CN115658419A - Model data monitoring method, device, medium and equipment - Google Patents
Model data monitoring method, device, medium and equipment Download PDFInfo
- Publication number
- CN115658419A CN115658419A CN202211117959.4A CN202211117959A CN115658419A CN 115658419 A CN115658419 A CN 115658419A CN 202211117959 A CN202211117959 A CN 202211117959A CN 115658419 A CN115658419 A CN 115658419A
- Authority
- CN
- China
- Prior art keywords
- target
- data
- model
- predicted
- performance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Debugging And Monitoring (AREA)
Abstract
Description
技术领域technical field
本申请涉及电子通信技术领域,尤其涉及一种模型数据监控技术领域,特别涉及一种模型数据监控方法、装置、介质及设备。The present application relates to the technical field of electronic communication, in particular to the technical field of model data monitoring, in particular to a model data monitoring method, device, medium and equipment.
背景技术Background technique
模型监控是近几年AI前沿研究领域之一,随着模型在企业实际生产中的应用场景呈指数级增长,模型的效果和稳定性也将直接影响企业产品的生产效益。例如银行的风控模型,将直接影响到用户贷款、开户等核心业务场景,如果模型发生效果衰退,将无法准确给出用户风险等级预测结果,这会直接影响用户使用流程,造成收益损失。Model monitoring is one of the frontier research fields of AI in recent years. As the application scenarios of models in actual production of enterprises grow exponentially, the effect and stability of models will also directly affect the production efficiency of enterprise products. For example, the bank's risk control model will directly affect core business scenarios such as user loans and account opening. If the model fails, it will not be able to accurately predict the user's risk level, which will directly affect the user's use process and cause loss of revenue.
因此,算法工程师需要及时对效果下降的模型进行更新迭代或者下线,避免因模型问题导致的生产事故,这就催生了模型监控的需求。Therefore, algorithm engineers need to update and iterate or offline models in a timely manner to avoid production accidents caused by model problems, which leads to the need for model monitoring.
在此之前,算法工程师主要通过自己编写代码的方式进行离线指标查询,这需要耗费相当多的时间去编写代码,例如有100个模型,每个模型耗费5天进行监控代码编写,将耗费500天去做模型监控,随着模型的增长,需要的人力成本也越多。Prior to this, algorithm engineers mainly performed offline index query by writing their own codes, which took a considerable amount of time to write codes. For example, there are 100 models, and each model takes 5 days to write monitoring codes, which will take 500 days To do model monitoring, as the model grows, more labor costs are required.
发明内容Contents of the invention
本申请实施例提供一种模型数据监控方法、装置、介质及设备,利用本申请实施例提供的模型数据监控方法,用户可以在平台上选择指定待预测数据及指定模型指标,便可自动得出用于预测待预测数据的目标预测模型的性能报告,并根据性能报告对目标预测模型的性能进行自动监控预警。The embodiment of the present application provides a model data monitoring method, device, medium and equipment. By using the model data monitoring method provided in the embodiment of the present application, the user can select and specify the data to be predicted and the specified model index on the platform, and then automatically obtain The performance report of the target prediction model used to predict the data to be predicted, and automatically monitor and warn the performance of the target prediction model according to the performance report.
本申请实施例一方面提供了一种模型数据监控方法,所述模型数据监控方法包括:An embodiment of the present application provides a model data monitoring method on the one hand, and the model data monitoring method includes:
接收数据获取请求;Receive data acquisition request;
获取所述数据获取请求中待预测数据的目标预测值与目标真实值,所述目标预测值指示待预测数据通过目标预测模型得到的预测结果,所述目标真实值指示待预测数据的真实结果;Acquiring a target predicted value and a target real value of the data to be predicted in the data acquisition request, the target predicted value indicates the predicted result of the data to be predicted through a target prediction model, and the target real value indicates the real result of the data to be predicted;
接收数据计算请求;Receive data calculation request;
调取所述数据计算请求中目标模型指标对应的目标算法;calling the target algorithm corresponding to the target model index in the data calculation request;
基于所述目标算法,代入所述目标预测值与目标真实值进行计算得到目标结果数据;Based on the target algorithm, substituting the target predicted value and target real value for calculation to obtain target result data;
根据所述目标结果数据生成所述目标预测模型的性能报告;generating a performance report of the target predictive model based on the target outcome data;
基于所述性能报告对所述目标预测模型的性能进行监控预警操作。The performance of the target prediction model is monitored and pre-warned based on the performance report.
在本申请实施例所述的模型数据监控方法中,所述获取所述数据获取请求中待预测数据的目标预测值与目标真实值,包括:In the model data monitoring method described in the embodiment of the present application, the acquisition of the target predicted value and target actual value of the data to be predicted in the data acquisition request includes:
基于所述待预测数据的预设标识及预先生成的SQL语句模板生成目标SQL语句;Generate a target SQL statement based on the preset identification of the data to be predicted and the pre-generated SQL statement template;
根据所述目标SQL语句从数据库中获取与所述待预测数据对应的目标预测值及目标真实值。The target predicted value and target real value corresponding to the data to be predicted are obtained from the database according to the target SQL statement.
在本申请实施例所述的模型数据监控方法中,所述方法还包括:In the model data monitoring method described in the embodiment of the present application, the method further includes:
接收数据备注请求;Receive data comment requests;
获取所述数据备注请求中的备注信息;Obtain the remark information in the data remark request;
将所述备注信息插入所述目标模型指标,以使所述目标模型指标在所述性能报告中以预设形式展示并解释所述目标模型指标的含义。The remark information is inserted into the target model indicator, so that the target model indicator is displayed in a preset form in the performance report and the meaning of the target model indicator is explained.
在本申请实施例所述的模型数据监控方法中,所述基于所述性能报告对所述目标预测模型的性能进行监控预警操作,包括:In the model data monitoring method described in the embodiment of the present application, the monitoring and early warning operation on the performance of the target prediction model based on the performance report includes:
将所述性能报告中的各个目标结果数据与其对应的预设阈值进行比较,得到比较结果;Comparing each target result data in the performance report with its corresponding preset threshold to obtain a comparison result;
若所述比较结果为异常,则生成包含所述比较结果的提示信息。If the comparison result is abnormal, generating prompt information including the comparison result.
在本申请实施例所述的模型数据监控方法中,所述方法还包括:In the model data monitoring method described in the embodiment of the present application, the method further includes:
根据各个所述目标模型指标预先配置的权重值,为不同目标模型指标设置不同的预警等级,并将不同目标模型指标的预警等级写入各自对应的比较结果。According to the pre-configured weight value of each target model index, different early warning levels are set for different target model indicators, and the early warning levels of different target model indicators are written into the corresponding comparison results.
在本申请实施例所述的模型数据监控方法中,所述方法还包括:In the model data monitoring method described in the embodiment of the present application, the method further includes:
接收数据输出请求;Receive data output request;
确定所述数据输出请求中的目标性能报告及目标接收地址;determining the target performance report and target receiving address in the data output request;
建立所述目标性能报告与所述目标接收地址之间的连接接口;establishing a connection interface between the target performance report and the target receiving address;
将所述目标性能报告传输至所述目标接收地址。Transmitting the target performance report to the target receiving address.
在本申请实施例所述的模型数据监控方法中,所述方法还包括:In the model data monitoring method described in the embodiment of the present application, the method further includes:
接收数据查看请求;Receive data view request;
根据所述数据查看请求提供包含多个性能报告的监控列表页面,所述多个性能报告归属同一类型的多个预测模型。A monitoring list page including multiple performance reports is provided according to the data viewing request, and the multiple performance reports belong to multiple prediction models of the same type.
相应的,本申请实施例另一方面还提供了一种模型数据监控装置,所述模型数据监控装置包括:Correspondingly, another aspect of the embodiment of the present application provides a model data monitoring device, the model data monitoring device includes:
第一接收模块,用于接收数据获取请求;A first receiving module, configured to receive a data acquisition request;
数据获取模块,用于获取所述数据获取请求中待预测数据的目标预测值与目标真实值,所述目标预测值指示待预测数据通过目标预测模型得到的预测结果,所述目标真实值指示待预测数据的真实结果;A data acquisition module, configured to acquire a target predicted value and a target real value of the data to be predicted in the data acquisition request, the target predicted value indicates the forecast result obtained by the target forecast model for the data to be predicted, and the target real value indicates the target real value to be predicted Predict the true outcome of the data;
第二接收模块,用于接收数据计算请求;A second receiving module, configured to receive a data calculation request;
算法调取模块,用于调取所述数据计算请求中目标模型指标对应的目标算法;An algorithm calling module, configured to call the target algorithm corresponding to the target model index in the data calculation request;
数据计算模块,用于基于所述目标算法,代入所述目标预测值与目标真实值进行计算得到目标结果数据;The data calculation module is used to calculate the target result data by substituting the target predicted value and the target actual value based on the target algorithm;
报告生成模块,用于根据所述目标结果数据生成所述目标预测模型的性能报告;A report generating module, configured to generate a performance report of the target prediction model according to the target result data;
监控预警模块,用于基于所述性能报告对所述目标预测模型的性能进行监控预警操作。A monitoring and early warning module, configured to perform monitoring and early warning operations on the performance of the target prediction model based on the performance report.
相应的,本申请实施例另一方面还提供了一种存储介质,所述存储介质存储有多条指令,所述指令适于处理器进行加载,以执行如上所述的模型数据监控方法。Correspondingly, another aspect of the embodiment of the present application provides a storage medium, where a plurality of instructions are stored in the storage medium, and the instructions are suitable for being loaded by a processor to execute the model data monitoring method as described above.
相应的,本申请实施例另一方面还提供了一种终端设备,包括处理器和存储器,所述存储器存储有多条指令,所述处理器加载所述指令以执行如上所述的模型数据监控方法。Correspondingly, another aspect of the embodiment of the present application provides a terminal device, including a processor and a memory, the memory stores a plurality of instructions, and the processor loads the instructions to perform the above-mentioned model data monitoring method.
本申请实施例提供了一种模型数据监控方法、装置、介质及设备,该方法通过接收数据获取请求;获取所述数据获取请求中待预测数据的目标预测值与目标真实值,所述目标预测值指示待预测数据通过目标预测模型得到的预测结果,所述目标真实值指示待预测数据的真实结果;接收数据计算请求;调取所述数据计算请求中目标模型指标对应的目标算法;基于所述目标算法,代入所述目标预测值与目标真实值进行计算得到目标结果数据;根据所述目标结果数据生成所述目标预测模型的性能报告;基于所述性能报告对所述目标预测模型的性能进行监控预警操作。利用本申请实施例提供的模型数据监控方法,能够让用户通过在平台上选择指定待预测数据及指定模型指标,便可自动得出用于预测待预测数据的目标预测模型的性能报告,并根据性能报告对目标预测模型的性能进行自动监控预警。The embodiment of the present application provides a model data monitoring method, device, medium, and equipment. The method receives a data acquisition request; acquires the target predicted value and target real value of the data to be predicted in the data acquisition request, and the target forecast The value indicates the prediction result of the data to be predicted through the target prediction model, and the true target value indicates the real result of the data to be predicted; receive the data calculation request; call the target algorithm corresponding to the target model index in the data calculation request; The target algorithm is substituted into the target predicted value and the target real value for calculation to obtain the target result data; according to the target result data, a performance report of the target prediction model is generated; based on the performance report, the performance of the target prediction model is Carry out monitoring and early warning operations. Using the model data monitoring method provided by the embodiment of the present application, the user can automatically obtain the performance report of the target prediction model used to predict the data to be predicted by selecting the specified data to be predicted and the specified model index on the platform, and according to The performance report automatically monitors and warns the performance of the target prediction model.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the following briefly introduces the drawings that need to be used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present application, and those skilled in the art can also obtain other drawings according to these drawings without creative efforts.
图1为本申请实施例提供的模型数据监控方法的流程示意图。FIG. 1 is a schematic flowchart of a model data monitoring method provided in an embodiment of the present application.
图2为本申请实施例提供的模型数据监控装置的结构示意图。FIG. 2 is a schematic structural diagram of a model data monitoring device provided by an embodiment of the present application.
图3为本申请实施例提供的模型数据监控装置的另一结构示意图。Fig. 3 is another schematic structural diagram of the model data monitoring device provided by the embodiment of the present application.
图4为本申请实施例提供的终端设备的结构示意图。FIG. 4 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请的保护范围。The technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Apparently, the described embodiments are only some of the embodiments of this application, not all of them. Based on the embodiments in this application, all other embodiments obtained by those skilled in the art without making creative efforts belong to the protection scope of this application.
需要说明的是,以下内容是对本方案背景做出的简单介绍:It should be noted that the following content is a brief introduction to the background of this program:
本方案主要是围绕“目前的模型性能监控方式对人工依赖性强,花费时间长,造成人力成本与时间成本攀升”这一技术问题开展的。可以理解的是,目前算法工程师为了能够及时对性能出现下降的模型进行更新迭代或者下线,避免因模型问题导致的生产事故,算法工程师主要通过自己编写代码的方式进行离线指标查询,这需要耗费相当多的时间去编写代码,例如有100个模型,每个模型耗费5天进行监控代码编写,将耗费500天去做模型监控,随着模型的增长,需要的人力成本和时间成本也越多。This solution is mainly carried out around the technical problem of "the current model performance monitoring method is highly dependent on manual labor and takes a long time, resulting in rising labor costs and time costs". It is understandable that at present, in order for algorithm engineers to update and iterate models with degraded performance or to go offline in a timely manner, so as to avoid production accidents caused by model problems, algorithm engineers mainly query offline indicators by writing their own codes, which requires a lot of effort. It takes a lot of time to write code. For example, if there are 100 models, each model takes 5 days to write monitoring code, and it will take 500 days to do model monitoring. As the model grows, more labor and time costs are required .
为了解决上述技术问题,本申请实施例提供一种模型数据监控方法。利用本申请实施例提供的模型数据监控方法,用户可以在平台上选择指定待预测数据及指定模型指标,便可自动得出用于预测待预测数据的目标预测模型的性能报告,并根据性能报告对目标预测模型的性能进行自动监控预警。In order to solve the above technical problem, an embodiment of the present application provides a method for monitoring model data. Using the model data monitoring method provided by the embodiment of the present application, the user can select and specify the data to be predicted and the specified model index on the platform, and then automatically obtain the performance report of the target prediction model used to predict the data to be predicted, and according to the performance report Automatic monitoring and early warning of the performance of the target prediction model.
请参阅图1,图1为本申请实施例提供的模型数据监控方法的流程示意图。所述模型数据监控方法,应用于终端设备中。可选地,该终端设备为终端或服务器。可选地,该服务器是独立的物理服务器,或者是多个物理服务器构成的服务器集群或者分布式系统,或者是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、CDN(Content Delivery Network,内容分发网络)、以及大数据和人工智能平台等基础云计算服务的云服务器。可选地,该终端是智能手机、平板电脑、笔记本电脑、台式计算机、智能音箱、智能手表、智能语音交互设备、智能家电及车载终端等,但并不局限于此。Please refer to FIG. 1 . FIG. 1 is a schematic flowchart of a model data monitoring method provided in an embodiment of the present application. The model data monitoring method is applied to terminal equipment. Optionally, the terminal device is a terminal or a server. Optionally, the server is an independent physical server, or a server cluster or distributed system composed of multiple physical servers, or provides cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, cloud communication , middleware services, domain name services, security services, CDN (Content Delivery Network, content distribution network), and cloud servers for basic cloud computing services such as big data and artificial intelligence platforms. Optionally, the terminal is a smart phone, a tablet computer, a notebook computer, a desktop computer, a smart speaker, a smart watch, a smart voice interaction device, a smart home appliance, a vehicle-mounted terminal, etc., but is not limited thereto.
在一实施例中,所述方法可以包括以下步骤:In one embodiment, the method may include the following steps:
步骤101,接收数据获取请求。
其中,数据获取请求指的是当用户例如算法工程师需要查看指定预测模型在预测指定结果数据时所展现的性能时向终端设备发出的请求。示例性,当算法工程师想了解银行风控模型在预测用户的风险等级过程中所展现的性能优异情况时,可基于银行风控模型及用户数据向终端设备发起数据获取请求。具体地,数据获取请求可由用户例如算法工程师通过例如键盘、鼠标等指令输入装置向终端设备发起。Wherein, the data acquisition request refers to a request sent to the terminal device when a user such as an algorithm engineer needs to check the performance of a specified prediction model when predicting specified result data. For example, when the algorithm engineer wants to know the excellent performance of the bank's risk control model in predicting the user's risk level, he can initiate a data acquisition request to the terminal device based on the bank's risk control model and user data. Specifically, the data acquisition request may be initiated by a user such as an algorithm engineer to the terminal device through an instruction input device such as a keyboard or a mouse.
步骤102,获取所述数据获取请求中待预测数据的目标预测值与目标真实值,所述目标预测值指示待预测数据通过目标预测模型得到的预测结果,所述目标真实值指示待预测数据的真实结果。Step 102: Obtain the target predicted value and target real value of the data to be predicted in the data acquisition request, the target predicted value indicates the prediction result of the data to be predicted through the target prediction model, and the target real value indicates the target value of the data to be predicted real results.
其中,目标预测值指示待预测数据通过目标预测模型得到的预测结果,目标真实值指示待预测数据的真实结果。简单来说,目标预测值是目标预测模型根据用户输入的用户数据进行数据处理得到的预测结果,其准确性取决于预测模型的性能。目标真实值是通过人工计算得出且相对客观的真实结果,默认为绝对真实。Wherein, the target prediction value indicates the prediction result of the data to be predicted through the target prediction model, and the target real value indicates the real result of the data to be predicted. In simple terms, the target prediction value is the prediction result obtained by the target prediction model through data processing based on the user data input by the user, and its accuracy depends on the performance of the prediction model. The target real value is a relatively objective real result obtained through manual calculation, and the default is absolute real.
在一些实施例中,目标预测值与目标真实值可通过以下方式获取:In some embodiments, the target predicted value and the target actual value can be obtained in the following ways:
基于待预测数据的预设标识(例如代表用户身份的字符串“xxx”)及预先生成的SQL语句模板生成目标SQL语句,根据目标SQL语句从数据库中获取与待预测数据对应的目标预测值及目标真实值。Based on the preset identification of the data to be predicted (such as the character string "xxx" representing the user's identity) and the pre-generated SQL statement template, the target SQL statement is generated, and the target prediction value corresponding to the data to be predicted is obtained from the database according to the target SQL statement and target true value.
需要解释的是,SQL语句模板包含多个变量,至少包含“预设标识”、“预测值”、“真实值”,通过修改SQL语句模板中的变量生成目标SQL语句,便可有针对性地从数据库中获取与待预测数据对应的目标预测值及目标真实值。并且通过设置SQL语句模板能够方便用户快速构建SQL语句,不需要单独编写,节省了时间成本和提升了效率。What needs to be explained is that the SQL statement template contains multiple variables, including at least "preset identifier", "predicted value", and "true value". By modifying the variables in the SQL statement template to generate the target SQL statement, the target SQL statement can be targeted The target predicted value and target real value corresponding to the data to be predicted are obtained from the database. And by setting the SQL statement template, it is convenient for the user to quickly construct the SQL statement without writing it separately, saving time and cost and improving efficiency.
步骤103,接收数据计算请求。
其中,由于能够反映预测模型的性能优异情况的指标通常有多个,用户可以根据自己的需要选择指定的模型指标,向终端设备发起数据计算请求。比如分类模型一般需要看模型的ROC、KS、GINI、混淆矩阵等,回归模型为MSE、RMSE、MAE、R-Square等。Among them, since there are usually multiple indicators that can reflect the excellent performance of the prediction model, the user can select a specified model indicator according to his own needs, and initiate a data calculation request to the terminal device. For example, the classification model generally needs to look at the ROC, KS, GINI, confusion matrix, etc. of the model, and the regression model is MSE, RMSE, MAE, R-Square, etc.
步骤104,调取所述数据计算请求中目标模型指标对应的目标算法。
其中,目标算法指的是用于计算用户指定的目标模型指标的算法,由于本方案提到的模型指标均可采用现有成熟的公式算法进行计算得到,同时本方案未对公式算法进行改进,因此不对公式算法进行列举说明。Among them, the target algorithm refers to the algorithm used to calculate the target model index specified by the user. Since the model indicators mentioned in this plan can be calculated using existing mature formula algorithms, and this plan does not improve the formula algorithm, Therefore, the formula algorithm will not be listed and explained.
步骤105,基于所述目标算法,代入所述目标预测值与目标真实值进行计算得到目标结果数据。
其中,基于用户目标模型指标对应的目标算法,将上述获取的目标预测值与目标真实值代入目标算法进行计算得到目标结果数据。即分类模型对应的ROC、KS、GINI、混淆矩阵等,回归模型对应的MSE、RMSE、MAE、R-Square等。Wherein, based on the target algorithm corresponding to the user target model index, the target predicted value and target real value obtained above are substituted into the target algorithm for calculation to obtain the target result data. That is, ROC, KS, GINI, confusion matrix, etc. corresponding to the classification model, and MSE, RMSE, MAE, R-Square, etc. corresponding to the regression model.
步骤106,根据所述目标结果数据生成所述目标预测模型的性能报告。
其中,性能报告具体展示了目标预测模型各目标模型指标对应的目标结果数据,在一些实施例中,性能报告告提供了线上报告和excel报告两种,报告记录了每一次模型监控运行的情况;点击查看指标趋势,可以看到指标的变化趋势,方便算法人员及时调整监控策略;点击日志,可以看到每次运行的每个指标的执行过程,方便定位指标运行失败的错误。Among them, the performance report specifically shows the target result data corresponding to each target model index of the target prediction model. In some embodiments, the performance report provides two types of online report and excel report, and the report records the status of each model monitoring operation ;Click to view the indicator trend, you can see the change trend of the indicator, which is convenient for the algorithm personnel to adjust the monitoring strategy in time; click on the log, you can see the execution process of each indicator in each run, and it is convenient to locate the error of the indicator operation failure.
在一些实施例中,为了方便查看性能报告的人员能够理解并看懂性能报告里面的内容,本方案提供了数据备注功能。算法工程师可以向终端设备发起包含备注信息的数据备注请求,终端设备在获取数据备注请求中的备注信息后将备注信息插入目标模型指标,以使目标模型指标在性能报告中以预设形式展示并解释目标模型指标的含义。示例性地,目标模型指标在性能报告中可以以嵌入式批注的形式进行展示,用户在点击响应目标结果参数时能够弹出与之对应的备注信息。In some embodiments, in order to make it easier for people viewing the performance report to understand and understand the contents of the performance report, this solution provides a data comment function. Algorithm engineers can initiate a data remark request containing remark information to the terminal device, and the terminal device will insert the remark information into the target model indicator after obtaining the remark information in the data remark request, so that the target model indicator can be displayed in a preset form in the performance report and Explain the meaning of the target model metrics. Exemplarily, the target model index can be displayed in the form of an embedded comment in the performance report, and the corresponding remark information can pop up when the user clicks on the corresponding target result parameter.
步骤107,基于所述性能报告对所述目标预测模型的性能进行监控预警操作。
其中,将性能报告中的各个目标结果数据与其对应的预设阈值进行比较,得到比较结果,若比较结果为异常,则生成包含比较结果的提示信息,并告知算法工程师,实现对目标预测模型的性能进行监控预警。Among them, each target result data in the performance report is compared with its corresponding preset threshold to obtain the comparison result. If the comparison result is abnormal, a prompt message containing the comparison result is generated and the algorithm engineer is notified to realize the target prediction model. Performance monitoring and early warning.
在一些实施例中,可以根据各个目标模型指标预先配置的权重值,为不同目标模型指标设置不同的预警等级,并将不同目标模型指标的预警等级写入各自对应的比较结果。还可以根据不同权重触发不同的预警等级,自动根据预警级别触发预警邮箱或短信。In some embodiments, different warning levels can be set for different target model indicators according to the pre-configured weight values of each target model indicator, and the warning levels of different target model indicators can be written into the corresponding comparison results. It can also trigger different warning levels according to different weights, and automatically trigger warning emails or text messages according to the warning level.
在一些实施例中,用户能够主动向终端设备发出数据查看请求进行定向查看目标性能报告。终端设备在接收到数据查看请求后,根据数据查看请求提供包含多个性能报告的监控列表页面,每个性能报告能够单独查看。需要说明的是,在同一监控列表页面中多个性能报告归属同一类型的多个预测模型,便于集中管理。In some embodiments, the user can actively send a data viewing request to the terminal device to view the target performance report in a directional manner. After receiving the data viewing request, the terminal device provides a monitoring list page containing multiple performance reports according to the data viewing request, and each performance report can be viewed separately. It should be noted that multiple performance reports belong to multiple prediction models of the same type on the same monitoring list page, which is convenient for centralized management.
在一些实施例中,还提供性能报告输出接口,可与其他系统对接,提供各项目标模型指标对应的结果数据,便于进行其他操作,例如对性能报告进行进一步的分析。具体地,终端设备接收用户发出的数据输出请求,确定数据输出请求中的目标性能报告及目标接收地址,建立目标性能报告与目标接收地址之间的连接接口,将目标性能报告传输至目标接收地址。In some embodiments, a performance report output interface is also provided, which can be connected with other systems to provide result data corresponding to various target model indicators, so as to facilitate other operations, such as further analysis of the performance report. Specifically, the terminal device receives the data output request sent by the user, determines the target performance report and the target receiving address in the data output request, establishes a connection interface between the target performance report and the target receiving address, and transmits the target performance report to the target receiving address .
上述所有可选技术方案,可以采用任意结合形成本申请的可选实施例,在此不再一一赘述。All the above optional technical solutions may be combined in any way to form optional embodiments of the present application, which will not be repeated here.
具体实施时,本申请不受所描述的各个步骤的执行顺序的限制,在不产生冲突的情况下,某些步骤还可以采用其它顺序进行或者同时进行。During specific implementation, the present application is not limited by the execution order of the described steps, and some steps may be performed in other orders or simultaneously in the case of no conflict.
由上可知,本申请实施例提供的模型数据监控方法通过接收数据获取请求;获取所述数据获取请求中待预测数据的目标预测值与目标真实值,所述目标预测值指示待预测数据通过目标预测模型得到的预测结果,所述目标真实值指示待预测数据的真实结果;接收数据计算请求;调取所述数据计算请求中目标模型指标对应的目标算法;基于所述目标算法,代入所述目标预测值与目标真实值进行计算得到目标结果数据;根据所述目标结果数据生成所述目标预测模型的性能报告;基于所述性能报告对所述目标预测模型的性能进行监控预警操作。利用本申请实施例提供的模型数据监控方法,用户能够通过在平台上选择指定待预测数据及指定模型指标,便可自动得出用于预测待预测数据的目标预测模型的性能报告,并根据性能报告对目标预测模型的性能进行自动监控预警。As can be seen from the above, the model data monitoring method provided by the embodiment of the present application receives a data acquisition request; acquires the target predicted value and target real value of the data to be predicted in the data acquisition request, and the target predicted value indicates that the data to be predicted passes through the target The prediction result obtained by the prediction model, the target real value indicates the real result of the data to be predicted; receiving the data calculation request; calling the target algorithm corresponding to the target model index in the data calculation request; based on the target algorithm, substituting the Calculate the target predicted value and target real value to obtain target result data; generate a performance report of the target prediction model according to the target result data; perform monitoring and early warning operations on the performance of the target prediction model based on the performance report. Using the model data monitoring method provided by the embodiment of the present application, the user can automatically obtain the performance report of the target prediction model used to predict the data to be predicted by selecting and specifying the data to be predicted and the specified model index on the platform, and according to the performance The report automatically monitors and warns the performance of the target prediction model.
本申请实施例还提供一种模型数据监控装置,所述模型数据监控装置可以集成在终端设备中。The embodiment of the present application also provides a model data monitoring device, and the model data monitoring device can be integrated into a terminal device.
请参阅图2,图2为本申请实施例提供的模型数据监控装置的结构示意图。模型数据监控装置30可以包括:Please refer to FIG. 2 . FIG. 2 is a schematic structural diagram of a model data monitoring device provided in an embodiment of the present application. The model
第一接收模块31,用于接收数据获取请求;The
数据获取模块32,用于获取所述数据获取请求中待预测数据的目标预测值与目标真实值,所述目标预测值指示待预测数据通过目标预测模型得到的预测结果,所述目标真实值指示待预测数据的真实结果;The
第二接收模块33,用于接收数据计算请求;The
算法调取模块34,用于调取所述数据计算请求中目标模型指标对应的目标算法;An
数据计算模块35,用于基于所述目标算法,代入所述目标预测值与目标真实值进行计算得到目标结果数据;The
报告生成模块36,用于根据所述目标结果数据生成所述目标预测模型的性能报告;A report generating module 36, configured to generate a performance report of the target prediction model according to the target result data;
监控预警模块37,用于基于所述性能报告对所述目标预测模型的性能进行监控预警操作。The monitoring and
在一些实施例中,所述数据获取模块32,用于基于所述待预测数据的预设标识及预先生成的SQL语句模板生成目标SQL语句;根据所述目标SQL语句从数据库中获取与所述待预测数据对应的目标预测值及目标真实值。In some embodiments, the
在一些实施例中,所述装置还包括数据备注模块,用于接收数据备注请求;获取所述数据备注请求中的备注信息;将所述备注信息插入所述目标模型指标,以使所述目标模型指标在所述性能报告中以预设形式展示并解释所述目标模型指标的含义。In some embodiments, the device further includes a data remark module, configured to receive a data remark request; obtain remark information in the data remark request; insert the remark information into the target model indicator, so that the target The model index is displayed in a preset form in the performance report and explains the meaning of the target model index.
在一些实施例中,所述监控预警模块37,用于将所述性能报告中的各个目标结果数据与其对应的预设阈值进行比较,得到比较结果;若所述比较结果为异常,则生成包含所述比较结果的提示信息。In some embodiments, the monitoring and
在一些实施例中,所述装置还包括等级设置模块,用于根据各个所述目标模型指标预先配置的权重值,为不同目标模型指标设置不同的预警等级,并将不同目标模型指标的预警等级写入各自对应的比较结果。In some embodiments, the device further includes a level setting module, configured to set different early warning levels for different target model indicators according to the pre-configured weight values of each target model indicator, and set the early warning levels of different target model indicators Write their corresponding comparison results.
在一些实施例中,所述装置还包括数据输出模块,用于接收数据输出请求;确定所述数据输出请求中的目标性能报告及目标接收地址;建立所述目标性能报告与所述目标接收地址之间的连接接口;将所述目标性能报告传输至所述目标接收地址。In some embodiments, the device further includes a data output module, configured to receive a data output request; determine a target performance report and a target receiving address in the data output request; establish the target performance report and the target receiving address connecting interface between; transmitting the target performance report to the target receiving address.
在一些实施例中,所述装置还包括数据查看模块,用于接收数据查看请求;根据所述数据查看请求提供包含多个性能报告的监控列表页面,所述多个性能报告归属同一类型的多个预测模型。In some embodiments, the device further includes a data viewing module, configured to receive a data viewing request; according to the data viewing request, a monitoring list page including multiple performance reports is provided, and the multiple performance reports belong to multiple performance reports of the same type. a predictive model.
具体实施时,以上各个模块可以作为独立的实体来实现,也可以进行任意组合,作为同一或若干个实体来实现。During specific implementation, each of the above modules may be implemented as an independent entity, or may be combined arbitrarily to be implemented as the same or several entities.
由上可知,本申请实施例提供的模型数据监控装置30,通过第一接收模块31接收数据获取请求;数据获取模块32获取所述数据获取请求中待预测数据的目标预测值与目标真实值,所述目标预测值指示待预测数据通过目标预测模型得到的预测结果,所述目标真实值指示待预测数据的真实结果;第二接收模块33接收数据计算请求;算法调取模块34调取所述数据计算请求中目标模型指标对应的目标算法;数据计算模块35基于所述目标算法,代入所述目标预测值与目标真实值进行计算得到目标结果数据;报告生成模块36根据所述目标结果数据生成所述目标预测模型的性能报告;监控预警模块37基于所述性能报告对所述目标预测模型的性能进行监控预警操作。It can be seen from the above that the model
请参阅图3,图3为本申请实施例提供的模型数据监控装置的另一结构示意图,模型数据监控装置30包括存储器120、一个或多个处理器180、以及一个或多个应用程序,其中该一个或多个应用程序被存储于该存储器120中,并配置为由该处理器180执行;该处理器180可以包括第一接收模块31、数据获取模块32,第二接收模块33,算法调取模块34,数据计算模块35,报告生成模块36,以及监控预警模块37。例如,以上各个部件的结构和连接关系可以如下:Please refer to FIG. 3. FIG. 3 is another structural schematic diagram of the model data monitoring device provided by the embodiment of the present application. The model
存储器120可用于存储应用程序和数据。存储器120存储的应用程序中包含有可执行代码。应用程序可以组成各种功能模块。处理器180通过运行存储在存储器120的应用程序,从而执行各种功能应用以及数据处理。此外,存储器120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器120还可以包括存储器控制器,以提供处理器180对存储器120的访问。The
处理器180是装置的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器120内的应用程序,以及调用存储在存储器120内的数据,执行装置的各种功能和处理数据,从而对装置进行整体监控。可选的,处理器180可包括一个或多个处理核心;优选的,处理器180可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等。The
具体在本实施例中,处理器180会按照如下的指令,将一个或一个以上的应用程序的进程对应的可执行代码加载到存储器120中,并由处理器180来运行存储在存储器120中的应用程序,从而实现各种功能:Specifically, in this embodiment, the
第一接收模块31,用于接收数据获取请求;The
数据获取模块32,用于获取所述数据获取请求中待预测数据的目标预测值与目标真实值,所述目标预测值指示待预测数据通过目标预测模型得到的预测结果,所述目标真实值指示待预测数据的真实结果;The
第二接收模块33,用于接收数据计算请求;The
算法调取模块34,用于调取所述数据计算请求中目标模型指标对应的目标算法;An
数据计算模块35,用于基于所述目标算法,代入所述目标预测值与目标真实值进行计算得到目标结果数据;The
报告生成模块36,用于根据所述目标结果数据生成所述目标预测模型的性能报告;A report generating module 36, configured to generate a performance report of the target prediction model according to the target result data;
监控预警模块37,用于基于所述性能报告对所述目标预测模型的性能进行监控预警操作。The monitoring and
在一些实施例中,所述数据获取模块32,用于基于所述待预测数据的预设标识及预先生成的SQL语句模板生成目标SQL语句;根据所述目标SQL语句从数据库中获取与所述待预测数据对应的目标预测值及目标真实值。In some embodiments, the
在一些实施例中,所述装置还包括数据备注模块,用于接收数据备注请求;获取所述数据备注请求中的备注信息;将所述备注信息插入所述目标模型指标,以使所述目标模型指标在所述性能报告中以预设形式展示并解释所述目标模型指标的含义。In some embodiments, the device further includes a data remark module, configured to receive a data remark request; obtain remark information in the data remark request; insert the remark information into the target model indicator, so that the target The model index is displayed in a preset form in the performance report and explains the meaning of the target model index.
在一些实施例中,所述监控预警模块37,用于将所述性能报告中的各个目标结果数据与其对应的预设阈值进行比较,得到比较结果;若所述比较结果为异常,则生成包含所述比较结果的提示信息。In some embodiments, the monitoring and
在一些实施例中,所述装置还包括等级设置模块,用于根据各个所述目标模型指标预先配置的权重值,为不同目标模型指标设置不同的预警等级,并将不同目标模型指标的预警等级写入各自对应的比较结果。In some embodiments, the device further includes a level setting module, configured to set different early warning levels for different target model indicators according to the pre-configured weight values of each target model indicator, and set the early warning levels of different target model indicators Write their corresponding comparison results.
在一些实施例中,所述装置还包括数据输出模块,用于接收数据输出请求;确定所述数据输出请求中的目标性能报告及目标接收地址;建立所述目标性能报告与所述目标接收地址之间的连接接口;将所述目标性能报告传输至所述目标接收地址。In some embodiments, the device further includes a data output module, configured to receive a data output request; determine a target performance report and a target receiving address in the data output request; establish the target performance report and the target receiving address connecting interface between; transmitting the target performance report to the target receiving address.
在一些实施例中,所述装置还包括数据查看模块,用于接收数据查看请求;根据所述数据查看请求提供包含多个性能报告的监控列表页面,所述多个性能报告归属同一类型的多个预测模型。In some embodiments, the device further includes a data viewing module, configured to receive a data viewing request; according to the data viewing request, a monitoring list page including multiple performance reports is provided, and the multiple performance reports belong to multiple performance reports of the same type. a predictive model.
本申请实施例还提供一种终端设备。所述终端设备可以是服务器、智能手机、电脑、平板电脑等设备。The embodiment of the present application also provides a terminal device. The terminal device may be a server, a smart phone, a computer, a tablet computer or the like.
请参阅图4,图4示出了本申请实施例提供的终端设备的结构示意图,该终端设备可以用于实施上述实施例中提供的模型数据监控方法。该终端设备1200可以为电视机或智能手机或平板电脑。Please refer to FIG. 4 . FIG. 4 shows a schematic structural diagram of a terminal device provided by an embodiment of the present application, and the terminal device may be used to implement the model data monitoring method provided in the foregoing embodiments. The terminal device 1200 may be a TV set, a smart phone, or a tablet computer.
如图4所示,终端设备1200可以包括RF(Radio Frequency,射频)电路110、包括有一个或一个以上(图中仅示出一个)计算机可读存储介质的存储器120、输入单元130、显示单元140、传感器150、音频电路160、传输模块170、包括有一个或者一个以上(图中仅示出一个)处理核心的处理器180以及电源190等部件。本领域技术人员可以理解,图4中示出的终端设备1200结构并不构成对终端设备1200的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:As shown in FIG. 4, the terminal device 1200 may include an RF (Radio Frequency, radio frequency)
RF电路110用于接收以及发送电磁波,实现电磁波与电信号的相互转换,从而与通讯网络或者其他设备进行通讯。RF电路110可包括各种现有的用于执行这些功能的电路元件,例如,天线、射频收发器、数字信号处理器、加密/解密芯片、用户身份模块(SIM)卡、存储器等等。RF电路110可与各种网络如互联网、企业内部网、无线网络进行通讯或者通过无线网络与其他设备进行通讯。The
存储器120可用于存储软件程序以及模块,如上述实施例中模型数据监控方法对应的程序指令/模块,处理器180通过运行存储在存储器120内的软件程序以及模块,从而执行各种功能应用以及数据处理,可以根据终端设备所处的当前场景来自动选择振动提醒模式来进行模型数据监控,既能够保证会议等场景不被打扰,又能保证用户可以感知来电,提升了终端设备的智能性。存储器120可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器120可进一步包括相对于处理器180远程设置的存储器,这些远程存储器可以通过网络连接至终端设备1200。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The
输入单元130可用于接收输入的数字或字符信息,以及产生与用户设置以及功能控制有关的键盘、鼠标、操作杆、光学或者轨迹球信号输入。具体地,输入单元130可包括触敏表面131以及其他输入设备132。触敏表面131,也称为触控显示屏或者触控板,可收集用户在其上或附近的触控操作(比如用户使用手指、触笔等任何适合的物体或附件在触敏表面131上或在触敏表面131附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触敏表面131可包括触控检测装置和触控控制器两个部分。其中,触控检测装置检测用户的触控方位,并检测触控操作带来的信号,将信号传送给触控控制器;触控控制器从触控检测装置上接收触控信息,并将它转换成触点坐标,再送给处理器180,并能接收处理器180发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触敏表面131。除了触敏表面131,输入单元130还可以包括其他输入设备132。具体地,其他输入设备132可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。The
显示单元140可用于显示由用户输入的信息或提供给用户的信息以及终端设备1200的各种图形用户接口,这些图形用户接口可以由图形、文本、图标、视频和其任意组合来构成。显示单元140可包括显示面板141,可选的,可以采用LCD(Liquid CrystalDisplay,液晶显示器)、OLED(Organic Light-Emitting Diode,有机发光二极管)等形式来配置显示面板141。进一步的,触敏表面131可覆盖显示面板141,当触敏表面131检测到在其上或附近的触控操作后,传送给处理器180以确定触控事件的类型,随后处理器180根据触控事件的类型在显示面板141上提供相应的视觉输出。虽然在图4中,触敏表面131与显示面板141是作为两个独立的部件来实现输入和输出功能,但是在某些实施例中,可以将触敏表面131与显示面板141集成而实现输入和输出功能。The
终端设备1200还可包括至少一种传感器150,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板141的亮度,接近传感器可在终端设备1200移动到耳边时,关闭显示面板141和/或背光。作为运动传感器的一种,重力加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于终端设备1200还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。The terminal device 1200 may further include at least one
音频电路160、扬声器161,传声器162可提供用户与终端设备1200之间的音频接口。音频电路160可将接收到的音频数据转换后的电信号,传输到扬声器161,由扬声器161转换为声音信号输出;另一方面,传声器162将收集的声音信号转换为电信号,由音频电路160接收后转换为音频数据,再将音频数据输出处理器180处理后,经RF电路110以发送给比如另一终端,或者将音频数据输出至存储器120以便进一步处理。音频电路160还可能包括耳塞插孔,以提供外设耳机与终端设备1200的通信。The
终端设备1200通过传输模块170(例如Wi-Fi模块)可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图4示出了传输模块170,但是可以理解的是,其并不属于终端设备1200的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。The terminal device 1200 can help the user to send and receive e-mails, browse the web, access streaming media, etc. through the transmission module 170 (such as a Wi-Fi module), and it provides users with wireless broadband Internet access. Although FIG. 4 shows the
处理器180是终端设备1200的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器120内的软件程序和/或模块,以及调用存储在存储器120内的数据,执行终端设备1200的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器180可包括一个或多个处理核心;在一些实施例中,处理器180可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器180中。The
终端设备1200还包括给各个部件供电的电源190,在一些实施例中,电源可以通过电源管理系统与处理器180逻辑相连,从而通过电源管理系统实现管理放电、以及功耗管理等功能。电源190还可以包括一个或一个以上的直流或交流电源、再充电系统、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。The terminal device 1200 also includes a
尽管未示出,终端设备1200还可以包括摄像头(如前置摄像头、后置摄像头)、蓝牙模块等,在此不再赘述。具体在本实施例中,终端设备1200的显示单元140是触控屏显示器,终端设备1200还包括有存储器120,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器120中,且经配置以由一个或者一个以上处理器180执行一个或者一个以上程序包含用于进行以下操作的指令:Although not shown, the terminal device 1200 may also include a camera (such as a front camera, a rear camera), a Bluetooth module, etc., which will not be repeated here. Specifically in this embodiment, the
第一接收指令,用于接收数据获取请求;a first receiving instruction, configured to receive a data acquisition request;
数据获取指令,用于获取所述数据获取请求中待预测数据的目标预测值与目标真实值,所述目标预测值指示待预测数据通过目标预测模型得到的预测结果,所述目标真实值指示待预测数据的真实结果;The data acquisition instruction is used to acquire the target predicted value and the target real value of the data to be predicted in the data acquisition request, the target predicted value indicates the forecast result obtained by the target forecast model for the data to be predicted, and the target real value indicates the target real value to be predicted Predict the true outcome of the data;
第二接收指令,用于接收数据计算请求;The second receiving instruction is used to receive a data calculation request;
算法调取指令,用于调取所述数据计算请求中目标模型指标对应的目标算法;Algorithm call instruction, used to call the target algorithm corresponding to the target model index in the data calculation request;
数据计算指令,用于基于所述目标算法,代入所述目标预测值与目标真实值进行计算得到目标结果数据;A data calculation instruction, used to calculate the target result data by substituting the target predicted value and the target actual value based on the target algorithm;
报告生成指令,用于根据所述目标结果数据生成所述目标预测模型的性能报告;report generating instructions, configured to generate a performance report of the target prediction model based on the target result data;
监控预警指令,用于基于所述性能报告对所述目标预测模型的性能进行监控预警操作。The monitoring and early warning instruction is used to perform monitoring and early warning operations on the performance of the target prediction model based on the performance report.
在一些实施例中,所述数据获取指令,用于基于所述待预测数据的预设标识及预先生成的SQL语句模板生成目标SQL语句;根据所述目标SQL语句从数据库中获取与所述待预测数据对应的目标预测值及目标真实值。In some embodiments, the data acquisition instruction is used to generate a target SQL statement based on the preset identifier of the data to be predicted and the pre-generated SQL statement template; The target predicted value and target actual value corresponding to the forecast data.
在一些实施例中,所述程序还包括数据备注指令,用于接收数据备注请求;获取所述数据备注请求中的备注信息;将所述备注信息插入所述目标模型指标,以使所述目标模型指标在所述性能报告中以预设形式展示并解释所述目标模型指标的含义。In some embodiments, the program further includes a data remark instruction for receiving a data remark request; obtaining remark information in the data remark request; inserting the remark information into the target model index, so that the target The model index is displayed in a preset form in the performance report and explains the meaning of the target model index.
在一些实施例中,所述监控预警指令,用于将所述性能报告中的各个目标结果数据与其对应的预设阈值进行比较,得到比较结果;若所述比较结果为异常,则生成包含所述比较结果的提示信息。In some embodiments, the monitoring and early warning instruction is used to compare each target result data in the performance report with its corresponding preset threshold to obtain the comparison result; if the comparison result is abnormal, generate an A prompt message describing the comparison result.
在一些实施例中,所述程序还包括等级设置指令,用于根据各个所述目标模型指标预先配置的权重值,为不同目标模型指标设置不同的预警等级,并将不同目标模型指标的预警等级写入各自对应的比较结果。In some embodiments, the program also includes a level setting instruction, which is used to set different warning levels for different target model indicators according to the pre-configured weight values of each target model indicator, and set the warning levels of different target model indicators Write the respective comparison results.
在一些实施例中,所述程序还包括数据输出指令,用于接收数据输出请求;确定所述数据输出请求中的目标性能报告及目标接收地址;建立所述目标性能报告与所述目标接收地址之间的连接接口;将所述目标性能报告传输至所述目标接收地址。In some embodiments, the program further includes a data output instruction for receiving a data output request; determining a target performance report and a target receiving address in the data output request; establishing the target performance report and the target receiving address connecting interface between; transmitting the target performance report to the target receiving address.
在一些实施例中,所述程序还包括数据查看指令,用于接收数据查看请求;根据所述数据查看请求提供包含多个性能报告的监控列表页面,所述多个性能报告归属同一类型的多个预测模型。In some embodiments, the program further includes a data viewing instruction, configured to receive a data viewing request; according to the data viewing request, a monitoring list page including multiple performance reports is provided, and the multiple performance reports belong to the same type of multiple a predictive model.
本申请实施例还提供一种终端设备。所述终端设备可以是智能手机、电脑等设备。The embodiment of the present application also provides a terminal device. The terminal device may be a smart phone, a computer and other devices.
由上可知,本申请实施例提供了一种终端设备1200,所述终端设备1200执行以下步骤:It can be seen from the above that the embodiment of the present application provides a terminal device 1200, and the terminal device 1200 performs the following steps:
接收数据获取请求;Receive data acquisition request;
获取所述数据获取请求中待预测数据的目标预测值与目标真实值,所述目标预测值指示待预测数据通过目标预测模型得到的预测结果,所述目标真实值指示待预测数据的真实结果;Acquiring a target predicted value and a target real value of the data to be predicted in the data acquisition request, the target predicted value indicates the predicted result of the data to be predicted through a target prediction model, and the target real value indicates the real result of the data to be predicted;
接收数据计算请求;Receive data calculation request;
调取所述数据计算请求中目标模型指标对应的目标算法;calling the target algorithm corresponding to the target model index in the data calculation request;
基于所述目标算法,代入所述目标预测值与目标真实值进行计算得到目标结果数据;Based on the target algorithm, substituting the target predicted value and target real value for calculation to obtain target result data;
根据所述目标结果数据生成所述目标预测模型的性能报告;generating a performance report of the target predictive model based on the target outcome data;
基于所述性能报告对所述目标预测模型的性能进行监控预警操作。The performance of the target prediction model is monitored and pre-warned based on the performance report.
本申请实施例还提供一种存储介质,所述存储介质中存储有计算机程序,当所述计算机程序在计算机上运行时,所述计算机执行上述任一实施例所述的模型数据监控方法。An embodiment of the present application further provides a storage medium, in which a computer program is stored, and when the computer program is run on a computer, the computer executes the model data monitoring method described in any one of the above embodiments.
需要说明的是,对本申请所述模型数据监控方法而言,本领域普通测试人员可以理解实现本申请实施例所述模型数据监控方法的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述计算机程序可存储于一计算机可读存储介质中,如存储在终端设备的存储器中,并被该终端设备内的至少一个处理器执行,在执行过程中可包括如所述模型数据监控方法的实施例的流程。其中,所述存储介质可为磁碟、光盘、只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random Access Memory)等。It should be noted that, for the model data monitoring method described in this application, ordinary testers in the field can understand that all or part of the process of implementing the model data monitoring method described in the embodiment of this application can be controlled by computer programs. To complete, the computer program can be stored in a computer-readable storage medium, such as stored in the memory of the terminal device, and executed by at least one processor in the terminal device, and the execution process can include such as the model Flow of an embodiment of a data monitoring method. Wherein, the storage medium may be a magnetic disk, an optical disk, a read only memory (ROM, Read Only Memory), a random access memory (RAM, Random Access Memory) and the like.
对本申请实施例的所述模型数据监控装置而言,其各功能模块可以集成在一个处理芯片中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读存储介质中,所述存储介质譬如为只读存储器,磁盘或光盘等。For the model data monitoring device in the embodiment of the present application, its functional modules may be integrated into one processing chip, or each module may exist separately physically, or two or more modules may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are implemented in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium, such as read-only memory, magnetic disk or optical disk.
以上对本申请实施例所提供的模型数据监控方法、装置、介质及设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The model data monitoring method, device, medium and equipment provided in the embodiments of the present application have been introduced in detail above. In this paper, specific examples are used to illustrate the principle and implementation of the application. The description of the above embodiments is only used to help understand the method and core idea of the application; meanwhile, for those skilled in the art, according to the application Thoughts, specific implementation methods and application ranges all have changes. In summary, the content of this specification should not be construed as limiting the application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211117959.4A CN115658419A (en) | 2022-09-14 | 2022-09-14 | Model data monitoring method, device, medium and equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211117959.4A CN115658419A (en) | 2022-09-14 | 2022-09-14 | Model data monitoring method, device, medium and equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115658419A true CN115658419A (en) | 2023-01-31 |
Family
ID=84984257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211117959.4A Pending CN115658419A (en) | 2022-09-14 | 2022-09-14 | Model data monitoring method, device, medium and equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115658419A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025016265A1 (en) * | 2023-07-14 | 2025-01-23 | 华为技术有限公司 | Model monitoring method, apparatus and system, and storage medium and program product |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170140278A1 (en) * | 2015-11-18 | 2017-05-18 | Ca, Inc. | Using machine learning to predict big data environment performance |
CN110928859A (en) * | 2019-11-26 | 2020-03-27 | 太平金融科技服务(上海)有限公司 | Model monitoring method and device, computer equipment and storage medium |
CN111861488A (en) * | 2020-07-15 | 2020-10-30 | 中国工商银行股份有限公司 | Machine learning model comparison method and device |
CN112732536A (en) * | 2020-12-30 | 2021-04-30 | 平安科技(深圳)有限公司 | Data monitoring and alarming method and device, computer equipment and storage medium |
-
2022
- 2022-09-14 CN CN202211117959.4A patent/CN115658419A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170140278A1 (en) * | 2015-11-18 | 2017-05-18 | Ca, Inc. | Using machine learning to predict big data environment performance |
CN110928859A (en) * | 2019-11-26 | 2020-03-27 | 太平金融科技服务(上海)有限公司 | Model monitoring method and device, computer equipment and storage medium |
CN111861488A (en) * | 2020-07-15 | 2020-10-30 | 中国工商银行股份有限公司 | Machine learning model comparison method and device |
CN112732536A (en) * | 2020-12-30 | 2021-04-30 | 平安科技(深圳)有限公司 | Data monitoring and alarming method and device, computer equipment and storage medium |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025016265A1 (en) * | 2023-07-14 | 2025-01-23 | 华为技术有限公司 | Model monitoring method, apparatus and system, and storage medium and program product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110515626B (en) | Code compiling method of deep learning calculation framework and related product | |
CN109947650B (en) | Script step processing method, device and system | |
CN108984142B (en) | Split-screen display method, device, storage medium and electronic device | |
CN111090489B (en) | Information control method and electronic equipment | |
CN116112556B (en) | Data processing method, device, medium and equipment | |
CN116382776A (en) | Cross-platform API migration method, device, medium and equipment | |
CN110442361B (en) | Gray release method and device and electronic equipment | |
CN114115895B (en) | Code query method, device, electronic device and storage medium | |
CN115658419A (en) | Model data monitoring method, device, medium and equipment | |
CN107908527B (en) | Application icon display method and device | |
CN114707793A (en) | Emergency plan generation method and device, storage medium and electronic equipment | |
CN115801715A (en) | Message automatic sending method, device, medium and equipment based on instant messaging | |
CN110209924B (en) | Recommendation parameter acquisition method, device, server and storage medium | |
CN115589432A (en) | Message push management method, device, medium and equipment | |
CN115987786A (en) | A configuration change method, system, terminal device and storage medium | |
CN115801717A (en) | Greeting language selection method, device, medium and equipment for chat tool | |
CN115348256A (en) | Posting data downloading method and device, storage medium and electronic equipment | |
CN114510417A (en) | Image rendering effect testing method and device, electronic equipment and storage medium | |
CN115828845A (en) | Multimedia data viewing method, device, medium and equipment | |
CN115082202A (en) | Information processing method, device, equipment and storage medium for house mortgage | |
CN111416766B (en) | Information issuing method and electronic equipment | |
CN115543841A (en) | Data update test method, device, medium and equipment | |
CN107864294A (en) | A kind of interruption-free mode starting method and mobile terminal | |
CN115801104A (en) | Satellite transit prediction information acquisition method, device, medium and equipment | |
CN116303022A (en) | Page jump effect test method, device, medium and equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |