CN115679042A - 一种lf炉精炼过程冶炼状态监控的方法和系统 - Google Patents

一种lf炉精炼过程冶炼状态监控的方法和系统 Download PDF

Info

Publication number
CN115679042A
CN115679042A CN202211378161.5A CN202211378161A CN115679042A CN 115679042 A CN115679042 A CN 115679042A CN 202211378161 A CN202211378161 A CN 202211378161A CN 115679042 A CN115679042 A CN 115679042A
Authority
CN
China
Prior art keywords
model
smelting
monitoring
information
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211378161.5A
Other languages
English (en)
Inventor
周伟
杨军
王开玺
李扬
亢克松
梁栋
王志敏
李亚男
高文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tangshan Huitang Iot Technology Co ltd
Original Assignee
Tangshan Huitang Iot Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tangshan Huitang Iot Technology Co ltd filed Critical Tangshan Huitang Iot Technology Co ltd
Priority to CN202211378161.5A priority Critical patent/CN115679042A/zh
Publication of CN115679042A publication Critical patent/CN115679042A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

本发明公开了一种LF炉精炼过程冶炼状态监控的方法和系统,包括:图像采集和控制模块、冶炼异常模型训练和监测模块、渣信息模型训练和监测模块、搅拌状态模型训练和监测模块和大数据分析及自学习模块,方法,包含以下步骤:步骤S1,在LF炉盖观察孔处安装摄像头,对LF冶炼过程中的图像进行采集;步骤S2,在训练模式下,在冶炼过程中,通过图像采集和控制模块对炉内图像信息进行标签化处理;本发明实现LF的全自动化智能化生产,进一步优化LF生产过程,进而降低成本、提高钢水质量、节约人力,实现LF炉内冶炼状态精确监测控制,具有较大的经济效益和社会效益。

Description

一种LF炉精炼过程冶炼状态监控的方法和系统
技术领域
本发明属于冶金自动化控制技术领域,具体涉及一种LF炉精炼过程冶炼状态监控的方法和系统。
背景技术
在现在钢铁企业中,在LF工序可以进行脱氧剂加入、造渣剂加入、吹氩搅拌、电极加热、合金加入、喂线等操作,对应着LF承担着脱硫、脱氧、调温、成分控制、洁净度控制和缓冲节奏等功能,是钢铁生产链过程中重要的一环。
在LF操作过程中,LF冶炼状态直接影响LF精炼过程的成分控制和温度控制,目前对炉内冶炼状态的异常情况判断、对渣状态和搅拌状态的判断主要靠人工肉眼判断,由于工况条件恶劣,钢水钢渣温度很高,工人个体差异等原因,肉眼判断很难形成统一标准,很难实现LF炉内冶炼状态的实时精确监控,限制了LF成分和温度的精确控制,限制了LF全自动控制。
随着人工智能、大数据等技术的不断成熟,钢铁全产线智能化大势所趋,在此政策背景和技术背景下,实现LF的全自动化智能化生产,进一步优化LF生产过程,进而降低成本、提高钢水质量、节约人力,实现LF炉内冶炼状态精确监测控制,具有较大的经济效益和社会效益。
发明内容
本发明的目的在于提供一种LF炉精炼过程冶炼状态监控的方法和系统,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种LF炉精炼过程冶炼状态监控系统,系统包括:图像采集和控制模块、冶炼异常模型训练和监测模块、渣信息模型训练和监测模块、搅拌状态模型训练和监测模块和大数据分析及自学习模块;图像采集和控制模块用于获取炉内图像信息,在冶炼的过程中采集并人工标签化图像数据;在系统进入训练模式时用标签化的数据训练冶炼异常模型、训练渣信息监测模型、训练搅拌信息监测模型,将训练好的模型导入系统,在冶炼时通过模型对LF精炼过程炉内的图像进行分析处理,提高LF模型的计算精度和控制水平。
一种LF炉精炼过程冶炼状态监控的方法,包含以下步骤:
步骤S1,在LF炉盖观察孔处安装摄像头,对LF冶炼过程中的图像进行采集;
步骤S2,在训练模式下,在冶炼过程中,通过图像采集和控制模块对炉内图像信息进行标签化处理,分别记录图像中异常情况分类、渣状态分级信息、搅拌分级信息;
步骤S3,基于深度学习图像算法,建立冶炼异常模型训练和监测模块,用冶炼图像信息对异常监测模型进行训练测试,合格后导入系统;
步骤S4,基于深度学习图像算法,建立渣信息模型训练和监测模块,用冶炼图像信息对渣信息监测模型进行训练测试,合格后导入系统;
步骤S5,基于深度学习图像算法,建立搅拌信息模型训练和监测模块,用冶炼图像信息对渣信息监测模型进行训练测试,合格后导入系统;
步骤S6,在生产模式时,启动图像设备和加载以上模型,并返回硬件状态和模型加载情况;
步骤S7,在冶炼开始,结合LF二级系统过程事件信息,模型监测炉内是否有异常情况,有的话进行异常报警,启动异常冶炼模式;
步骤S8,如无异常情况,启动渣信息监测模型和搅拌状态监测模型,对冶炼过程图像中的渣的状态、渣厚度、氩气搅拌效果进行量化信息输出,传给LF控制系统;
步骤S9,LF二级系统在接收到以上模型的计算结果后,修正输入参数优化LF控制模型,提高LF模型计算和控制精度;
步骤S10,冶炼结束,对过程图像数据进行数据处理和参数自学习,存入数据库。
优选的,所述步骤S3和S7中,通对LF冶炼过程中的图像进行采集,对异常情况进行标签化处理,运用深度学习算法卷积神经网络CNN和图像检测算法对图像信息进行模型训练建立冶炼异常监测模型,通过训练好的模型对炉内异常情况进行实时监测,当炉内发生异常情况时及时监测异常发生的程度、位置和类型,进行报警并触发异常处理模式。
优选的,在步骤S4和S8中,通对LF冶炼过程中的图像进行采集,对渣状态进行标签化处理,结合LF冶炼过程事件信息,运用深度学习算法卷积神经网络CNN、序列神经网络RNN和图像检测算法对图像信息进行模型训练建立渣信息监测模型,通过训练好的模型对炉内渣情况进行实时监测,将炉内渣的状态和厚度信息等传递给LF控制系统模型。
优选的,在步骤S5和S8中,通对LF冶炼过程中的图像进行采集,对搅拌状态进行标签化处理,结合LF冶炼过程事件信息,运用深度学习算法卷积神经网络CNN算法对图像信息进行模型训练建立搅拌状态监测模型,通过训练好的模型对炉内氩气搅拌情况进行实时监测,将炉内搅拌状态量化信息等传递给LF控制系统模型。
与现有技术相比,本发明的有益效果是:本发明提出的一种LF炉精炼过程冶炼状态监控的方法和系统,对LF冶炼过程中的图像进行采集、标签化处理,运用深度学习算法卷积神经网络CNN、序列神经网络RNN和图像检测算法对图像信息进行模型训练,训练冶炼异常模型、训练渣信息监测模型、训练搅拌信息监测模型,实现LF的全自动化智能化生产,进一步优化LF生产过程,进而降低成本、提高钢水质量、节约人力,实现LF炉内冶炼状态精确监测控制,具有较大的经济效益和社会效益。
附图说明
图1为本发明的工作流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种技术方案:一种LF炉精炼过程冶炼状态监控系统,系统包括:图像采集和控制模块、冶炼异常模型训练和监测模块、渣信息模型训练和监测模块、搅拌状态模型训练和监测模块和大数据分析及自学习模块。
LF炉精炼过程冶炼状态监控方法和系统分为两种模式,具体包含以下步骤:
训练步骤S1,成像硬件设置:在LF炉盖观察口合适位置安装摄像头,按照观察范围可以设置不止一个,兼顾观察效果和冶炼操作;
训练步骤S2,计算硬件设置:选择适当的服务器作为存储核心,合适的计算芯片作为边缘计算计算核心,配置好软件运行环境,与摄像头做好接口,实现数据传输和存储;
训练步骤S3,在训练模式下,在冶炼过程中,通过图像采集和控制模块对炉内图像信息进行标签化处理,分别记录图像中异常情况分类、渣状态分级信息、搅拌分级信息等;
训练步骤S4,基于深度学习图像算法,建立冶炼异常模型训练和监测模块,用冶炼图像信息对异常监测模型进行训练测试,合格后导入系统;
训练步骤S5,基于深度学习图像算法,建立渣信息模型训练和监测模块,用冶炼图像信息对渣信息监测模型进行训练测试,合格后导入系统;
训练步骤S6,基于深度学习图像算法,建立搅拌信息模型训练和监测模块,用冶炼图像信息对渣信息监测模型进行训练测试,合格后导入系统;
工作步骤S1,进入工作模式:启动图像设备和加载以上模型,并返回硬件状态和模型加载情况;
工作步骤S2,在冶炼开始,结合LF二级系统过程事件信息,模型监测炉内是否有异常情况,有的话进行异常报警,启动异常冶炼模式;
工作步骤S3,在冶炼开始,结合LF二级系统过程事件信息,模型监测炉内是否有异常情况,有的话进行异常报警,启动异常冶炼模式;
工作步骤S4,如无异常情况,启动渣信息监测模型和搅拌状态监测模型,对冶炼过程图像中的渣的状态、渣厚度、氩气搅拌效果等进行量化信息输出,传给LF控制系统;
工作步骤S5,LF二级系统在接收到以上模型的计算结果后,修正输入参数优化LF控制模型,提高LF模型计算和控制精度。
工作步骤S6,冶炼结束,对过程图像数据进行数据处理和参数自学习,存入数据库。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (5)

1.一种LF炉精炼过程冶炼状态监控系统,其特征在于:系统包括:图像采集和控制模块、冶炼异常模型训练和监测模块、渣信息模型训练和监测模块、搅拌状态模型训练和监测模块和大数据分析及自学习模块;
图像采集和控制模块用于获取炉内图像信息,在冶炼的过程中采集并人工标签化图像数据;在系统进入训练模式时用标签化的数据训练冶炼异常模型、训练渣信息监测模型、训练搅拌信息监测模型,将训练好的模型导入系统,在冶炼时通过模型对LF精炼过程炉内的图像进行分析处理,提高LF模型的计算精度和控制水平。
2.一种如权利要求1所述的LF炉精炼过程冶炼状态监控的方法,其特征在于:包含以下步骤:
步骤S1,在LF炉盖观察孔处安装摄像头,对LF冶炼过程中的图像进行采集;
步骤S2,在训练模式下,在冶炼过程中,通过图像采集和控制模块对炉内图像信息进行标签化处理,分别记录图像中异常情况分类、渣状态分级信息、搅拌分级信息;
步骤S3,基于深度学习图像算法,建立冶炼异常模型训练和监测模块,用冶炼图像信息对异常监测模型进行训练测试,合格后导入系统;
步骤S4,基于深度学习图像算法,建立渣信息模型训练和监测模块,用冶炼图像信息对渣信息监测模型进行训练测试,合格后导入系统;
步骤S5,基于深度学习图像算法,建立搅拌信息模型训练和监测模块,用冶炼图像信息对渣信息监测模型进行训练测试,合格后导入系统;
步骤S6,在生产模式时,启动图像设备和加载以上模型,并返回硬件状态和模型加载情况;
步骤S7,在冶炼开始,结合LF二级系统过程事件信息,模型监测炉内是否有异常情况,有的话进行异常报警,启动异常冶炼模式;
步骤S8,如无异常情况,启动渣信息监测模型和搅拌状态监测模型,对冶炼过程图像中的渣的状态、渣厚度、氩气搅拌效果进行量化信息输出,传给LF控制系统;
步骤S9,LF二级系统在接收到以上模型的计算结果后,修正输入参数优化LF控制模型,提高LF模型计算和控制精度;
步骤S10,冶炼结束,对过程图像数据进行数据处理和参数自学习,存入数据库。
3.根据权利要求2所述的一种LF炉精炼过程冶炼状态监控方法,其特征在于:所述步骤S3和S7中,通对LF冶炼过程中的图像进行采集,对异常情况进行标签化处理,运用深度学习算法卷积神经网络CNN和图像检测算法对图像信息进行模型训练建立冶炼异常监测模型,通过训练好的模型对炉内异常情况进行实时监测,当炉内发生异常情况时及时监测异常发生的程度、位置和类型,进行报警并触发异常处理模式。
4.根据权利要求2所述的一种LF炉精炼过程冶炼状态监控方法,其特征在于:在步骤S4和S8中,通对LF冶炼过程中的图像进行采集,对渣状态进行标签化处理,结合LF冶炼过程事件信息,运用深度学习算法卷积神经网络CNN、序列神经网络RNN和图像检测算法对图像信息进行模型训练建立渣信息监测模型,通过训练好的模型对炉内渣情况进行实时监测,将炉内渣的状态和厚度信息等传递给LF控制系统模型。
5.根据权利要求2所述的一种LF炉精炼过程冶炼状态监控方法,其特征在于:在步骤S5和S8中,通对LF冶炼过程中的图像进行采集,对搅拌状态进行标签化处理,结合LF冶炼过程事件信息,运用深度学习算法卷积神经网络CNN算法对图像信息进行模型训练建立搅拌状态监测模型,通过训练好的模型对炉内氩气搅拌情况进行实时监测,将炉内搅拌状态量化信息等传递给LF控制系统模型。
CN202211378161.5A 2022-11-04 2022-11-04 一种lf炉精炼过程冶炼状态监控的方法和系统 Pending CN115679042A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211378161.5A CN115679042A (zh) 2022-11-04 2022-11-04 一种lf炉精炼过程冶炼状态监控的方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211378161.5A CN115679042A (zh) 2022-11-04 2022-11-04 一种lf炉精炼过程冶炼状态监控的方法和系统

Publications (1)

Publication Number Publication Date
CN115679042A true CN115679042A (zh) 2023-02-03

Family

ID=85050290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211378161.5A Pending CN115679042A (zh) 2022-11-04 2022-11-04 一种lf炉精炼过程冶炼状态监控的方法和系统

Country Status (1)

Country Link
CN (1) CN115679042A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110438284A (zh) * 2019-08-26 2019-11-12 杭州谱诚泰迪实业有限公司 一种转炉智能出钢装置及控制方法
CN111126206A (zh) * 2019-12-12 2020-05-08 创新奇智(成都)科技有限公司 基于深度学习的冶炼状态检测系统及检测方法
US20210034973A1 (en) * 2019-07-30 2021-02-04 Google Llc Training neural networks using learned adaptive learning rates
CN112853033A (zh) * 2021-03-10 2021-05-28 柳州钢铁股份有限公司 一种基于炉口图像分析的高效溅渣智能控制方法及系统
CN112950586A (zh) * 2021-03-02 2021-06-11 攀钢集团攀枝花钢铁研究院有限公司 一种lf炉钢渣红外识别方法和系统
CN114150099A (zh) * 2021-11-29 2022-03-08 中冶华天南京工程技术有限公司 一种炼钢智慧集控方法
CN115035328A (zh) * 2022-04-25 2022-09-09 上海大学 转炉图像增量自动机器学习系统及其建立训练方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210034973A1 (en) * 2019-07-30 2021-02-04 Google Llc Training neural networks using learned adaptive learning rates
CN110438284A (zh) * 2019-08-26 2019-11-12 杭州谱诚泰迪实业有限公司 一种转炉智能出钢装置及控制方法
CN111126206A (zh) * 2019-12-12 2020-05-08 创新奇智(成都)科技有限公司 基于深度学习的冶炼状态检测系统及检测方法
CN112950586A (zh) * 2021-03-02 2021-06-11 攀钢集团攀枝花钢铁研究院有限公司 一种lf炉钢渣红外识别方法和系统
CN112853033A (zh) * 2021-03-10 2021-05-28 柳州钢铁股份有限公司 一种基于炉口图像分析的高效溅渣智能控制方法及系统
CN114150099A (zh) * 2021-11-29 2022-03-08 中冶华天南京工程技术有限公司 一种炼钢智慧集控方法
CN115035328A (zh) * 2022-04-25 2022-09-09 上海大学 转炉图像增量自动机器学习系统及其建立训练方法

Similar Documents

Publication Publication Date Title
CN108763550B (zh) 高炉大数据应用系统
CN110263494B (zh) 一种基于云边协同的氧化铝生产运行优化系统及方法
CN108256260A (zh) 一种基于极限学习机的连铸坯质量预测方法
CN104133415B (zh) 一种炼钢转炉钢水管理系统与方法
CN111126206B (zh) 基于深度学习的冶炼状态检测系统及检测方法
CN113192568A (zh) 一种精炼炉脱硫终点预报方法和系统
CN115609112A (zh) 一种焊接参数确定方法、装置及其介质
CN117733439B (zh) 一种具有焊缝成形质量实时预测功能的焊接机器人
CN115679042A (zh) 一种lf炉精炼过程冶炼状态监控的方法和系统
CN114707970A (zh) 一种电解生产参数确定方法
CN115584375B (zh) 一种基于图像识别的转炉自动出钢的方法及系统
CN108941496B (zh) 炼钢连铸过程质量实时跟踪及控制系统及方法
CN115576285A (zh) 一种lf精炼全自动生产的方法及系统
JP7401752B2 (ja) モデル構築装置、予測装置、モデル構築方法、予測方法及びコンピュータプログラム
CN114862099B (zh) 一种基于规则引擎的连铸质量预判模型在线系统
CN111898975A (zh) 一种炼钢生产过程智能调度系统及方法
CN116341750A (zh) 一种钢材夹杂物级别预测方法、装置、终端及存储介质
CN115094193A (zh) 一种基于数据挖掘的铁水预处理脱硫智能系统
CN109840309A (zh) 一种铁水脱硫剂用量的计算方法
CN116090849A (zh) 一种炼扎工艺的质量在线确定方法及装置
CN115454166A (zh) 一种铬合金熔炼温度控制方法、系统及熔炼装置
CN117171936A (zh) 基于缺陷机理提取结晶器实时特征值的板坯质量预测方法
Pellegrini et al. Successful use case applications of artificial intelligence in the steel industry
CN113674249A (zh) 基于工业互联网的pcb板印刷质量检测方法
CN117787480B (zh) 基于Res-LSTM的焊缝成形质量实时预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination