CN1156795C - 用于图像传输系统的图像处理方法及其光纤内窥镜 - Google Patents

用于图像传输系统的图像处理方法及其光纤内窥镜 Download PDF

Info

Publication number
CN1156795C
CN1156795C CNB021165122A CN02116512A CN1156795C CN 1156795 C CN1156795 C CN 1156795C CN B021165122 A CNB021165122 A CN B021165122A CN 02116512 A CN02116512 A CN 02116512A CN 1156795 C CN1156795 C CN 1156795C
Authority
CN
China
Prior art keywords
image
pixel
light
testee
transmission channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB021165122A
Other languages
English (en)
Other versions
CN1376443A (zh
Inventor
王伯雄
朱继强
罗秀芝
朱从峰
王宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB021165122A priority Critical patent/CN1156795C/zh
Publication of CN1376443A publication Critical patent/CN1376443A/zh
Application granted granted Critical
Publication of CN1156795C publication Critical patent/CN1156795C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Endoscopes (AREA)

Abstract

本发明属于图像处理及内窥镜技术领域,主要涉及一种用于图像传输系统的处理方法,该处理方法包括标定和实测两部分,该处理方法可将被测物体的杂乱的图像信息中恢复、重构成为真实的图像。采用该方法设计的光纤内窥镜,包括传光部件、传像部件,传光部件由光源、耦合透镜、传光束组成;传像部件由物镜、非同配位排列的传像束、目镜、CCD摄像机、图像采集处理单元、监视器组成。本发明设计的光纤内窥镜采用非同配位排列的光纤束作为传像束,可简化传像束的制作工艺,有效降低生产成本,且没有增加光纤内窥镜装置结构的复杂性。

Description

用于图像传输系统的图像处理方法及其光纤内窥镜
技术领域
本发明属于图像处理及内窥镜技术领域,主要涉及一种用于图像传输系统的处理方法及采用该方法进行的光纤内窥镜的设计,尤其涉及光纤内窥镜的传像束两端头光纤采取非同配位排列方式的设计。
背景技术
一般的图像传输系统,由若干相同的传输通道、光电转换部件、图象采集处理单元构成,每个传输通道的截面大小处处相同,并且能通过传递被测物体上某个区域反射的光信息以传递一个像元,传输通道在图像传输系统的输入输出两端面上一般采用同配位排列的方式;光电转换部件用于将传输通道输出端传出的光信息转换成为相应的电荷信息;图像采集处理单元用于接收光电转换部件输出的电荷信息并进行数字化后予以处理。
光纤内窥镜是一种常用的图像传输系统,其传输通道由光纤束组成。通常情况下,已有的光纤内窥镜依据每根单纤维丝构成被测物体的图像上的一个像元的原理来传递被测物体的图像。用于检测物体图像的光纤内窥镜包括:光源、传光束、物镜、传像束、目镜。为将被测物体图像采集到计算机中进行保存处理,有的光纤内窥镜还包括:CCD摄像机、图像采集卡、计算机、监视器。
已有的一种光纤内窥镜的组成及工作原理如图1所示,包括光源11及CCD摄像机12、由非同配位排列的传光束13、物镜14、同配位排列的传像束15及目镜16组成的系统。为使整个视场照度均匀,传光束照明范围应大于视场角。物镜14设计为小孔径大视场,小孔径的设计要保证足够的景深,大视场的设计要保证近距离内能观察到尽可能宽的范围,前提是图像的畸变不影响使用的基本要求。由于纤维单丝直径的限制,目镜16的放大倍率不能太高,一般情况下不超过10倍,否则会影响观察效果。
上述光纤内窥镜的工作原理是:光源11发出的光会聚到传光束13一端,经传光束13传输到光纤内窥镜前端部照明被测物体17,被测物体17的图像由物镜14成像到传像束15的输入端面,通过传像束15再传至输出端面,用目镜16将它放大,人眼就可以直接观察或经CCD摄像机12接收后输入到系统附属的图像采集处理单元。
上述光纤内窥镜采用的传光束13和传像束15都是由许多根单纤维丝经不同方式排列而成,在其两端用粘胶剂或加热熔压后固定,端面经过研磨、磨光、涂保护膜后,便制成了两端固定、中间松散的纤维束了。
用以传入外部照明光的纤维束叫传光束,因其主要的功能是作照明,因而单纤维丝的直径可以较粗(一般为15~30微米),且排列并不要求整齐,即所谓非同配位排列,就是组成传光束的各光纤在输入端和输出端的两端头截面上不存在一一对应的位置关系。
为了有效利用传光束的照明光,传光束的输出端必须尽可能接近被测物体,因此,传光束的输出端在传像束的输入端附近发出光照射到被测物体上,并且,传光束的输出端和传像束的输入端以一定的结构形式结合,结合部组成光纤内窥镜的前端部,这种结构形式称为传光束的照明方式。通常情况下,传光束的照明方式有以下几种:随机型21、半圆型22、同心圆型23、环型24、异型25、混合型26,如图2所示。所谓随机型21,就是传光束的输出端的单纤维丝和传像束输入端的单纤维丝以随机的方式密集排列在一起;所谓半圆型22,就是传光束的输出端的单纤维丝和传像束输入端的单纤维丝各占接合部的一半,并且各自紧密排列;所谓同心圆型23,就是传光束的输出端的单纤维丝构成一个圆环位于结合部中间,传像束输入端的单纤维丝一部分构成一个圆位于结合部的中心,其它部分构成一个圆环位于结合部的外侧,三部分各自紧密排列;所谓环型24,就是传光束的输出端的单纤维丝构成一个圆环位于结合部的外侧,传像束输入端的单纤维丝构成一个圆位于结合部的中心,两部分各自紧密排列;所谓异型25,就是传光束的输出端的单纤维丝和传像束输入端的单纤维丝隔行或隔列紧密排列;所谓混合型,就是综合具备两种或两种以上排列特点的排列方式,如图2所示,传光束的输出端的单纤维丝一部分位于结合部的中心紧密排列,其它部分和传像束输入端的单纤维丝采取近似异型25的方式紧密排列在一起。具体采用哪种照明方式可根据使用场合的要求确定,为了保证视场照明的均匀程度,可以采用同心圆型23、环型24等照明方式。例如,为了观察并获得微齿轮真实图像,由于微齿轮图像灰度和背景灰度相近,而且观察距离较近(物距为3mm),因此必须保证视场照明的均匀程度,因此采用同心圆型23、环型24的照明方式,实验证明,这种照明方式能够获得较好的观察效果。
用来传递图像的纤维束称传像束,其主要功能是传递传光束照明下的被测物体图像,以便人眼直接观察或采集到计算机中保存处理,因而,已有内窥镜的传像束两端的单纤维丝必须排列整齐(例如,采用正方形排列或六角形蜂窝状排列),并且必须为同配位排列,即传光束的输入端和输出端在两端头截面上存在一一对应的位置关系。
已有光纤内窥镜的光纤传像束的设计是依据单纤维丝传光的基本原理:光线在单纤维丝内的传导方式,如图3所示,当光线31以θ角由空气投射到单纤维丝端面32时,由于空气折射率小于玻璃折射率(n0<n1),光线以θ’角折向单纤维丝内,并以φ角投射到核心层33(n1)与被覆层34(n2)的界面上,如果由空气投射到端面的入射角θ适当,则能使进入界面上的φ角大于临界角(φM),因此在界面上产生全反射,在单纤维丝任意弯曲的情况下,光线经成千上万次的全反射,最后仍以θ角度由单纤维丝的另一端面35射出。在没有断丝和暗丝的情况下,每根单纤维丝可以不失真的传递被测物体表面反射的光信息,从而构成了被测物体图像上的一个像元,对一根由几万根单纤维丝组成的光纤束来说,其输入端的所有像元将全部被传递到输出端,也就是传递了被测物体的一幅图像,这就是传像束传递图像的原理。上述光纤内窥镜的传像束由于采取同配位排列方式,因此,其输入端41和输出端42的像元存在一一对应的关系,如图4所示,传像束的输入端41的物体图像的像元A、B、C的位置与传像束的输出端42的物体图像的像元A’、B’、C’的位置为一一对应关系。
为了增加传像的清晰度,传像束单位面积内的单纤维丝直径较细(一般为5~20微米)。每根单纤维丝构成被传递图像上的一个光点。在理想情况下,由物镜所成的图像,经传像束的一端不失真的以一定的分辨率传至另一端。光点越密,两端排列越整齐,它所传递的图像越清晰,每断丝一根,就因该单纤维丝不能传像而在被测物体图像上产尘一个黑点。从本质上讲,光纤内窥镜传递被测物体图像的质量主要取决于传像束的制作质量,影响因素包括单丝直径、两端的同配位排列程度、排列的紧密程度、断丝、音丝、界面交扰等。
在孙磊,“传像束制造工艺的探讨”,《光纤与电缆及其应用技术》,1998年,第5期,第25-26页中描述了层叠法制造同配位排列的传像束中的叠片工艺。目前,国内外主要有酸溶法和层叠法两种传像束生产工艺,国内以后者为主。层叠法制造传像束,首先要拉制一定直径的连续单丝,然后将单丝排列成无间隙、无重叠的单片,再给单片上胶使单丝间相互固定,最后将单片按六角形排列规则层叠成束。层叠法的叠片工艺通过操作者肉眼观察莫尔条纹随两单片间夹角的变化而变化的情况,判定单片是否平行地、面对面地完成六角形排列。因此,层叠法生产工艺有很大局限性,首先是操作中对莫尔条纹精度的判断只能定性不能定量,人为因素的影响大;其次是单丝直径一般不能低于12μm,否则给生产带来很大困难。
例如南京玻璃纤维研究设计院第三研究所采用层叠法工艺制造传像束,由于工艺本身的局限、生产设备的制造误差、人为因素的主观影响,因而不能在严格意义上完全保证传像束两端的单纤维丝排列整齐紧密和同配位排列,因此,观察到的图像实际上存在网格和部分象素错位现象。层叠法制造光纤传像束,还由于断丝、暗丝的影响,成品率较低,因而增加了生产成本和产品不合格率。
发明内容
本发明的目的是为克服已有技术的不足之处,提供一种用于图像传输系统的处理方法及可检测物体图像的光纤内窥镜,该处理方法可从被测物体所接收到的杂乱的图像信息中恢复、重构真实的图像。此外,这种用于图像传输系统的处理方法还在数据保密、网络安全、产品防伪等其它方面有特殊的应用价值。本发明设计的光纤内窥镜采用非同配位排列的光纤束作为传像束,可简化传像束的制作工艺,有效降低生产成本,且没有增加光纤内窥镜装置结构的复杂性。通过采用本发明方法的图像采集处理软件,可以恢复被测物体的真实图像,并能获取被测物体的精确二维尺寸信息,此外,通过图像平滑处理还能消除已有光纤内窥镜所成的被测物体图像的网格现象。
本发明提出的一种用于图像传输系统的图像处理方法,其特征在于,传输通道的输入输出两端面上采用非同配位排列的方式;可将被测物体从在该输出端的杂乱的图像信息中恢复、重构成为真实的图像;由标定及实测两部分构成,所说的标定方法包括以下步骤:
(1)对图象传输系统作初始化处理;
(2)将标定所用的光照射传输通道的输入端使输入端相对光斑作匀速逐行扫描运动;
(3)实时获取光斑信息,判断有无光斑信息输入,如果有,进入第(4)步;如果没有,继续判断;
(4)对获得的像元灰度值大小进行判断,在每出现一个灰度极小值的情况时,记录下该像元的位置PIXB01(X1,Y1),根据扫描时间和匀速逐行扫描运动的速度可计算出相应的输入光斑所在的位置PIXA01(X0,Y0),然后用映射
F:(x,y)(u,v)来表示输入光斑位置和输出像元位置的一一对应关系,继续判断有无光斑信息输入,若有,返回步骤(4);若扫描下一行过程中仍然没有光斑信息的输入,进入步骤(5);
(5)结束扫描,生成与映射对应的标定函数,并保存得到的光斑所有像元图像信息;
所说的实测方法包括以下步骤:
(1)对图象传输系统作初始化处理;
(2)通过传输通道获取被测物体图像的杂乱信息;
(3)确定实测得到的图像信息和标定得到的光斑所有像元图像信息的大小比例,按照该比例缩放实测得到的图像信息,并用标定函数变换实测得到的图像信息,产生新的图像信息;
(4)按照该大小比例的倒数变换第(3)步得到的新的图像信息,并重构被测物体的真实图像;
(5)显示保存被测物体真实图像,并进行被测物体的图像二维尺寸计算。
所说像元的位置、光斑的位置采用二维坐标值来表示。
所说的映射的具体形式可采用二维矩阵方法、伪彩色图方法、四维数组方法或长数字方法等等可以表示位置一一对应关系的方法。
所说的标定方法采用的光源,其发出的光可经聚焦成像后在图象传输系统的传输通道的输入端前方形成一个光斑,传入传输通道的输入端,并且光源形成的光斑发出的光进入一个传输通道的输入端时,光的范围大小应小于传输通道的截面大小。
所说的标定方法采用的光源,其发出的光可耦合进入一根传光光纤,这根传光光纤输出的光在图象传输系统的传输通道的输入端前方形成一个光斑,传入传输通道的输入端,并且这根传光光纤形成的光斑发出的光进入一个传输通道的输入端时,光的范围大小应小于传输通道的截面大小。
本发明设计一种采用上述方法的光纤内窥镜,由传光部件和传像部件组成,该传光部件包括用于照明的光源、传递照明光用于提高被测物体照明光强和照明均匀程度的传光束以及将照明光耦合到该传光束的耦合透镜;该传像部件包括传像束、耦合被测物体的反射光到该传像束输入端的物镜、接收并放大传像束的输出端图像信息的目镜、CCD摄像机、用于采集处理图像信息的图像采集处理单元、以及用于显示被测物体图像信息的监视器,该图像采集处理单元包括计算机以及与该计算机的接口相连的图像采集卡;其特征在于,所说的传像束采用非同配位排列方式的光纤束,所说的计算机存储有用于从被测对象杂乱的图像信息中恢复、重构被测物体真实图像的标定模块及实测模块。
所说的CCD摄像机可为CCD面阵摄像机,用于将传像束的输出端传出的被测物体的光信息转换成为相应的电荷信息。
本发明的主要特点:
本发明利用标定方法可确定图象传输系统的传输通道的输入输出两端的位置的一一对应关系,采用映射来表示,并生成与映射对应的标定函数存入图像采集处理单元;利用实测方法可获取被测物体杂乱的图像信息,借助标定函数,可以确定杂乱的图像信息中的每一个像元的正确位置,从而恢复、重构被测物体的真实图像。
本发明设计的光纤内窥镜在已有光纤内窥镜的基础上,为减少生产工艺的复杂程度和有效降低生产成本,用非同配位排列的传像束替代同配位排列的传像束,用于获取被测物体的图像信息,由于光纤束是非同配位排列的,因而在光纤束输出端得到的图像信息也是杂乱的,该杂乱的图像信息被—CCD摄像机所接收,并送入到计算机中保存,借助本发明提供的用于图像传输系统的处理方法,对本发明的光纤内窥镜进行标定后,从而得到标定函数,可以确定杂乱的图像信息中的每一个像元的正确位置,并恢复被测物体的真实图像。
附图说明
图1为已有光纤内窥镜的光学系统组成示意图,
图2为已有光纤内窥镜的传光束照明方式示意图,
图3为单纤维丝传光的基本原理示意图,
图4为已有光纤内窥镜的传像束的像元输入输出对应关系示意图,
图5为本发明的装置基本结构示意图,
图6为本发明的实施例的传像束的像元输入输出对应关系示意图,
图7为本发明的实施例的标定装置原理示意图,
图8为本发明的实施例的图像处理软件流程图。
具体实施方式
本发明提出的用于图像传输系统的图像处理方法及采用该方法设计的光纤内窥镜结合各附图及实施例详细说明如下。
采用本发明的图像处理方法设计的光纤内窥镜装置的基本结构如图5所示,包括光源51、传光束52、物镜53、传像束54、目镜55、CCD摄像机56、图像采集处理单元57(即安装有图像采集卡的计算机)、监视器58。本发明是在已有内窥镜装置结构的基础上,用非同配位排列的传像束54替代同配位排列的传像束,因此,所获取的被测物体59图像信息是杂乱的,不能通过目镜55直接观察图像,也不能在监视器58直接显示真实图像。因此,本发明的装置必须包括CCD摄像机56、图像采集处理单元57、监视器58。此外,本发明的图像采集处理单元存储有图像采集处理软件,以便对被测物体59杂乱的图像信息进行采集处理并显示。其中还包括一个通过对采用的传像束进行标定后得到的标定函数,并用于恢复被测物体59真实的图像信息。
本发明的传像束的像元输入输出对应关系原理如图6所示,由于光纤束采用非同配位排列,由图6可见,物体图像在输入端61的像元A、B、C的位置和在输出端62的像元A’、B’、C’的位置在两个端面上没有一一对应的关系,也即如果在两个端面中心处分别建立极坐标系,以(r1,θ1),(r2,θ2)来分别表征同一个像元在输入61输出62两个端面上的位置,r1=r2,θ1=θ2对任一个像元不能总成立,而对于光纤束理想的同配位排列,必然可以在两个端面中心处分别建立这样的极坐标系,使得r1=r2,θ1=θ2对任一个像元能总成立。此外,在非同配位排列的情况下,由于单纤维丝在端面处的排列是任意的,因此,两根光纤束的非同配位排列情况也是互不相同的,也就是说,非同配位排列没有重复性。
由于本发明的传像束是非同配位排列的,并且没有重复性,因此本发明的每一个实施例在第一次使用前需要进行准确的标定,从而得到该实施例的特定的标定函数并将其存储到实施例的图像采集处理单元中,才能恢复该实施例所观察物体的真实图像。经过标定后的本发明的实施例,由于其传像束两端用粘胶剂或加热熔压后固定了每一根单纤维丝的位置,所以在使用时不需要再次进行标定,只需要使用本发明的标定函数,就可在计算机屏幕上显示被测物体的真实图像,但是,人眼不能通过目镜直接观察图像。因此,一旦标定后,无需再次进行标定。
用于本发明各个实施例的标定装置的组成及原理如图7所示,标定装置包括标定光源71、聚焦透镜72、位移工作台73。标定时,本发明的实施例本身所属的光源74、传光束75停止工作,标定装置将光信息输入到该实施例的传像束76输入端。标定光源71发出的光经聚焦透镜72聚焦,在传像束76的物镜77的最佳物距处形成一个光斑,该光斑由物镜77所成的像光斑直径略小于传像束76的单纤维丝直径。该光斑经物镜77耦合入传像束76的一根单纤维丝的输入端,经传像束76传递到该单纤维丝的输出端,由目镜78放大并为CCD摄像机79靶面所敏感,并送入到图像采集处理单元710中并在监视器711上显示为一个像元。位移工作台73控制传像束76前端进行X或Y方向的步进运动,从而可以实现传像束76的前端做相对于光斑的匀速逐行扫描运动,并且,每相对移动一步,光斑由物镜77所成的像光斑相对传像束76输入端面的移动距离应该小于传像束76输入端面两根单纤维丝的最小中心距,否则,应调整位移工作台73的步长参数。位移工作台73也可以由其他可以实现相同功能的装置替代。在位移工作台73的控制下,物镜77和传像束76一起相对该光斑运动,控制位移工作台73的运动参数,就能实现该光斑对传像束76的输入端进行匀速逐行扫描,并得到每一根单纤维丝的输入输出端的位置对应关系,用映射F:(x,y)(u,v)描述这个位置对应关系,根据这个映射就可以采用程序代码描述所标定的实施例的物像的像元位置对应关系,该程序代码就是实施例的标定函数,将相应的软件代码存储到该实施例的图像采集处理单元710,就能检测被测物体的真实图像。依据光纤耦合理论,在耦合区的中心,耦合效率最高,因此,在匀速逐行扫描时,光斑每扫描过一个单纤维丝端面,扫描到该单纤维丝输入端面的中心处时该单纤维丝输出的光强为最大值,图像采集处理单元710就得到一个灰度最小值,这时得到的位置对应关系才是真实的单纤维丝的输入输出端的位置对应关系。因此,图像采集处理单元710必须对扫描时获得的像元灰度值大小进行判断,并计算出现极小值的情况时的位置对应关系。同样,在同一最佳物距下实测被测物体时,可以把物体上的每个点(该点的直径与光斑直径相同)都看成是一个个相同大小的光斑,分别耦合入传像束76的所有单纤维丝的输入端,经过传递放大,采集到图像采集处理单元710中,直接显示为杂乱的图像信息,经图像采集处理710单元经标定得到的标定函数进行处理后,恢复为真实的图像信息;在不同物距下实测被测物体时,考虑该实施例光学系统本身的放大倍率的影响,应先确定图像采集处理单元710接收到的杂乱的图像信息和标定时接收到的光斑所有像元图像信息的大小比例(该大小指的是未经处理在监视器711上直接显示杂乱的图像信息时,X、Y方向各有多少像素,例如100×100),并按照该大小比例将实测时接受到的杂乱的图象信息在不改变像素间相互位置关系的情况下缩放,然后用标定得到的标定函数进行处理得到新的图像信息,并按照上述大小比例的倒数将新的图象信息缩放,缩放后的图像信息即为被测物体的真实的图像信息,输出到监视器711显示即为被测物体的真实图像。
本发明的标定装置所用的光源发出的光也可以不通过上述聚焦透镜形成光斑的方法,而通过一个耦合透镜耦合进入一根传光光纤中,这根传光光纤的输出端输出一个光斑,并经光纤内窥镜的物镜耦合入传像束的一根单纤维丝的输入端,并且该光斑发出的光进入一个单纤维丝的输入端时,光的范围大小应小于传输通道的截面大小。
采用本发明方法的光纤内窥镜中的图像处理软件流程实施例如图10所示。该图像处理软件主要有两个的模块:标定模块和实测模块。标定模块用于本发明的实施例第一次使用前,本发明采用映射F:(x,y)(u,v)来表示光斑位置和像元位置的一一对应关系,像元位置、光斑位置采用二维坐标值(x,y),(u,v)来表示,映射的具体形式可采用二维矩阵方法、伪彩色图方法、四维数组方法或长数字方法等等可以表示位置一一对应关系的方法。其中,二维矩阵方法,即构造一个二维矩阵,其中某个元素的行数、列数分别表示某个像元的位置,该元素的值表示该像元对应的光斑的位置,该元素的值的长度为传像束横截面方向最大单纤维丝根数m的的2倍,其中,前m位和后m位分别表示光斑的某个二维坐标值中的一个坐标;反之,某个元素的行数、列数和该元素的值所表示的位置意义也可以相互调换。伪彩色图方法,即构造一幅伪彩色图,该伪彩色图上的某个像元的横、纵坐标分别表示某个像元的位置,该伪彩色图的这个像元的RGB值中的某两个分别表示该像元对应的光斑的位置,RGB的另一个值可以任意指定一个合法值;反之,某个像元的横、纵坐标和该像元的RGB值所表示的位置意义也可以相互调换。四维数组方法,即构造许多个四维数组,每个数组按同样的先后顺序存放像元的位置、相应的光斑位置,所有的四维数组按照像元排列的一定顺序进行先后排队;反之,每个数组存放像元的位置、相应的光斑位置的先后顺序也可以相互调换。长数字方法,即构造许多个长数字,所有的长数字按照像元排列的一定顺序进行先后排队,每个长数字的长度为传像束横截面方向最大单纤维丝根数m的4倍,其中,前2m位和后2m位分别表示像元位置和相应的光斑位置;反之,前2m位和后2m位所表示的位置意义也可以相互调换。在本实施例中,采用二维矩阵方法表示这种对应关系。实测模块用于本发明的实施例实际检测时。具体处理步骤分别叙述如下:
(一)标定模块
1、对图像采集卡作初始化处理;
2、用图像采集卡实时从CCD摄像机获取光斑信息,判断有无光斑信息输入,如果有,进入第3步;如果没有,继续判断;
3、对获得的像元灰度值大小进行判断,在每出现一个灰度极小值的情况时,记录下该像元的位置PIXB01(X1,Y1),根据扫描时间和匀速逐行扫描运动的速度可计算出相应的扫描光斑所在的位置PIXA01(X0,Y0),然后用矩阵MAT记录描述这种一一对应的关系,依据PIXB的坐标X1,Y1分别确定了某个元素位于矩阵第X1行,第Y1列,矩阵元素MATX1Y1的值VALPIX01由PIXA01(X0,Y0)确定,VALPIX01=X0×m+Y0(设传像束横截面方向最大单纤维丝根数为m);
4、继续判断有无光斑信息输入,若有,返回步骤三;若扫描下一行过程中仍然没有光斑信息的输入,进入步骤5;
5、结束扫描,生成标定函数,并保存得到的光斑所有像元图像信息。
(二)实测模块
1、对图像采集卡作初始化处理;
2、用图像采集卡从CCD摄像机获取被测物体杂乱的图像信息,并显示;
3、确定实测得到的图像信息和标定得到的光斑所有像元图像信息的大小比例,按照该比例缩放实测得到的图像信息,并用标定函数变换实测得到的图像信息,产生新的图像信息;
4、按照该大小比例的倒数变换第3步得到的新的图像信息,并重构被测物体的真实图像;
5、对重构后的真实图像进行图像平滑处理,以便消除网格现象;
6、显示保存被测物体真实图像,并进行被测物体的二维尺寸计算。

Claims (10)

1、一种用于图像传输系统的图像处理方法,其特征在于,传输通道的输入输出两端面上采用非同配位排列的方式;可将被测物体从在该输出端的杂乱的图像信息中恢复、重构成为真实的图像;由标定及实测两部分构成,
所说的标定方法包括以下步骤:
1)对图象传输系统作初始化处理;
2)将标定所用的光照射传输通道的输入端使输入端相对光斑作匀速逐行扫描运动;
3)实时获取光斑信息,判断有无光斑信息输入,如果有,进入第4)步;如果没有,继续判断;
4)对获得的像元灰度值大小进行判断,在每出现一个灰度极小值的情况时,记录下该像元的位置PIXB01(X1,Y1),根据扫描时间和匀速逐行扫描运动的速度可计算出相应的输入光斑所在的位置PIXA01(X0,Y0),然后用映射
F:(x,y)(u,v)来表示输入光斑位置和输出像元位置的一一对应关系,继续判断有无光斑信息输入,若有,返回步骤4);若扫描下一行过程中仍然没有光斑信息的输入,进入步骤5);
5)结束扫描,生成与映射对应的标定函数,并保存得到的光斑所有像元图像信息;
所说的实测方法包括以下步骤:
1)对图象传输系统作初始化处理;
2)通过传输通道获取被测物体图像的杂乱信息;
3)确定实测得到的图像信息和标定得到的光斑所有像元图像信息的大小比例,按照该比例缩放实测得到的图像信息,并用标定函数变换实测得到的图像信息,产生新的图像信息;
4)按照该大小比例的倒数变换第3)步得到的新的图像信息,并重构被测物体的真实图像;
5)显示保存被测物体真实图像,并进行被测物体的图像二维尺寸计算。
2、如权利要求1所述的方法,其特征在于,所说的像元位置、光斑位置采用二维坐标值来表示。
3、如权利要求1所述的方法,其特征在于,所说的映射方法采用二维矩阵方法,即构造一个二维矩阵,其中某个元素的行数、列数分别表示某个像元的位置,该元素的值表示该像元对应的光斑的位置,该元素的值的长度为图象传输系统的传输通道最大个数m的2倍,其中,前m位和后m位分别表示光斑的某个二维坐标值中的一个坐标;反之,某个元素的行数、列数和该元素的值所表示的位置意义也可以相互调换。
4、如权利要求1所述的方法,其特征在于,所说的映射方法采用伪彩色图方法,即构造一幅伪彩色图,该伪彩色图上的某个像元的横、纵坐标分别表示某个像元的位置,该伪彩色图的这个像元的RGB值中的某两个分别表示该像元对应的光斑的位置,RGB的另一个值可以任意指定一个合法值;反之,某个像元的横、纵坐标和该像元的RGB值所表示的位置意义也可以相互调换。
5、如权利要求1所述的方法,其特征在于,所说的映射方法采用四维数组方法,即构造许多个四维数组,每个数组按同样的先后顺序存放像元的位置、相应的光斑位置,所有的四维数组按照像元排列的一定顺序进行先后排队;反之,每个数组存放像元的位置、相应的光斑位置的先后顺序也可以相互调换。
6、如权利要求1所述的方法,其特征在于,所说的映射方法采用长数字方法,即构造许多个长数字,所有的长数字按照像元排列的一定顺序进行先后排队,每个长数字的长度为图像传输系统的传输通道最大个数m的4倍,其中,前2m位和后2m位分别表示像元位置和相应的光斑位置;反之,前2m位和后2m位所表示的位置意义也可以相互调换。
7、如权利要求1所述的方法,其特征在于,所说的标定方法采用的光源,其发出的光经聚焦成像后在图象传输系统的传输通道的输入端前方形成一个光斑,传入传输通道的输入端,并且光源形成的光斑发出的光进入一个传输通道的输入端时,光的范围大小应小于传输通道的截面大小。
8、如权利要求1所述的方法,其特征在于,所说的标定方法采用的光源,其发出的光耦合进入一根传光光纤,这根传光光纤输出的光在图象传输系统的传输通道的输入端前方形成一个光斑,传入传输通道的输入端,并且这根传光光纤形成的光斑发出的光进入一个传输通道的输入端时,光的范围大小应小于传输通道的截面大小。
9、一种采用如权利要求1所述的方法的光纤内窥镜,由传光部件和传像部件组成,该传光部件包括用于照明的光源、传递照明光用于提高被测物体照明光强和照明均匀程度的传光束以及将照明光耦合到该传光束的耦合透镜;该传像部件包括传像束、耦合被测物体的反射光到该传像束输入端的物镜、接收并放大传像束的输出端图像信息的目镜、CCD摄像机、用于采集处理图像信息的图像采集处理单元、以及用于显示被测物体图像信息的监视器,该图像采集处理单元包括计算机以及与该计算机的接口相连的图像采集卡;其特征在于,所说的传像束采用非同配位排列方式的光纤束,所说的计算机存储有用于从被测对象杂乱的图像信息中恢复、重构被测物体真实图像的标定模块及实测模块。
10、如权利要求9所述的光纤内窥镜,其特征在于,所说的CCD摄像机为CCD面阵摄像机,用于将传像束的输出端传出的被测物体的光信息转换成为相应的电荷信息。
CNB021165122A 2002-03-27 2002-03-27 用于图像传输系统的图像处理方法及其光纤内窥镜 Expired - Fee Related CN1156795C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB021165122A CN1156795C (zh) 2002-03-27 2002-03-27 用于图像传输系统的图像处理方法及其光纤内窥镜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB021165122A CN1156795C (zh) 2002-03-27 2002-03-27 用于图像传输系统的图像处理方法及其光纤内窥镜

Publications (2)

Publication Number Publication Date
CN1376443A CN1376443A (zh) 2002-10-30
CN1156795C true CN1156795C (zh) 2004-07-07

Family

ID=4744133

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021165122A Expired - Fee Related CN1156795C (zh) 2002-03-27 2002-03-27 用于图像传输系统的图像处理方法及其光纤内窥镜

Country Status (1)

Country Link
CN (1) CN1156795C (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306309C (zh) * 2003-04-28 2007-03-21 南开大学 数码光纤根管显微内窥镜装置
CN1313879C (zh) * 2003-08-22 2007-05-02 中国科学院上海光学精密机械研究所 可调式摄像照明装置
CN100367281C (zh) * 2005-06-01 2008-02-06 中国人民解放军国防科学技术大学 脉冲激光光斑软件同步捕获方法
JP2008067780A (ja) * 2006-09-12 2008-03-27 Olympus Medical Systems Corp 内視鏡装置
WO2009013663A2 (en) * 2007-07-20 2009-01-29 Koninklijke Philips Electronics N.V. Fiber-optic scanner
CN101593292B (zh) * 2009-05-07 2012-01-04 长沙融威电子科技有限公司 非接触式纸币、票证分张计数防伪方法及装置
US10165929B2 (en) 2009-06-18 2019-01-01 Endochoice, Inc. Compact multi-viewing element endoscope system
US9706903B2 (en) 2009-06-18 2017-07-18 Endochoice, Inc. Multiple viewing elements endoscope system with modular imaging units
US9901244B2 (en) 2009-06-18 2018-02-27 Endochoice, Inc. Circuit board assembly of a multiple viewing elements endoscope
US11547275B2 (en) 2009-06-18 2023-01-10 Endochoice, Inc. Compact multi-viewing element endoscope system
WO2012038958A2 (en) 2010-09-20 2012-03-29 Peermedical Ltd. Multi-camera endoscope having fluid channels
CA2765559C (en) 2009-06-18 2017-09-05 Peer Medical Ltd. Multi-camera endoscope
US9492063B2 (en) 2009-06-18 2016-11-15 Endochoice Innovation Center Ltd. Multi-viewing element endoscope
WO2012056453A2 (en) 2010-10-28 2012-05-03 Peermedical Ltd. Optical systems for multi-sensor endoscopes
US11278190B2 (en) 2009-06-18 2022-03-22 Endochoice, Inc. Multi-viewing element endoscope
US9713417B2 (en) 2009-06-18 2017-07-25 Endochoice, Inc. Image capture assembly for use in a multi-viewing elements endoscope
US9872609B2 (en) 2009-06-18 2018-01-23 Endochoice Innovation Center Ltd. Multi-camera endoscope
US9560953B2 (en) 2010-09-20 2017-02-07 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
EP3747343A1 (en) 2010-12-09 2020-12-09 EndoChoice, Inc. Flexible electronic circuit board multi-camera endoscope
US11889986B2 (en) 2010-12-09 2024-02-06 Endochoice, Inc. Flexible electronic circuit board for a multi-camera endoscope
EP3522215A1 (en) 2010-12-09 2019-08-07 EndoChoice Innovation Center Ltd. Flexible electronic circuit board for a multi-camera endoscope
EP3228236A1 (en) 2011-02-07 2017-10-11 Endochoice Innovation Center Ltd. Multi-element cover for a multi-camera endoscope
EP2604175B1 (en) 2011-12-13 2019-11-20 EndoChoice Innovation Center Ltd. Removable tip endoscope
US9560954B2 (en) 2012-07-24 2017-02-07 Endochoice, Inc. Connector for use with endoscope
CN103006168A (zh) * 2012-12-29 2013-04-03 上海乾衡生物科技有限公司 集束光纤快速成像装置
US9993142B2 (en) 2013-03-28 2018-06-12 Endochoice, Inc. Fluid distribution device for a multiple viewing elements endoscope
US9986899B2 (en) 2013-03-28 2018-06-05 Endochoice, Inc. Manifold for a multiple viewing elements endoscope
US10499794B2 (en) 2013-05-09 2019-12-10 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
CN103815863A (zh) * 2014-01-28 2014-05-28 河南科技大学 一种头端可摆动的内窥镜
CN105181149B (zh) * 2014-06-20 2018-08-21 国家电网公司 一种便携式全绝缘耐压红外测温内窥镜
CN105716627B (zh) * 2016-02-05 2019-06-18 中国科学院国家空间科学中心 一种用于ccd标定的同心圆均匀分布干涉基线排布方法
CN110231020A (zh) * 2018-03-05 2019-09-13 深圳先进技术研究院 波纹传感器、波纹重建方法及其应用
CN110823920A (zh) * 2019-11-07 2020-02-21 深圳市智能机器人研究院 一种内孔侧壁表面缺陷采集装置、检测系统及方法

Also Published As

Publication number Publication date
CN1376443A (zh) 2002-10-30

Similar Documents

Publication Publication Date Title
CN1156795C (zh) 用于图像传输系统的图像处理方法及其光纤内窥镜
CN102119328B (zh) 检查系统
US8337399B2 (en) Endoscope apparatus and scanning endoscope processor
CN107024275B (zh) 仿虾蛄眼多通道实时多谱段偏振成像探测装置
CN2784875Y (zh) 一种基于光纤传像束的新型微三维形貌测量装置
CN204008465U (zh) 一种荧光共焦显微成像系统
CN103926228A (zh) 一种激光扫描共焦荧光显微内窥成像系统
CN106647147B (zh) 一种非共面的图像采集装置
CN103271721A (zh) 基于光谱编码与正交分光的并行oct探测方法及系统
CN108345084A (zh) 一种主被动结合的变倍自动调焦方法及系统
CN1247987C (zh) 表面检查装置及其方法
CN110989074B (zh) 基于光纤阵列的成像装置
CN104796631A (zh) 一种曲面展开成像装置及方法
CN107229114A (zh) 基于光纤阵列的多通道荧光探测系统
CN103267982B (zh) 实现高速光电成像探测装置
CN110260946A (zh) 一种采用光纤束和图像处理技术的液位传感器
CN111442908A (zh) 用于检测光纤传像元件的可见光透过率与均匀度的装置及方法
CN102353453B (zh) 一种光纤束流场重建方法
CN110794575A (zh) 一种基于光能信息的仿生复眼空间探测及定位系统
CN109246340A (zh) 一种光场影像处理显示系统及方法
CN211577416U (zh) 一种非扫描激光雷达接收光学系统
CN203275672U (zh) 一种新型光电成像探测装置
CN100498306C (zh) 用于检测片状材料红外图像印刷质量的装置和方法
CN111736332A (zh) 一种光纤扫描成像装置及方法
TWI594628B (zh) 光場攝像裝置

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee