CN115671314A - 一种抗血管生成靶向黑磷纳米片的制备方法及其应用 - Google Patents

一种抗血管生成靶向黑磷纳米片的制备方法及其应用 Download PDF

Info

Publication number
CN115671314A
CN115671314A CN202211436113.7A CN202211436113A CN115671314A CN 115671314 A CN115671314 A CN 115671314A CN 202211436113 A CN202211436113 A CN 202211436113A CN 115671314 A CN115671314 A CN 115671314A
Authority
CN
China
Prior art keywords
black phosphorus
bps
vac
apt
angiogenesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211436113.7A
Other languages
English (en)
Inventor
赵岳涛
何义朗
姜浩
赵佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202211436113.7A priority Critical patent/CN115671314A/zh
Publication of CN115671314A publication Critical patent/CN115671314A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种抗血管生成靶向黑磷纳米片的制备及应用,肿瘤新血管形成在三阴性乳腺癌发生发展中发挥重要作用,本发明制备了一种新型黑磷纳米材料Vac@Apt@BPs,通过阻断TGFβ信号通路抑制血管生成,并设计AS1411适配体主动靶向策略,结合光热效应,实现三阴性乳腺癌靶向光热免疫复合疗法。该策略为本发明首次提出,有效抑制三阴性乳腺癌的生长,并激发机体免疫反应,为三阴性乳腺癌的精准治疗提供了一种新的策略,并为其他实体瘤的治疗提供新思路。

Description

一种抗血管生成靶向黑磷纳米片的制备方法及其应用
技术领域
本发明属于纳米技术和生物医药领域,具体涉一种抗血管生成靶向黑磷纳米片的制备方法及其应用。
背景技术
纳米技术的进步创造了癌症治疗的新方法。与传统的癌症免疫疗法不同,合理设计的纳米材料可以触发特定的杀瘤效应,并优化抗原呈递,诱导持久的免疫反应。此外,与低分子量免疫调节剂相比,纳米级免疫调节剂具有可控的药代动力学行为,因此纳米技术在肿瘤免疫治疗中具有广泛的应用潜力,
肿瘤的生长或转移过程中需要提供足够的养分,所以异常丰富的供血是它的必要条件。TGFβ在肿瘤的发生发展中发挥重要作用,TGFβ的过度表达可以促进肿瘤血管的生成,并削弱免疫反应,从而促进肿瘤的发生发展。因此,基于TGF-β和血管生成和对免疫抑制的作用,阻断TGF-β信号通路是增加免疫治疗效果的有希望的方法。三阴性乳腺癌(triplenegativebreastcancer,TNBC)是ER、PR和HER-2表达均为阴性的乳腺癌,占所有乳腺癌患者的15~20%,具有高侵袭性的,易复发性,转移性TNBC患者的中位总生存期仅为18个月,是最恶性的乳腺癌亚型。由于相应受体的缺乏,三阴性乳腺癌难以响应内分泌等靶向治疗策略。
目前,生物医药领域对三阴性乳腺癌治疗面临如下不足:
1、化学疗法是主要的治疗方法,但化疗引起的毒副反应及多药耐药仍导致不良预后,因此,针对三阴性乳腺癌的治疗仍然是当今医学研究的重大挑战。
2、光热治疗(PTT),即借助光热纳米制剂的激光诱导加热和根除肿瘤,已广泛用于肿瘤治疗。通过PTT破坏肿瘤细胞可以释放肿瘤相关抗原并诱导免疫原性细胞死亡(ICD),突出了与免疫疗法的有希望的协同效应。此外,PTT提供了独特的益处,包括组织侵入性和时空选择性。已经提出了许多纳米材料来吸收近红外(NIR)窗口中的光,而黑磷(BP)已经引起了很多关注,并被广泛应用于各种生物医学用途。除了表现出良好的光学性能,包括强大的近红外吸收和潜在的光热转换效率,BP还具有迷人的品质,如天生的生物相容性和降解力。目前,裸露的黑磷稳定性差,仅有良好的光学性能并不能直接杀死肿瘤细胞。
发明内容
为了解决上述技术问题,本发明提供了一种抗血管生成靶向黑磷纳米片的制备方法制备的抗血管生成靶向黑磷纳米Vac@Apt@BPs,可抑制血管生成,同时结合光热治疗,可直接杀伤三阴性乳腺肿瘤细胞。
为了达到解决上述技术问题的技术效果,本发明是通过以下技术方案实现的:
一种抗血管生成靶向黑磷纳米片的制备方法,包括以下步骤:
步骤一、取块状黑磷于玛瑙研钵中,在NMP有机溶剂中研磨形成混合液,超声粉碎大颗粒,并离心上清液,得到BPs黑磷纳米片;
步骤二、取Ti(OiPr)4和4-磺基苯甲酸单钾盐在乙醇中持续搅拌并加热到50℃反应12-18h后,旋转蒸发得到TiL4-COOH;
步骤三、取BPs黑磷纳米片和TiL4-COOH混合于NMP中,并持续搅拌,充分反应后离心得到TiL4-COOH@BPs,并重悬于超纯水中;
步骤四、Vac和Apt加入TiL4-COOH@BPs中,在一定量EDC和NHS条件下搅拌,充分反应12h-18h后离心得到Vac@Apt@BPs;
进一步地,所述步骤一中取块状黑磷量为20mg,NMP溶剂总量为20mL,分多次少量加入;所述超声为冰浴条件下探头超声和水浴超声;探头超声时间为5h,功率为1200W,19-25kHz,On/Offcycle:2s/4s;水浴超声时间为8h,功率为300W;所述离心的转速为7000rpm,离心时间为20min;
进一步地,所述步骤二中Ti(OiPr)4和4-磺基苯甲酸单钾盐质量比为24:7;
进一步地,所述步骤三中TiL4-COOH用量为每10μgBPs加入0.25mg,所述离心的转速为7000rpm,离心时间为10min;
进一步地,所述步骤四中Apt,Vac,TiL4-COOH@BPs,EDC和Sulfo-NHS的量分别为1μmol,6mg,1mg,1mg和1.12mg;
本发明所述一种抗血管生成靶向黑磷纳米片,所述靶向策略为偶联靶向核仁素适配体AS1411的主动靶向策略;
本发明所述的一种抗血管生成靶向黑磷纳米片治疗三阴性乳腺癌中。
本发明的有益效果是:
1、本发明的一种抗血管生成靶向黑磷纳米片Vac@Apt@BPs,相比于裸露的黑磷,其稳定性有较大的提高,为黑磷纳米材料在体内运用提供更大的可能。
2、本发明运用了主动靶向策略,偶联AS1411适配体,主动靶向核仁素,实现材料的特异性高效递送。
3、本发明运用新的治疗策略,首次将TGFβ抑制剂与黑磷结合,抑制血管生成,同时结合光热治疗,既能直接杀伤肿瘤,又能激活机体免疫反应,为三阴性乳腺癌的精准治疗提供了一种新的策略。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为Vac@Apt@BPs表征数据示意图;
图2为Vac@Apt@BPs稳定性数据示意图;
图3为Vac@Apt@BPs的光热效应示意图;
图4为Vac负载效率数据示意图;
图5为各组小鼠肿瘤示意图和肿瘤生长曲线示意图;
图6为各组小鼠体内安全评估示意图;
图7为各处理组小鼠肿瘤血管荧光染色图和体内免疫效应的流式细胞分析图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
本实施例基于一种抗血管生成靶向黑磷纳米片的制备方法,制备的Vac@Apt@BPs纳米材料,其具体详细步骤如下:
(1)称取20mg块状黑磷于玛瑙研钵中,少量多次加入总量为20mL的NMP有机溶剂,研磨成混合液,转移至50mL离心管中,1200W探头超声5h后(19-25kHz,On/Offcycle:2s/4s),水浴超声8h(300W)进行大块粉碎;7000rpm离心20min取上清,得到BPs纳米片;
(2)0.7gTi(OiPr)4和2.4g4-磺基苯甲酸单钾盐在乙醇中持续搅拌并加热到50℃,反应12-18h后,旋转蒸发得到TiL4-COOH;
(3)0.5mgTiL4-COOH加入溶解在NMP中的20μg黑磷,持续搅拌12-18h后,7000rpm离心10min,沉淀重悬于超纯水中;
(4)1mgEDC和1.12mgSulfo-NHS与1mgTiL4-COOH@BPs反应1h后,加入6mgVac和1μmolApt,反应12-18h后,7000rpm离心10min,得到Vac@Apt@BPs。
参阅图1为Vac@Apt@BPs表征数据示意图,小图分别为制备纳米粒子的透射电子显微镜观察到的图片、紫外可见光吸收光谱图和点位图,由图可知,制备得到了良好分散,直径约为100nm的高质量的Vac@Apt@BPs纳米片,UV-Vis-NIR显示出TiL4-COOH,Vac和Apt特异吸收峰,经修饰后,表面电位也发生相应变化,表明TiL4-COOH,Vac和Apt的成功修饰。
实施例2
本实施例基于一种抗血管生成靶向黑磷纳米片的制备方法制得的Vac@Apt@BPs,测定其稳定性。
参阅图2为Vac@Apt@BPs稳定性数据示意图,图中相同浓度BPs和Vac@Apt@BPs在PBs中放置一定时间后,使用波长为808nm的近红外激光照射后的光热效率,由图可见,相比BPs,8天后,经光照Vac@Apt@BPs表现出更高的光热效应,显示出Vac@Apt@BPs更高的稳定性。
实施例3
本实施例测算药物Vac的负载效率,将Vac与Apt@BPs以不同的质量比反应后(Vac/BPs=1,2,4,6,8,10),7000rpm离心10min,收集上清液,以消光光谱数据为基准,取320nm处溶液的吸收值,然后利用吸收值与Vac浓度的关系式以及相应的溶液体积计算出不同浓度配比的黑磷的载药量,进而计算出载药率。
图3为Vac@Apt@BPs的光热效应示意图,从图中可观察到不同质量比Vac和Apt@BPs反应后的载药率,由图可见,随着质量比的提高,载药率逐渐增加,但在质量比为6以后,黑磷的质量不变,Vac载药率逐渐达到饱和。
实施例4
如图4为Vac负载效率数据示意图,从图中可观察到纳米粒子的光热转换效率。取200μLPBs及相同浓度的BPs和Vac@Apt@BPs的水溶液置于96孔板中中,使用波长为808nm的激光器作为激发光源,以1.0Wcm-2的功率持续照射上述水溶液10分钟,记录温度变化数据并绘制温度变化曲线。
参阅图4相同浓度BPs和Vac@Apt@BPs的水溶液在808nm激光,以1.0Wcm-2的功率持续照射10分钟后的温度变化趋势,由图可见,与PBs相比BPs和Vac@Apt@BPs有较大的升温幅度,且BPs和Vac@Apt@BPs温度相当,表明修饰后并不会明显影响黑磷的光热转换效率。
实施例5
本实施例基于一种抗血管生成靶向黑磷纳米片的制备方法,制备的Vac@Apt@BPs,并探究Vac@Apt@BPs在三阴性乳腺癌治疗中的应用。Balb/c小鼠皮下注射5×105个4T1细胞,当肿瘤体积达到500mm3左右时,小鼠被随机分配为6个治疗组(n=3):PBs(100μL),Vac(5mg/mL,100μL),BPs(1mg/mL,100μL),BPs(1mg/mL,100μL)+NIRlaser,Vac@Apt@BPs(1mg/mL,100μL),Vac@Apt@BPs(1mg/mL,100μL)+NIRlaser。药物通过腹腔注射,隔天注射一次,共给药3次。使用公式计算肿瘤体积(mm3):肿瘤体积=(最短直径)2×(最长直径)×0.5,记录小鼠肿瘤体积变化,对纳米药物体内安全性进行评估,探究纳米药物对肿瘤血管的和体内免疫效应的影响。
图5各组小鼠肿瘤示意图和肿瘤生长曲线示意图,如图所示,相比于其他组组,Vac@Apt@BPs+NIRlaser表现出显著增强的抑瘤效果。图6为各组小鼠体内安全评估示意图,包括小鼠体积变化图,ALT和AST测定值柱状图和肝肾H&E染色图,由图可见,与对照组相比,各处理组均为表现出明显的体内毒性,本发明的纳米药物安全有效。
图7为各处理组小鼠肿瘤血管荧光染色图和体内免疫效应的流式细胞分析图,如图所示,相比于其他组,经Vac,Vac@Apt@BPs和Vac@Apt@BPs+NIRlaser处理后,小鼠肿瘤内血管的生成明显被抑制,同时,Vac@Apt@BPs+NIRlaser处理组Treg细胞百分比明显低于其他处理组,DC细胞和CD8+细胞百分比明显高于其他处理组。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (7)

1.一种抗血管生成靶向黑磷纳米片的制备方法,其特征在于,包括以下步骤:
步骤一、取块状黑磷于玛瑙研钵中,在NMP有机溶剂中研磨形成混合液,超声粉碎大颗粒,并离心上清液,得到BPs黑磷纳米片;
步骤二、取Ti(OiPr)4和4-磺基苯甲酸单钾盐在乙醇中持续搅拌并加热到50℃反应12-18h后,旋转蒸发得到TiL4-COOH;
步骤三、取BPs黑磷纳米片和TiL4-COOH混合于NMP中,并持续搅拌,充分反应后离心得到TiL4-COOH@BPs,并重悬于超纯水中;
步骤四、Vac和Apt加入TiL4-COOH@BPs中,在EDC和NHS条件下搅拌,充分反应12h-18h后离心得到Vac@Apt@BPs。
2.根据权利要求1所述一种抗血管生成靶向黑磷纳米片的制备方法,其特征在于,所述步骤一中取块状黑磷量为20mg,NMP溶剂总量为20mL;所述超声为冰浴条件下探头超声和水浴条件下探头超声;探头超声时间为5h,功率为1200W,19-25kHz,On/Offcycle:2s/4s;水浴超声时间为8h,功率为300W;所述离心的转速为7000rpm,离心时间为20min。
3.根据权利要求1所述一种抗血管生成靶向黑磷纳米片的制备方法,其特征在于,所述步骤二中Ti(OiPr)4和4-磺基苯甲酸单钾盐质量比为24:7。
4.根据权利要求1所述一种抗血管生成靶向黑磷纳米片的制备方法,其特征在于,所述步骤三中TiL4-COOH用量为每10μg BPs加入0.25mg,所述离心的转速为7000rpm,离心时间为10min。
5.根据权利要求1所述一种抗血管生成靶向黑磷纳米片的制备方法,其特征在于,所述步骤四中Apt,Vac,TiL4-COOH@BPs,EDC和Sulfo-NHS的量分别为1μmol,6mg,1mg,1mg和1.12mg。
6.根据权利要求1至5任意一项所述权利要求1制备的抗血管生成靶向黑磷纳米片在三阴性乳腺癌治疗药物中的应用。
7.根据权利要求1至5任意一项所述权利要求1制备的抗血管生成靶向黑磷纳米片在靶向核仁素过表达肿瘤细胞中的应用。
CN202211436113.7A 2022-11-16 2022-11-16 一种抗血管生成靶向黑磷纳米片的制备方法及其应用 Pending CN115671314A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211436113.7A CN115671314A (zh) 2022-11-16 2022-11-16 一种抗血管生成靶向黑磷纳米片的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211436113.7A CN115671314A (zh) 2022-11-16 2022-11-16 一种抗血管生成靶向黑磷纳米片的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN115671314A true CN115671314A (zh) 2023-02-03

Family

ID=85053069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211436113.7A Pending CN115671314A (zh) 2022-11-16 2022-11-16 一种抗血管生成靶向黑磷纳米片的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN115671314A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106267204A (zh) * 2016-09-21 2017-01-04 中南大学 一种黑磷纳米片‑抗肿瘤化合物的复合材料及其制备方法和应用
KR20200087505A (ko) * 2019-01-11 2020-07-21 영남대학교 산학협력단 흑린 나노시트를 사용한 약물 전달체
US20210196822A1 (en) * 2018-08-22 2021-07-01 Merck Patent Gmbh Treatment of triple negative breast cancer with targeted tgf-b inhibition
WO2022204581A2 (en) * 2021-03-26 2022-09-29 Scholar Rock, Inc. Tgf-beta inhibitors and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106267204A (zh) * 2016-09-21 2017-01-04 中南大学 一种黑磷纳米片‑抗肿瘤化合物的复合材料及其制备方法和应用
US20210196822A1 (en) * 2018-08-22 2021-07-01 Merck Patent Gmbh Treatment of triple negative breast cancer with targeted tgf-b inhibition
KR20200087505A (ko) * 2019-01-11 2020-07-21 영남대학교 산학협력단 흑린 나노시트를 사용한 약물 전달체
WO2022204581A2 (en) * 2021-03-26 2022-09-29 Scholar Rock, Inc. Tgf-beta inhibitors and use thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JIWON CHOI等: "Co-treatment with vactosertib, a novel, orally bioavailable activin receptor-like kinase 5 inhibitor, suppresses radiotherapy-induced epithelial-to-mesenchymal transition, cancer cell stemness, and lung metastasis of breast cancer", 《RADIOL ONCOL》, vol. 56, no. 2, 30 April 2022 (2022-04-30), pages 186 *
JIWON CHOI等: "Co-treatment with vactosertib, a novel, orally bioavailable activin receptor-like kinase 5 inhibitor, suppresses radiotherapy-induced epithelial-to-mesenchymal transition, cancer cell stemness, and lung metastasis of breast cancer", 《RADIOL ONCOL》, vol. 56, no. 2, 7 April 2022 (2022-04-07), pages 186 *
YUETAO ZHAO等: "Photothermal nanobomb blocking metabolic adenosine-A2AR potentiates infiltration and activity of Tcells for robust antitumor immunotherapy", 《CHEMICALENGINEERINGJOURNAL》, vol. 450, 16 July 2022 (2022-07-16), pages 1 - 4 *
YUETAO ZHAO等: "Photothermal nanobomb blocking metabolic adenosine-A2AR potentiates infiltration and activity of Tcells for robust antitumor immunotherapy", 《CHEMICALENGINEERINGJOURNAL》, vol. 450, 6 July 2022 (2022-07-06), pages 1 - 4 *
苏佳灿等编: "《骨生长因子》", vol. 2015, 31 March 2015, 上海:第二军医大学出版社, pages: 45 - 46 *

Similar Documents

Publication Publication Date Title
Zhang et al. Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy
Ning et al. Type-I AIE photosensitizer loaded biomimetic system boosting cuproptosis to inhibit breast cancer metastasis and rechallenge
Zhou et al. BSA-bioinspired gold nanorods loaded with immunoadjuvant for the treatment of melanoma by combined photothermal therapy and immunotherapy
Zhang et al. A targeting black phosphorus nanoparticle based immune cells nano-regulator for photodynamic/photothermal and photo-immunotherapy
Yang et al. Converting primary tumor towards an in situ STING-activating vaccine via a biomimetic nanoplatform against recurrent and metastatic tumors
Li et al. Biomineralized biohybrid algae for tumor hypoxia modulation and cascade radio-photodynamic therapy
EP2537530A1 (en) Radiation therapy agent
Zhang et al. Host immune response triggered by graphene quantum-dot-mediated photodynamic therapy for oral squamous cell carcinoma
Huang et al. Synergistic strategy with hyperthermia therapy based immunotherapy and engineered exosomes− liposomes targeted chemotherapy prevents tumor recurrence and metastasis in advanced breast cancer
Chen et al. Four ounces can move a thousand pounds: the enormous value of nanomaterials in tumor immunotherapy
Li et al. Cell membrane-based biomimetic technology for cancer phototherapy: mechanisms, recent advances and perspectives
Wu et al. Nanodroplet-enhanced sonodynamic therapy potentiates immune checkpoint blockade for systemic suppression of triple-negative breast cancer
Wan et al. Biomimetic, pH-responsive nanoplatforms for cancer multimodal imaging and photothermal immunotherapy
Bai et al. A Silver‐Induced Absorption Red‐Shifted Dual‐Targeted Nanodiagnosis‐Treatment Agent for NIR‐II Photoacoustic Imaging‐Guided Photothermal and ROS Simultaneously Enhanced Immune Checkpoint Blockade Antitumor Therapy
Wu et al. Tumor homing-penetrating and nanoenzyme-augmented 2D phototheranostics against hypoxic solid tumors
CN110368501B (zh) 一种rgd肽修饰的硼载药体系及其制备和应用
Zhou et al. Photothermally responsive theranostic nanocomposites for near‐infrared light triggered drug release and enhanced synergism of photothermo‐chemotherapy for gastric cancer
Wan et al. Endoplasmic reticulum-targeted NIR-II phototherapy combined with inflammatory vascular suppression elicits a synergistic effect against TNBC
Wang et al. Sequential targeting biomimetic nano platform for enhanced mild photothermal therapy and chemotherapy of tumor
Liu et al. Optical functional nanomaterials for cancer photoimmunotherapy
Jiang et al. Immunostimulant nanomodulator boosts antitumor immune response in triple negative breast cancer by synergism of vessel normalization and photothermal therapy
CN115671314A (zh) 一种抗血管生成靶向黑磷纳米片的制备方法及其应用
Gao et al. Organic optical agents for image-guided combined cancer therapy
Zhang et al. Multifunctional Cu x S-and DOX-loaded AuNR@ mSiO 2 platform for combined melanoma therapy with inspired antitumor immunity
Zhou et al. Synthesis of lenvatinib-loaded upconversion@ polydopamine nanocomposites for upconversion luminescence imaging-guided chemo-photothermal synergistic therapy of anaplastic thyroid cancer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination