CN115645802A - Integrated compressed air foam fire extinguishing system and control method thereof - Google Patents
Integrated compressed air foam fire extinguishing system and control method thereof Download PDFInfo
- Publication number
- CN115645802A CN115645802A CN202211340345.2A CN202211340345A CN115645802A CN 115645802 A CN115645802 A CN 115645802A CN 202211340345 A CN202211340345 A CN 202211340345A CN 115645802 A CN115645802 A CN 115645802A
- Authority
- CN
- China
- Prior art keywords
- foam
- air
- flow
- water
- water flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006260 foam Substances 0.000 title claims abstract description 158
- 238000000034 method Methods 0.000 title claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 86
- 239000011550 stock solution Substances 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims description 41
- 239000000243 solution Substances 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 239000011259 mixed solution Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 239000003570 air Substances 0.000 claims description 3
- 230000001276 controlling effect Effects 0.000 claims description 2
- 238000001802 infusion Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000033772 system development Effects 0.000 description 1
Images
Landscapes
- Flow Control (AREA)
Abstract
本发明公开了一种集成式压缩空气泡沫灭火系统及其控制方法,包括控制中枢、泡沫发生器、三路输入单元和供电模块;三路输入单元包括泡沫溶液路输入单元、水路输入单元以及空气路输入单元;还包括备用空气路输入单元作为空气路输入单元的备份;控制中枢通过控制三路输入单元的流量,使压缩空气、泡沫原液以及水在泡沫发生器中出混合后产生压缩空气泡沫,进而输出压缩空气泡沫。本发明通过提出一种该系统的控制方法,使得压缩空气灭火系统更加稳定可靠地运行,具有一定的实用意义。
The invention discloses an integrated compressed air foam fire extinguishing system and a control method thereof, comprising a control center, a foam generator, a three-way input unit and a power supply module; It also includes a spare air input unit as a backup of the air input unit; the control center controls the flow of the three input units to make compressed air, foam stock solution and water mixed in the foam generator to produce compressed air foam , and then output compressed air foam. The present invention makes the compressed air fire extinguishing system operate more stably and reliably by proposing a control method of the system, which has certain practical significance.
Description
技术领域technical field
本发明属于工业自动化消防技术领域,具体涉及一种集成式压缩空气泡沫灭火系统,还涉及该系统的控制方法。The invention belongs to the technical field of industrial automation fire protection, and in particular relates to an integrated compressed air foam fire extinguishing system, and also relates to a control method of the system.
背景技术Background technique
压缩空气泡沫系统(CAFS,Compressed Air Foam System)是近年来在国外发展比较迅速的一种新型灭火系统,因为其灭火效率高,能够实现对多种类型火灾的灭火被广泛应用。但传统的CAFS是由多模块组合而成,集成度不高导致占地面积较大且成本较高;此外压缩空气泡沫灭火系统内部的发泡原理及设备的动态控制是整个系统的核心,目前如何快速、稳定地产生符合灭火要求的泡沫成为系统发展的难点,而对于CAFS设备控制器的设计却研究较少,目前一些针对于CAFS设备的基础PID控制器虽已提出,但存在无法灵活面对各种工况的问题,而且基本上都只是对泡沫路和空气路进行调节,并未对水路进行调节,然而水流量的大小同样会影响整个系统的动态稳定,因此水路的PID控制器的设计同样重要。Compressed Air Foam System (CAFS, Compressed Air Foam System) is a new type of fire extinguishing system that has developed rapidly abroad in recent years. Because of its high fire extinguishing efficiency, it can realize fire extinguishing of various types of fires and is widely used. However, the traditional CAFS is composed of multiple modules, and the integration level is not high, resulting in a large footprint and high cost; in addition, the foaming principle inside the compressed air foam fire extinguishing system and the dynamic control of the equipment are the core of the entire system. How to quickly and stably produce foam that meets the requirements of fire extinguishing has become a difficult point in system development, but there is little research on the design of CAFS equipment controllers. At present, some basic PID controllers for CAFS equipment have been proposed, but they cannot be flexible. For problems in various working conditions, and basically only adjust the foam circuit and air circuit, but not the water circuit. However, the size of the water flow will also affect the dynamic stability of the entire system. Therefore, the PID controller of the water circuit Design is equally important.
发明内容Contents of the invention
本发明的目的是提供一种集成式压缩空气泡沫灭火系统及其控制方法,解决了目前CAFS设备对于各种工况的灵活适应度、以及对水路的调节有待进一步优化的问题。The purpose of the present invention is to provide an integrated compressed air foam fire extinguishing system and its control method, which solves the problem that the flexible adaptability of current CAFS equipment to various working conditions and the adjustment of waterways need to be further optimized.
本发明所采用的一个技术方案是;A technical scheme adopted in the present invention is;
一种集成式压缩空气泡沫灭火系统,包括用于控制整个系统的控制中枢,供电电源,空气路、水管路、泡沫路以及设置于外部的备用空气压缩机;An integrated compressed air foam fire extinguishing system, including a control center for controlling the entire system, a power supply, an air circuit, a water pipeline, a foam circuit and an external backup air compressor;
空气路的空气压缩机通过空气管路连接至泡沫发生器,空气管路配置有单向阀和调压阀;泡沫路配置有泡沫泵,泡沫路通过泡沫管路连接到三通球阀的第一通;水路通过水管路接到三通球阀的第二通,水管路配置有变频离心泵和水流量计;三通球阀的第三通通过混合管接到泡沫发生器;水和泡沫液在混合管中混合形成混合液;在泡沫发生器的前端配置有压力传感器,混合液和空气在泡沫发生器中混合形成压缩空气泡沫溶液,压缩空气泡沫溶液经电动蝶阀输出;备用空气压缩机作为备用、其经单向阀接入空气管路。The air compressor in the air circuit is connected to the foam generator through the air pipeline, and the air pipeline is equipped with a one-way valve and a pressure regulating valve; the foam circuit is equipped with a foam pump, and the foam circuit is connected to the first valve of the three-way ball valve through the foam pipeline. The water channel is connected to the second channel of the three-way ball valve through the water pipeline, and the water pipeline is equipped with a frequency conversion centrifugal pump and a water flow meter; the third channel of the three-way ball valve is connected to the foam generator through the mixing pipe; the water and the foam liquid are mixed The mixed liquid is mixed in the tube; a pressure sensor is arranged at the front end of the foam generator, the mixed liquid and air are mixed in the foam generator to form a compressed air foam solution, and the compressed air foam solution is output through an electric butterfly valve; the spare air compressor is used as a backup, It is connected to the air line through a one-way valve.
本发明的另一个技术方案是;Another technical solution of the present invention is;
系统的控制方法具体包括如下步骤:The control method of the system specifically includes the following steps:
步骤1、首先确定水流量的大小,水流量与泡沫流量之间存在一阶惯性环节的关系,在确定水流量之后可以确定泡沫溶液的流量;在确定水流量之后变频离心泵开始工作,水流量计开始检测水流量的大小,其中水路中存在PID控制器,通过将测得的输出水流量经过水泵传递函数K1与给定水流量进行比较,将得到的误差信号作为PID控制器的输入,然后利用水路的PID控制器对水路中的变频离心泵进行调节来改变水流量的大小,进而实现固定气液比条件下水流量与压力保持恒定;
步骤2、在水流量计检测到水流变化后,泡沫泵开始工作,根据预先设定的流量指标将泡沫溶液输送到泡沫路中,通过泡沫路的PID控制器来实现对泡沫溶液流量大小的控制,此过程为将泡沫路实际输出流量大小经过泡沫泵传递函数K2后与给定泡沫液流量大小进行比较,将两者的差值作为PID控制器的输入,而PID控制器的输出对泡沫泵进行控制,进而自动调节泡沫溶液流量的大小,以便维持泡沫路的输出量不变;
步骤3、在进行步骤1和2的同时,泡沫溶液与水路在进入混合室之前通过管路先进行混合,根据输液管路的特性通过压力传感器可以得到混合液的压力,同时由设定的气液比可以计算出给定的空气流量,而通过单向阀的特性可以将计算得到的空气流量换算成空气压力,空气压力与混合液压力之间也同样存在一阶惯性环节关系,因此通过管路特性、单向阀特性以及气液比可以确定泡沫溶液、水、空气三者之间的关系;
步骤4、在确定空气流量之后经过转化得到给定空气压力,而在空气路同样存在PID控制器来调节空气路空气压力的恒定,此过程为将实际输出空气压力的大小与给定输入空气压力大小经比较环节产生误差信号后,将误差信号作为PID控制器的输入,PID控制器的输出对单向阀进行控制,其中系统输出量经过比例阀传递函数和单向阀的限流特性K3与系统输入进行比较,自动调节气相压力来维持压力恒定。
本发明的特点还在于;The present invention is also characterized in that;
步骤1中,输出压缩空气泡沫的流量指标是根据泡沫混合比RFW将泡沫流量与水流量按照泡沫原液的性质分为1%、3%、6%等比例混合来制定的,由此可以确定水路中水流量的PID控制算法具体如下公式(1)所示:In
步骤2中,泡沫路PID算法具体如下:In
根据泡沫混合比RFW将泡沫流量与水流量按照泡沫原液的性质分为1%、3%、6%等比例混合如下公式(2)和(3)所示:According to the foam mixing ratio R FW , the foam flow rate and the water flow rate are divided into 1%, 3%, 6% and mixed in equal proportions according to the properties of the foam stock solution as shown in the following formulas (2) and (3):
其中,QF为泡沫流量,QW为水流量。Among them, Q F is the foam flow rate, and Q W is the water flow rate.
步骤4中,空气路PID算法具体如下:In
根据气液比RAH将气液比为4:1或3:1或6:1的空气与泡沫混合液混合产生灭火所需要的泡沫质量,其中灭火要求的,可以得到关于空气路的PID算法具体如下:According to the gas-liquid ratio R AH , the air with a gas-liquid ratio of 4:1 or 3:1 or 6:1 is mixed with the foam mixture to produce the foam quality required for fire extinguishing, and the PID algorithm for the air path can be obtained for the fire extinguishing requirements details as follows:
其中,气液比RAH是气体流量和液体流量的比值,QA为空气流量,QH为泡沫原液与水叠加流量,气液比RAH即空气流量QA与混合液流量QH的比值;Among them, the gas-liquid ratio R AH is the ratio of the gas flow to the liquid flow, Q A is the air flow, Q H is the superimposed flow of the foam stock solution and water, and the gas-liquid ratio R AH is the ratio of the air flow Q A to the mixed liquid flow Q H ;
通过空气路压力传感器、混合室压力传感器检测压力的比值:The ratio of the pressure detected by the air pressure sensor and the mixing chamber pressure sensor:
PA=KPH(5);P A = KP H (5);
其中,PA是空气压力,PH是水和泡沫溶液的混合后压力;Wherein, PA is air pressure, and PH is the pressure after mixing of water and foam solution;
由上述得出可以通过调节K值调节气液比,其中:From the above, the gas-liquid ratio can be adjusted by adjusting the K value, wherein:
1.0≤K≤1.15(6);1.0≤K≤1.15(6);
利用该关系可以保证空气与泡沫混合液充分混合,由此可以通过改变K值来产生适合各种火灾场景的压缩空气泡沫。Using this relationship can ensure that the air and foam mixture are fully mixed, so that compressed air foam suitable for various fire scenarios can be produced by changing the K value.
本发明的有益效果是,本发明一种集成式压缩空气泡沫灭火系统及其控制方法,与现有技术相比,不仅将空气压缩机、泡沫泵、水泵、及控制和供电模块都集成在一起,在一定程度上减小了体积并且节约了成本,并且系统运行的可靠性大幅提升,同时在设备外部留有备用端口可供外部空气压缩机接入来提升系统输入能力;此外,采用的控制方法是在多PI调节模式下的一种新型PQ控制,在已有的一些控制算法只对泡沫路和空气路进行调节的基础上增加了对水路的控制,这样在三路PID控制器共同调节情况下,使得系统在输出更加准确,完全符合灭火的要求。The beneficial effects of the present invention are that the integrated compressed air foam fire extinguishing system and its control method of the present invention, compared with the prior art, not only integrate the air compressor, foam pump, water pump, and control and power supply modules together , to a certain extent, the size is reduced and the cost is saved, and the reliability of the system operation is greatly improved. At the same time, a spare port is reserved outside the equipment for the connection of an external air compressor to improve the input capacity of the system; in addition, the adopted control The method is a new type of PQ control in the multi-PI adjustment mode. On the basis of some existing control algorithms that only adjust the foam circuit and the air circuit, the control of the water circuit is added, so that the three-way PID controller jointly adjusts Under certain circumstances, the output of the system is more accurate, which fully meets the requirements of fire extinguishing.
附图说明Description of drawings
图1是本发明一种集成式压缩空气泡沫灭火系统的系统框图;Fig. 1 is a system block diagram of a kind of integrated compressed air foam fire extinguishing system of the present invention;
图2是本发明一种集成式压缩空气泡沫灭火系统中水路PID的原理框图;Fig. 2 is the principle block diagram of waterway PID in a kind of integrated compressed air foam fire extinguishing system of the present invention;
图3是本发明一种集成式压缩空气泡沫灭火系统中泡沫路PID的原理框图;Fig. 3 is the functional block diagram of foam road PID in a kind of integrated compressed air foam fire extinguishing system of the present invention;
图4是本发明一种集成式压缩空气泡沫灭火系统中空气路PID的原理框图Fig. 4 is a functional block diagram of the air circuit PID in an integrated compressed air foam fire extinguishing system of the present invention
图5是本发明一种集成式压缩空气泡沫灭火系统中PID的控制逻辑框图。Fig. 5 is a control logic block diagram of PID in an integrated compressed air foam fire extinguishing system of the present invention.
图中,1.水注入口,2.泡沫液注入口,3.压缩空气泡沫液输出口,4.变频离心泵,5.泡沫泵,6.三通球阀,7.压力传感器,8.电动蝶阀,9.调压阀,10.单向阀,11.空气压缩机,12.控制中枢,13.供电电源,14.泡沫发生器,15.水流量计,16.备用空气压缩机。In the figure, 1. Water inlet, 2. Foam liquid injection port, 3. Compressed air foam liquid output port, 4. Frequency conversion centrifugal pump, 5. Foam pump, 6. Three-way ball valve, 7. Pressure sensor, 8. Electric motor Butterfly valve, 9. Pressure regulating valve, 10. One-way valve, 11. Air compressor, 12. Control center, 13. Power supply, 14. Foam generator, 15. Water flow meter, 16. Spare air compressor.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明一种集成式压缩空气泡沫灭火系统及其控制方法进行详细说明。An integrated compressed air foam fire extinguishing system and its control method of the present invention will be described in detail below in conjunction with the drawings and specific embodiments.
本发明一种集成式压缩空气泡沫灭火系统,如图1所示,包括泡沫发生器、供电电源、空气压缩机、泡沫泵、变频离心泵、控制中枢、压力传感器以及个种阀门和管路;空气路的空气压缩机11经过调压阀9和单向阀10与泡沫发生器14相连,水路管路经变频离心泵4接到三通球阀6一端,另一端与泡沫泵5相连,两者在管路中混合后同样经管路接到泡沫发生器14中,其中水路中接有水流量计15用于检测水流量的大小,在泡沫发生器前端存在压力传感器7来检测混合液的压力大小,三者最终在泡沫发生器14中混合形成压缩空气泡沫溶液经电动蝶阀8输出,同时外部的备用空气压缩机16经单向阀10接到泡沫发生器中以作备用。An integrated compressed air foam fire extinguishing system of the present invention, as shown in Figure 1, includes a foam generator, a power supply, an air compressor, a foam pump, a variable frequency centrifugal pump, a control center, a pressure sensor, and various valves and pipelines; The
如图2所示,关于本系统控制中枢控制算法的相关过程;第一步:根据CAFS流量标准得到水流量,而水流量于泡沫溶液流量之间存在定量关系,由此可以得到泡沫溶液流量,同时根据气液比可以得到空气流量;第二步:在对空气路泡沫路进行调节的同时,水路中水流量由于空气流量与泡沫流量也是处于动态变化中,所以将水流量计测得的水流量与设定值进行比较,同样将所得差值送到水路PID控制器中,然后对水路中的变频离心泵进行调节实现水流量大小的可调以达到设定目标。As shown in Figure 2, the relevant process of the control algorithm of the control center of the system; the first step: get the water flow according to the CAFS flow standard, and there is a quantitative relationship between the water flow and the foam solution flow, thus the foam solution flow can be obtained, At the same time, the air flow rate can be obtained according to the gas-liquid ratio; the second step: while adjusting the air path foam path, the water flow in the water path is also in a dynamic change due to the air flow rate and the foam flow rate, so the water flow rate measured by the water flow meter The flow rate is compared with the set value, and the resulting difference is also sent to the waterway PID controller, and then the frequency conversion centrifugal pump in the waterway is adjusted to achieve the adjustable water flow rate to achieve the set goal.
如图3所示,根据流量指标计算得到水流量之后,由水流量与泡沫溶液流量的定量关系将泡沫路输出的实际泡沫液流量与期望泡沫液流量作比较,将得到的差值送到泡沫液回路的PID控制器中,通过PID控制器的输出对泡沫泵进行调节,减小泡沫液输出误差,使其达到预期期望指标。As shown in Figure 3, after the water flow is calculated according to the flow index, the actual foam liquid flow output by the foam path is compared with the expected foam liquid flow according to the quantitative relationship between the water flow and the foam solution flow, and the difference is sent to the foam In the PID controller of the liquid circuit, the foam pump is adjusted through the output of the PID controller to reduce the output error of the foam liquid and make it reach the expected target.
如图4所示,通过单向阀特性可以得到空气流量与空气压力之间存在换算关系,而空气压力与混合液的压力也同样存在一定算法关系,因此将实际得到的空气压力与预设值进行比较,将所的差值作为空气路PID控制器输入,然后通过PID控制器输出对比例阀和单向阀进行控制,调节空气压力使其达到预期设定目标。As shown in Figure 4, there is a conversion relationship between the air flow and air pressure through the characteristics of the check valve, and there is also a certain algorithm relationship between the air pressure and the pressure of the mixed liquid, so the actual air pressure and the preset value For comparison, the difference is used as the input of the PID controller of the air circuit, and then the proportional valve and the check valve are controlled through the output of the PID controller, and the air pressure is adjusted to achieve the expected setting goal.
如图5所示,控制流程的正常运行模式,第一步:先启动空气路、水路以及输出通道,即启动空气压缩机、离心泵、出口阀,对于泡沫路的开启遵循三段式运行模式,即首先通过音叉传感器检测是否存在残留泡沫液,然后再开启泡沫泵、设置三通球阀并导通泡沫路;第二步,经水路水流量计测出水流量后一方面计算出泡沫液的流量,将计算得到的泡沫液流量转换为模拟量发送到伺服电机,经伺服电机执行发出泡沫原液得操作指令,随后经泡沫路的泡沫流量检测计检测是否达到目标泡沫量,若未达到设定值则返回重新计算泡沫溶液流量;第三步:在泡沫回路单元执行的同时,将水流量计检测到的水流量转化为模拟量发送到变频离心泵,通过实现对泵的转速的调节实现调节水流量的大小,经水流量计检测水流量是否达标,若未达标则返回重新计算水流量大小;第四步:在水路与泡沫路混合后通过压力传感器测出水溶液的压力后计算出对应所需要的空气压力,将所需气压转换为模拟量发送到电气比例阀来调节减压阀控制整个回路的气压大小,最后通过压力变送器检测气压是否达到目标值,若未达到则返回继续计算所需空气压力;第五步:若空气路、水路、泡沫路三个单元算法执行无误且都满足目标设定,则对火警警情进行判定,若警情解除,则再次设置三通球阀来关闭泡沫路和水路,进而关闭泡沫泵、空压机及离心泵,最后关闭出口阀结束设备运行,若火警未解除则返回至第二步继续进行。As shown in Figure 5, the normal operation mode of the control process, the first step: first start the air circuit, water circuit and output channel, that is, start the air compressor, centrifugal pump, and outlet valve, and follow the three-stage operation mode for the opening of the foam circuit , that is, firstly, the tuning fork sensor is used to detect whether there is residual foam liquid, and then the foam pump is turned on, the three-way ball valve is set, and the foam circuit is connected; the second step is to calculate the foam liquid on the one hand after measuring the water flow rate through the water flow meter. Flow rate, convert the calculated foam liquid flow into an analog quantity and send it to the servo motor. The servo motor executes the operation instruction of the foam stock solution, and then the foam flow detector in the foam road detects whether the target foam volume is reached. If it does not reach the set The value is returned to recalculate the foam solution flow; the third step: while the foam circuit unit is executing, the water flow detected by the water flow meter is converted into an analog quantity and sent to the variable frequency centrifugal pump, and the adjustment is realized by adjusting the speed of the pump The size of the water flow is checked by the water flow meter to see if the water flow is up to the standard. If it is not up to the standard, return to recalculate the water flow; the fourth step: After the water path and the foam path are mixed, the pressure of the aqueous solution is measured by the pressure sensor, and the corresponding value is calculated. The required air pressure is converted into an analog quantity and sent to the electric proportional valve to adjust the pressure reducing valve to control the air pressure of the entire circuit. Finally, the pressure transmitter is used to detect whether the air pressure reaches the target value. If not, return to continue calculation Required air pressure; Step 5: If the three unit algorithms of air, water, and foam are executed correctly and all meet the target setting, then judge the fire alarm situation. If the alarm situation is cleared, set the three-way ball valve again to Close the foam circuit and water circuit, then close the foam pump, air compressor and centrifugal pump, and finally close the outlet valve to end the operation of the equipment. If the fire alarm is not cleared, return to the second step to continue.
本发明一种集成式压缩空气泡沫灭火系统及其控制方法,根据泡沫灭火系统的空气流量、压力;泡沫原液流量、压力;水流量、压力几者的相互影响关系,提出一种新型控制方法,使得压缩空气灭火系统更加稳定可靠地运行,具有一定的实用意义。The present invention is an integrated compressed air foam fire extinguishing system and its control method. According to the mutual influence relationship between the air flow and pressure of the foam fire extinguishing system; the flow and pressure of foam raw liquid; the flow and pressure of water, a new control method is proposed, It has certain practical significance to make the compressed air fire extinguishing system run more stably and reliably.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211340345.2A CN115645802A (en) | 2022-10-28 | 2022-10-28 | Integrated compressed air foam fire extinguishing system and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211340345.2A CN115645802A (en) | 2022-10-28 | 2022-10-28 | Integrated compressed air foam fire extinguishing system and control method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115645802A true CN115645802A (en) | 2023-01-31 |
Family
ID=84994014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211340345.2A Pending CN115645802A (en) | 2022-10-28 | 2022-10-28 | Integrated compressed air foam fire extinguishing system and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115645802A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117873216A (en) * | 2024-02-01 | 2024-04-12 | 江苏拓米洛高端装备股份有限公司 | Linear cooling control method for environmental test chamber |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130118763A1 (en) * | 2011-11-11 | 2013-05-16 | Waterous Company | Proportional dynamic ratio control for compressed air foam delivery |
CN111135503A (en) * | 2020-01-06 | 2020-05-12 | 天津理工大学 | Foam generator for preparing foam |
CN113359416A (en) * | 2021-06-11 | 2021-09-07 | 西安理工大学 | Multi-input single-output compressed air foam system based on PLC and control method |
CN215691263U (en) * | 2020-12-21 | 2022-02-01 | 润泰救援装备科技河北有限公司 | Integrated compressed air foam mixed fire extinguishing system |
CN115006763A (en) * | 2022-06-17 | 2022-09-06 | 西安理工大学 | An automatic detection and control of compressed air foam fire extinguishing system |
WO2022218837A1 (en) * | 2021-04-13 | 2022-10-20 | Firedos Gmbh | Admixing system for fire-extinguishing units and method for the maintenance thereof |
-
2022
- 2022-10-28 CN CN202211340345.2A patent/CN115645802A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130118763A1 (en) * | 2011-11-11 | 2013-05-16 | Waterous Company | Proportional dynamic ratio control for compressed air foam delivery |
CN111135503A (en) * | 2020-01-06 | 2020-05-12 | 天津理工大学 | Foam generator for preparing foam |
CN215691263U (en) * | 2020-12-21 | 2022-02-01 | 润泰救援装备科技河北有限公司 | Integrated compressed air foam mixed fire extinguishing system |
WO2022218837A1 (en) * | 2021-04-13 | 2022-10-20 | Firedos Gmbh | Admixing system for fire-extinguishing units and method for the maintenance thereof |
CN113359416A (en) * | 2021-06-11 | 2021-09-07 | 西安理工大学 | Multi-input single-output compressed air foam system based on PLC and control method |
CN115006763A (en) * | 2022-06-17 | 2022-09-06 | 西安理工大学 | An automatic detection and control of compressed air foam fire extinguishing system |
Non-Patent Citations (1)
Title |
---|
李念慈: "《建筑消防给水系统的设计施工监理》", 中国建材工业出版社, pages: 439 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117873216A (en) * | 2024-02-01 | 2024-04-12 | 江苏拓米洛高端装备股份有限公司 | Linear cooling control method for environmental test chamber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105370629B (en) | PTA device energy recovery control methods | |
CN113359416B (en) | PLC-based multi-input single-output compressed air foam system and control method | |
CN107143001A (en) | A kind of variable-frequency variable-voltage intelligent water supply equipment and water-supply control | |
CN202165326U (en) | Industry centrifugal compressor surge-proof control device | |
CN204115829U (en) | A kind of combine detection system | |
CN103487269A (en) | Capacity-variable water cooling unit test system | |
CN108006928A (en) | Air conditioning water system vari- able flow control system and method | |
CN115645802A (en) | Integrated compressed air foam fire extinguishing system and control method thereof | |
CN113606001B (en) | 600MW supercritical unit bypass system and bypass temperature control method thereof | |
CN111408243A (en) | A kind of thermal power unit wet desulfurization pH value control system and method | |
CN108021159B (en) | Crystallization kettle temperature control system and control method | |
CN112879292A (en) | Liquid ring pump working liquid temperature control system and control method thereof | |
CN115597133A (en) | Central air-conditioning primary refrigerating pump frequency conversion control system and control method thereof | |
CN211399756U (en) | Steam source switching control device of water supply system of 660MW supercritical unit | |
CN113741560A (en) | Laminar flow quality and flow control system and control method based on cascade control | |
CN206738944U (en) | A kind of methanol storage tank of controllable flow rate | |
CN202625944U (en) | Energy-saving variable-frequency regulating accurate aerating system | |
CN107890786A (en) | A kind of more liquid on-line high accuracy hybrid systems | |
CN201071325Y (en) | Oxygen supply system for aeration tank | |
CN216486119U (en) | Debugging platform for chemical process | |
CN216347147U (en) | CO2 refrigeration system with maintenance unit | |
CN207280009U (en) | A kind of new Regional Energy secondary pumping system | |
CN104848302A (en) | District heating system fully utilizing hot water to exchange heat | |
CN116073596A (en) | A generator set stator temperature rise control system and method thereof | |
CN115749706A (en) | A dense-phase carbon dioxide separation and reinjection device and its control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |