被在不同环境和气象条件下的降雨截留特性,难以明确草本植被降雨截留过程以及其对生态水文过程的影响。At present, the equipment and methods related to the canopy interception monitoring test of herbaceous vegetation have certain deficiencies. In the process of canopy interception monitoring test, it is easy to damage the herbaceous vegetation, and there are influences of soil factors on the monitoring process, so it is impossible to measure the herbaceous vegetation comprehensively and accurately. The rainfall interception characteristics under different environmental and meteorological conditions make it difficult to clarify the rainfall interception process of herbaceous vegetation and its impact on ecohydrological processes.
基于此,本实施例提供一种草本植被冠层截留监测试验装置,能够既不破坏植被,又可以排除土壤因子影响,还可以全面准确地模拟不同的环境温度、初始湿度、风速、光照、坡度以及植被种植密度和布置方式等对草本植物冠层截留过程的影响。Based on this, this embodiment provides a herbaceous vegetation canopy interception monitoring test device, which can neither destroy the vegetation, but also eliminate the influence of soil factors, and can also comprehensively and accurately simulate different environmental temperatures, initial humidity, wind speed, light, and slope And the influence of vegetation planting density and arrangement on the interception process of herbaceous canopy.
下面,结合附图对本实施例中的草本植被冠层截留监测试验装置进行详细说明。Below, the herbaceous vegetation canopy interception monitoring test device in this embodiment will be described in detail in conjunction with the accompanying drawings.
参见图1,草本植被冠层截留监测试验装置主要包括蓄水桶1、流量泵2、试验操作箱8、旋转开合门19、降雨喷头7、温度控制器4、空气抽湿器14、温湿度传感器5、风力模拟器9、植被培育箱15、电动千斤顶16、带孔钢板12、带孔铝板11、角度测量仪28、可拆卸式遮光板18、集水漏斗20、冷凝管21、雨水收集装置24、固定支架25和冷凝水收集装置23。Referring to Fig. 1, the herbaceous vegetation canopy interception monitoring test device mainly includes a water storage tank 1, a
其中,降雨喷头7、流量泵2、蓄水桶1、输水导管3共同组成降雨组件;集水漏斗20、雨水收集装置24共同组成收集组件。植被培育箱15布置在试验操作箱8内,顶部设有供植被茎秆穿过的带孔顶盖29;降雨喷头7作为降雨组件的输出端,位于试验操作箱8内,且降雨区域覆盖植被培育箱15培育的植被;集水漏斗20作为收集组件的收集端,也位于试验操作箱8内,降雨喷头7向位于试验操作箱8内的植被上降雨,雨水下落至植被冠层后,部分雨水被植被冠层截留,未被植被培育箱15中植被的冠层截留的雨水被收集组件收集,并能够获取所收集的雨量。Among them, the
试验操作箱8为箱体结构,试验操作箱8内安装有第一孔板,第一孔板将试验操作箱8内部分隔为呈上下层布置的降雨腔和收集腔,降雨组件的输出端、植被培育箱15位于上层的降雨腔内,收集组件位于下层的收集腔内,且收集组件的收集端通过第一孔板连通降雨腔,如图2所示。The
蓄水桶1和流量泵2布置在试验操作箱8外部,流量泵2一端通过输水导管3接入蓄水桶1,另一端通过输水导管3接入位于试验操作箱8内的降雨喷头7。The water storage barrel 1 and the
第一孔板上转动连接有承载植被培育箱15的第二孔板,第二孔板连接有角度调节机构,以驱动第二孔板转动改变植被培育箱15的带孔顶盖29所在平面与第一孔板所在平面的夹角。The first orifice plate is rotatably connected with the second orifice plate carrying the
本实施例中,第一孔板为带孔钢板12,第二孔板为带孔铝板11,参见图2,试验操作箱8为双层箱体结构,上下两层和带孔钢板12之间有橡胶垫圈,防止水分渗出;而且上下两层和带孔钢板12用螺栓固定在一起,便于组装和移动。试验操作箱8上层为模拟试验变量控制部分,下层为水分收集组件部分。温度控制器4、降雨喷头7、空气抽湿器14、温湿度传感器5、风力模拟器9、电动千斤顶16、带孔铝板11、角度测量仪28和可拆卸式遮光板18安装在试验操作箱8上层。集水漏斗20、冷凝管21、雨水收集装置24和冷凝水收集装置23均安装在试验操作箱8下层。试验操作箱8底部安装有万向轮27,可以任意移动。In this embodiment, the first orifice plate is a steel plate with
试验操作箱8配置有环境组件,环境组件包括在试验操作箱8内的温度控制器4、风速调节组件、光照调节组件、湿度调节组件。The
试验操作箱8上层安装有旋转开合门19,顶面和除旋转开合门19外的三个侧面用透明的玻璃板密封,以避免外部环境对试验造成影响。此外,对应光照调节组件,旋转开合门19以及三个侧面和顶面的透明玻璃板6上均安装有的可拆卸式遮光板18,通过调整遮光板18的安装数目、安装位置等参数,可以对试验操作箱8内植被所处区域的光照条件进行调整。拆下的可拆卸式遮光板18,可以模拟自然光照条件下的草本植被冠层截留试验;安装上的可拆卸式遮光板18,可以模拟夜晚无光照或者光照不足条件下的草本植被冠层截留试验。The upper layer of the
处于上层和下层之间的第一孔板为带孔钢板12,带孔钢板12上有大量均匀分布的贯穿小孔,便于雨水快速流入集水漏斗20,并可以拦截部分落叶或杂物,以防止堵塞集水漏斗20;此外,带孔钢板12靠近旋转开合门19的一侧安装有挡水条17,避免雨水流出试验箱,影响试验结果。The first perforated plate between the upper and lower floors is a perforated
温度控制器4安装在试验操作箱8顶面的有机玻璃板上,以避免降雨损坏设备。通过调节温度控制器4既可以升高或降低试验操作箱8上层的空气温度,也可以使验操作箱上层的空气温度保持恒温,从而可以模拟不同气温条件下的草本植被冠层截留试验。本实施例中的温度控制器4可以采用加热器、制冷器组成形成的温度控制方式,加热器和制冷器均可以采用现有成品的设备。The
试验结束后,调节温度控制器4,升高试验操作箱8上层的空气温度,可以加速水分蒸发,进行烘干,避免水分对各装置和仪器的锈蚀。After the test is over, adjust the
如图1所示,湿度调节组件包括空气抽湿器14,风速调节组件包括风力模拟器9,;空气抽湿器14和风力模拟器9安装在试验操作箱8上层中除旋转开合门19外的任意两个内侧面,既可以对向布置,也可以相邻布置。空气抽湿器14出口端分别连通试验操作箱8,空气抽湿器14出口端通过冷凝管21连通冷凝水收集装置23,以调整植被培育箱15所在区域的空气湿度;风力模拟器9的出口端连通试验操作箱8,并作用于植被培育箱15培育的植被。As shown in Figure 1, the humidity adjustment assembly includes an
通过调节空气抽湿器14可以控制试验操作箱8上层的初始空气湿度,从而可以模拟不同初始空气湿度条件下的草本植被冠层截留试验。通过调节风力模拟器9可以控制风速大小,从而可以研究不同风速条件下的草本植被冠层截留特征。试验结束后,调节空气抽湿器14可以加速吸收试验操作箱8中吸附在各装置表面的水分;调节风力模拟器9,可以加速空气流动,促进水分蒸发,避免水分对各装置和仪器的锈蚀。The initial air humidity on the upper layer of the
温湿度传感器5布置在降雨喷头7上方且远离温度控制器4,避免因距温度控制器4和降雨太近而影响空气温度和湿度的监测,使数据监测更准确。温湿度传感器5可以实时监测并显示试验操作箱8上层的空气温度和湿度。The temperature and
如图3所示,植被培育箱15可以为任意形状的箱体结构,包含顶端开口的土壤箱30和带孔顶盖29,试验时放置在带孔铝板11上。土壤箱30及带孔顶盖29均采用透明材料制作,便于观测试验过程中雨水是否渗入土壤箱30。As shown in Figure 3, the
土壤箱30和带孔顶盖29通过透明胶条密封在一起,既能防水还便于拆卸,可以实现对培育箱的重复利用。土壤箱30底部有若干小的排水排气孔,利于植被生长和日常养护。土壤箱30用于盛放培育草本植被所需的土壤。The
土壤箱30和带孔顶盖29密封好后,可以通过带孔顶盖29的小孔种植草本植被种子,也可以将自然环境中的草本植被移植栽入培育箱顶盖的孔中。为避免试验过程中雨水通过顶盖的小孔渗入土壤箱30,试验开始前用防水胶泥将带孔顶盖29上植被茎秆周围的孔隙密封好。试验结束后,移植的草本植被可以重新放回取样位置,避免破坏生态环境。After the
使用同一土壤箱30,只更换不同孔口形状、大小、布置形式和密度的带孔顶盖29便可以进行不同影响因素的试验,简单便利,也可以实现重复利用,节省材料。为便于将不同根系形态的草本植被移植栽入植被培育箱15,植被培育箱15的带孔顶盖29上的孔口可以根据实际根系形态制作成任意形状;根据不同根径和植被茎秆的大小,可以制作不同的孔口大小。根据不同的植被布置条件还可以制作不同孔口布置形式的顶盖,如三角形布置、正方形布置、圆形布置、五角星形布置、同心圆布置、条状布置等等;孔口布置密度可以通过调整相邻两个孔口的距离和孔口数量来调整。通过使用不同孔口布置形式和布置密度的带孔顶盖29,可以改变草本植被的布置形式和密度,以研究植被布置形式和种植密度对冠层截留量的影响。Using the
参见图2,角度调节机构包括电动千斤顶16和角度测量仪28,形成一套针对第二孔板及其所承载植被培育箱15的坡度调节系统。Referring to Fig. 2, the angle adjustment mechanism includes an
电动千斤顶16底端安装在带孔钢板12上,且顶端与带孔铝板11连接。带孔铝板11通过铰接合页13与带孔钢板12连接,可以绕铰接合页13自由转动;带孔铝板11底端安装有防滑挡条10,用于保持植被培育箱15的稳定,避免试验过程中植被培育箱15向下滑动。不安装电动千斤顶16时,可以模拟平地状态时的草本植被冠层截留试验;安装电动千斤顶16后,通过调节电动千斤顶16的升降高度可以调节带孔铝板11的倾斜角度,从而可以模拟不同坡度条件下的草本植被冠层截留试验。带孔铝板11的倾斜角度通过角度测量仪28测量显示。The bottom end of the
集水漏斗20采用倒置的四棱锥的形状,便于雨水快速汇集流入雨水收集装置24;集水漏斗20采用透明塑料板制作,质量轻,便于对试验过程进行观测,而且不会吸收雨水。集水漏斗20安装在带孔钢板12下方,可以拆卸,便于在试验结束后对集水漏斗20内部及时进行清理和维护。集水漏斗20下部出水口带有过滤网,防止试验过程中被雨水冲刷的落叶或杂物进入雨水收集装置24,影响试验结果。The
空气抽湿器14与冷凝管21连接,吸收的水汽经冷凝管21液化,流入冷凝水收集装置23进行收集,液化后的水可以用于降雨或培育植被,循环利用,节约水资源。The
雨水收集装置24用于收集穿透降雨和茎秆流,可以实时显示收集雨量的体积。雨水收集装置24通过固定支架25安装在试验操作箱8底部的的试验箱底座26上。为防止蒸发对实验结果的影响,雨水收集装置24上端有一带孔盖板22,带孔盖板22的孔口尺寸与集水漏斗20的出水口的尺寸保持一致,带孔盖板22可自由取下。The
蓄水桶1、流量泵2和降雨喷头7通过输水导管3串联连接,组成一套降雨模拟系统。蓄水桶1带有计量刻度,可以对流量泵2的出水量进行验证。流量泵2可以实时显示过水量,即降雨量。The water storage tank 1, the
降雨模拟系统作用有三个,一是通过调节流量泵2的流量和流速大小可以调节降雨强度和降雨量,从而模拟不同的降雨条件;二是试验前若试验操作箱8上层的初始空气湿度低于试验要求,通过降雨来提高试验操作箱8上层的空气湿度;三是在试验前润湿带孔铝板11、带孔钢板12和集水漏斗20等过水装置,避免试验过程中部分雨水吸附在装置表面,影响试验结果。The rainfall simulation system has three functions. One is to adjust the rainfall intensity and rainfall by adjusting the flow and velocity of the
实施例2Example 2
本发明的另一典型实施方式中,如图1-图3所示,给出一种草本植被冠层截留监测试验装置的试验方法。In another typical embodiment of the present invention, as shown in Fig. 1-Fig. 3, a test method of a herbaceous vegetation canopy interception monitoring test device is provided.
参见图1-图3,该试验方法包括:Referring to Fig. 1-Fig. 3, the test method includes:
依据试验选取的草本植被确定带孔顶盖29,制备植被培育箱15,使植被茎秆穿过带孔顶盖29的孔口,封堵植被茎秆与孔口之间孔隙;Determine the perforated
调整试验操作箱8内环境,调整降雨强度和降雨量,进行冠层降雨截留模拟试验;Adjust the environment in the
实时监测降雨组件的降雨量和收集组件的收集雨量,获取冠层截留量。Real-time monitoring of the rainfall of the rainfall component and the collected rainfall of the collection component to obtain the canopy interception.
调整植被培育箱15在试验操作箱8的姿态以及试验操作箱8内环境组件的参数状态,重复进行试验;在降雨操作前,使雨水润湿试验操作箱8内除植被培育箱15的各个组件。Adjust the attitude of the
具体的,结合实施例1和图1、图2,对上述适用于草本植被冠层截留监测的试验方法进行详细说明。Specifically, with reference to Example 1 and Fig. 1 and Fig. 2, the above-mentioned test method suitable for interception monitoring of herbaceous vegetation canopy will be described in detail.
包括以下步骤:Include the following steps:
步骤一:根据试验选取的草本植被的根系形态、根径、茎秆尺寸以及研究所需的植被分布形式和密度,确定带孔顶盖29的孔口形状、大小、布置形式和密度,并加工制作带孔顶盖29。将土壤箱30中填满土,用透明胶条将带孔顶盖29和土壤箱30密封好,制备好植被培育箱15。Step 1: According to the root form, root diameter, stem size of the herbaceous vegetation selected in the test, and the vegetation distribution form and density required for the study, determine the shape, size, layout and density of the
步骤二:根据研究需要,在植被培育箱15的带孔顶盖29的孔中种植草本植被种子,或将自然环境中的草本植被移植栽入带孔顶盖29的孔中。将种植或移植的草本植被在植被培育箱15中培育一段时间,观察植被生长状态。若存在不发芽种子或生长不良的植被,及时进行补种或重新移植。Step 2: plant herbaceous vegetation seeds in the holes of the perforated
步骤三:搭建好试验操作箱8,并将温度控制器4、空气抽湿器14、温湿度传感器5、风力模拟器9、电动千斤顶16、带孔铝板11、防滑挡条10、铰接合页13、挡水条17、角度测量仪28、可拆卸式遮光板18、集水漏斗20、雨水收集装置24和冷凝水收集装置23安装在试验操作箱8相应的位置。通过输水导管3将蓄水桶1、流量泵2和降雨喷头7串联起来。对所有的试验装置和传感器设备进行调试。只在进行第一次试验时需要安装和调试相应的装置和仪器,后续进行的试验只需对各装置和仪器进行不定期校准。Step 3: Build the
步骤四:试验装置调试校准完毕后,打开温湿度传感器5,测量试验操作箱8上层的空气温度和空气湿度。根据试验要求的空气温度,打开温度控制器4对试验操作箱8上层的空气温度进行调节。若试验操作箱8上层的初始空气湿度低于试验要求的空气湿度,则打开流量泵2进行降雨,提高试验操作箱8上层的空气湿度;若试验操作箱8上层的初始空气湿度高于试验要求的空气湿度,则打开空气抽湿器14,降低试验操作箱8上层的空气湿度。Step 4: After the test device is debugged and calibrated, the temperature and
步骤五:打开流量泵2,使输水导管3中充满水,并且使雨水润湿带孔铝板11、带孔钢板12和集水漏斗20等过水装置,避免试验过程中部分雨水吸附在装置表面,对试验结果产生影响。然后关闭流量泵2,记录此时的流量泵2的过水量为V1,雨水收集装置24中的水量为S1,然后将流量泵2的过水量和雨水收集装置24显示的水量体积清零。Step 5: Turn on the
步骤六:使用防水胶泥将植被培育箱15的带孔顶盖29上植被茎秆周围的孔隙密封好。将植被培育箱15放置到带孔铝板11上,并使植被培育箱15一端抵住防滑挡条10。调节电动千斤顶16的高度,将带孔铝板11调节到试验要求的坡度。Step 6: Use waterproof cement to seal the pores around the vegetation stalks on the perforated
步骤七:关闭旋转开合门19,并根据试验光照条件的要求,若模拟自然光照条件下的草本植被冠层截留试验,则不安装可拆卸式遮光板18;若模拟夜晚无光照或者光照不足条件下的草本植被冠层截留试验,则在试验操作箱8上层三个侧面和顶面的有机玻璃板上以及旋转开合门19上均安装可拆卸式遮光板18。Step 7: Close the rotary opening and closing
步骤八:打开风力模拟器9,根据试验要求调节风速大小。Step 8: Turn on the
步骤九:重新打开流量泵2,根据试验要求的降雨强度和降雨量,调节流量泵2的流量和流速大小,进行冠层降雨截留模拟试验。Step 9: Turn on the flow pump 2 again, adjust the flow rate and velocity of the
步骤十:试验过程中,实时监测流量泵2的过水量V2(即降雨量)和雨水收集装置24中的雨量S2。待流量泵2的过水量和雨水收集装置24中雨量的差值随时间不再变化时,关闭流量泵2,停止试验。冠层截留量=流量泵2的过水量(V2)-雨水收集装置24中雨量(S2),根据实时监测数据,不仅可以得到最大冠层截留量,也可以获取实时冠层截留量,掌握不同试验条件下草本植被冠层截留量随时间的动态变化过程。Step 10: During the test, the excess water V2 of the flow pump 2 (that is, the rainfall) and the rainfall S2 in the
步骤十一:取出植被培育箱15,调节温度控制器4、空气抽湿器14和风力模拟器9,加速试验操作箱8中残留吸附在各个装置表面的水分的蒸发,进行干燥处理,避免水分对各装置和仪器的锈蚀。Step eleven: take out the
步骤十二:将带孔顶盖29的防水胶泥进行清理,清理完成后拆下带孔顶盖29。若是种植的草本植被,则可以继续在植被培育箱15中培育,也可以移出,待其重新稳定后,循环利用进行新的试验。若是移植的草本植被,则将移植栽入的植被重新放回取样位置。Step 12: Clean up the waterproof cement on the top cover with
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211381577.2A CN115684495B (en) | 2022-11-04 | 2022-11-04 | Herbal vegetation canopy interception monitoring test device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211381577.2A CN115684495B (en) | 2022-11-04 | 2022-11-04 | Herbal vegetation canopy interception monitoring test device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115684495A true CN115684495A (en) | 2023-02-03 |
CN115684495B CN115684495B (en) | 2024-07-19 |
Family
ID=85050392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211381577.2A Active CN115684495B (en) | 2022-11-04 | 2022-11-04 | Herbal vegetation canopy interception monitoring test device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115684495B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116359065A (en) * | 2023-04-07 | 2023-06-30 | 山东大学 | Plant rainfall interception test system and method based on variable plant density |
CN118130712A (en) * | 2024-01-29 | 2024-06-04 | 海南省林业科学研究院(海南省红树林研究院) | A quantitative inversion system for carbon fixation rate in tropical rainforest ecosystems |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102191789A (en) * | 2011-05-26 | 2011-09-21 | 北京林业大学 | Single-point rainwater collecting device and multiple-point measuring system of throughfall inside forest |
CN103728423A (en) * | 2014-01-20 | 2014-04-16 | 北京林业大学 | Device and method for measuring interception of grass canopy |
CN110186831A (en) * | 2019-06-04 | 2019-08-30 | 上海理工大学 | Controllable and simulated atmosphere natural environment atmosphere-vegetation-soil body pilot system |
CN209728207U (en) * | 2019-05-15 | 2019-12-03 | 西北农林科技大学 | A kind of measurement arbor vegetation different canopy layers position penetrates the experimental rig of rainfall |
US20200209210A1 (en) * | 2018-12-28 | 2020-07-02 | Yiben Cheng | Deep soil water percolation monitor and monitoring method therefor |
CN212228872U (en) * | 2020-03-25 | 2020-12-25 | 南京林业大学 | A device for measuring the interception flow of herbs |
US20210341454A1 (en) * | 2020-04-30 | 2021-11-04 | Institute Of Geochemistry, Chinese Academy Of Sciences | Method and System for Estimating Surface Runoff Based on Pixel Scale |
CN114646360A (en) * | 2022-04-11 | 2022-06-21 | 桂林理工大学 | Karst region water balance measuring device |
-
2022
- 2022-11-04 CN CN202211381577.2A patent/CN115684495B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102191789A (en) * | 2011-05-26 | 2011-09-21 | 北京林业大学 | Single-point rainwater collecting device and multiple-point measuring system of throughfall inside forest |
CN103728423A (en) * | 2014-01-20 | 2014-04-16 | 北京林业大学 | Device and method for measuring interception of grass canopy |
US20200209210A1 (en) * | 2018-12-28 | 2020-07-02 | Yiben Cheng | Deep soil water percolation monitor and monitoring method therefor |
CN209728207U (en) * | 2019-05-15 | 2019-12-03 | 西北农林科技大学 | A kind of measurement arbor vegetation different canopy layers position penetrates the experimental rig of rainfall |
CN110186831A (en) * | 2019-06-04 | 2019-08-30 | 上海理工大学 | Controllable and simulated atmosphere natural environment atmosphere-vegetation-soil body pilot system |
CN212228872U (en) * | 2020-03-25 | 2020-12-25 | 南京林业大学 | A device for measuring the interception flow of herbs |
US20210341454A1 (en) * | 2020-04-30 | 2021-11-04 | Institute Of Geochemistry, Chinese Academy Of Sciences | Method and System for Estimating Surface Runoff Based on Pixel Scale |
CN114646360A (en) * | 2022-04-11 | 2022-06-21 | 桂林理工大学 | Karst region water balance measuring device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116359065A (en) * | 2023-04-07 | 2023-06-30 | 山东大学 | Plant rainfall interception test system and method based on variable plant density |
CN118130712A (en) * | 2024-01-29 | 2024-06-04 | 海南省林业科学研究院(海南省红树林研究院) | A quantitative inversion system for carbon fixation rate in tropical rainforest ecosystems |
Also Published As
Publication number | Publication date |
---|---|
CN115684495B (en) | 2024-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Comparison of dual crop coefficient method and Shuttleworth–Wallace model in evapotranspiration partitioning in a vineyard of northwest China | |
CN115684495B (en) | Herbal vegetation canopy interception monitoring test device and method | |
Xiao et al. | Winter rainfall interception by two mature open‐grown trees in Davis, California | |
CN105004646A (en) | Indoor artificial rainfall-simulation testing system | |
Lundin et al. | Continuous long-term measurements of soil-plant-atmosphere variables at a forest site | |
CN203253712U (en) | Experimental device for researching soil heavy metal pollution remediation through earthworm-plant system | |
CN207074157U (en) | A kind of observation soil process of osmosis simultaneously measures the device of seepage velocity | |
CN113433019A (en) | Vegetation slope protection erosion penetration experiment simulation device and simulation method | |
CN103776747A (en) | Drip type soil infiltration measuring device | |
CN109100471A (en) | A kind of device and its monitoring method of moss position monitor heavy metal atmospheric sedimentation amount | |
CN114568276A (en) | Salt-tolerant identification method for rice and device used by method | |
CN114354437A (en) | Method for measuring water content of branches, leaves and withered and fallen objects of trees | |
CN209215374U (en) | A device for studying the effects of plant growth on soil | |
CN210923686U (en) | Test device suitable for plant bank protection lectotype | |
CN108955757A (en) | The stagnant storage performance testing device of the roof greening rainwater of inclined roof and test method | |
CN219417155U (en) | Test device for simulating water evaporation dissipation and rainfall infiltration in roadbed soil | |
CN111389611A (en) | Detachable rainfall simulation device and method for building | |
CN103728423B (en) | A kind of devices and methods therefor measuring grass hat interception | |
CN206380364U (en) | A kind of sand culture planting unit of controllable matrix different depth water supply conditions | |
CN108760979A (en) | A kind of the roof greening backwater system safety testing device and test method on flat roof | |
CN108332999A (en) | A kind of dew measuring device and measuring method | |
CN111109067B (en) | Device and method for measuring environmental response ability of plant heterogeneous patches | |
CN113303132A (en) | Bridge greening device | |
CN207816649U (en) | A kind of dew measuring device | |
CN114384001A (en) | Soil erosion test device and method considering multi-factor coupling effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |