CN115632048A - 一种具有纳米金刚石钝化层的TaN薄膜电阻器及其制备方法 - Google Patents

一种具有纳米金刚石钝化层的TaN薄膜电阻器及其制备方法 Download PDF

Info

Publication number
CN115632048A
CN115632048A CN202211163967.2A CN202211163967A CN115632048A CN 115632048 A CN115632048 A CN 115632048A CN 202211163967 A CN202211163967 A CN 202211163967A CN 115632048 A CN115632048 A CN 115632048A
Authority
CN
China
Prior art keywords
diamond
tan
film
self
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211163967.2A
Other languages
English (en)
Other versions
CN115632048B (zh
Inventor
魏俊俊
王越
乔冠中
尹育航
周浩钧
陶洪亮
郑宇亭
李成明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MONTE-BIANCO DIAMOND APPLICATIONS CO LTD
University of Science and Technology Beijing USTB
Original Assignee
MONTE-BIANCO DIAMOND APPLICATIONS CO LTD
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MONTE-BIANCO DIAMOND APPLICATIONS CO LTD, University of Science and Technology Beijing USTB filed Critical MONTE-BIANCO DIAMOND APPLICATIONS CO LTD
Priority to CN202211163967.2A priority Critical patent/CN115632048B/zh
Publication of CN115632048A publication Critical patent/CN115632048A/zh
Application granted granted Critical
Publication of CN115632048B publication Critical patent/CN115632048B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • H01L28/24Resistors with an active material comprising a refractory, transition or noble metal, metal compound or metal alloy, e.g. silicides, oxides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/647Resistive arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及氮化钽薄膜电阻器技术领域,特别是指一种具有纳米金刚石钝化层的TaN薄膜电阻器及其制备方法,包括以下步骤:S1、提供自支撑金刚石膜,并进行表面粗糙化处理,使得表面粗糙度整体达到Ra5nm以下;S2、将S1所得的自支撑金刚石膜放置于磁控溅射系统中,在其表面依次制备Ta和TaN薄膜;S3、将S2所得的样品在真空条件下加热到700‑800℃并保温50‑80min;S4、通过MPCVD,在S3所得的样品表面生长金刚石织构层;生长温度控制在800℃以内。本发明可降低界面热阻、提升TaN薄膜电阻的散热效果,而且纳米金刚石具有良好的机械性能和气密性能,能够抵御机械冲击及气体环境影响,耐磨耐腐蚀。

Description

一种具有纳米金刚石钝化层的TaN薄膜电阻器及其制备方法
技术领域
本发明涉及氮化钽薄膜电阻器技术领域,特别是指一种具有纳米金刚石钝化层的TaN薄膜电阻器及其制备方法。
背景技术
薄膜电阻作为集成电路中应用最广泛的无源器件之一,在电路中主要起到电源去藕、器件工作点偏置、网络匹配及间级耦合等功能。TaN是在CMOS 工艺中一种常用的金属材料,在大规模集成电路中通常用于制造精确的片状薄膜电阻,其化学性质稳定,材料均匀性良好,并且具有优秀的高温稳定性和精度,在集成电路制造中使用最为广泛。但目前的制备工艺中,在形成氮化钽薄膜电阻后至保护层形成前的这段工艺过程中,往往需经历去除图形化掩膜的工艺过程,然而在此去除掩膜的过程中,氮化钽薄膜电阻会直接暴露在工艺环境中,化学溶液及气体等容易与氮化钽层发生反应,如氮化钽层在去除掩膜的过程中,氮化钽在含氧环境中与氧气或含氧等离子体反应生成氧化钽(TaOx),导致氮化钽薄膜电阻的阻值产生较大波动,以至影响器件性能的稳定性及一致性。
此外,表面只要有微量的沾污(如有害的杂质离子、水汽、尘埃等),就会影响器件表面的电学性质,如表面电导及表面态等。为提高器件性能的稳定性和可靠性,必须把薄膜与周围环境气氛隔离开来,以增强器件对外来离子沾污的阻挡能力,控制和稳定半导体表面的特征,保护器件内部的互连以及防止器件受到机械和化学损伤。为此就提出了薄膜电阻器件表面钝化的要求,表面钝化工艺就是在薄膜电阻器件表面覆盖保护介质膜,以防止表面氧化的工艺。
在目前的制作工艺过程中,为确保氮化钽薄膜电阻的阻值的稳定性,通常会制作一层TiW合金作为保护层,从而隔绝后续工艺环境对氮化钽层的影响。
虽然钝化层可以有效降低势垒层表面态,改善器件的性能,但也增加了器件的散热问题,降低了器件的击穿电压。针对这些问题,选择导热系数高的钝化材料,并且优化钝化层的厚度来增强散热能力,提高器件性能显得尤为重要。纳米金刚石膜由于晶粒极小,表面非常光滑,可以直接用于制备一些电子器件,以降低研制成本。
发明内容
本发明要解决的技术问题是提供一种具有纳米金刚石钝化层的TaN薄膜电阻器及其制备方法,其基于金刚石为载体,利用金刚石高导热性能、高硬耐磨、化学稳定性高和粗糙生长面结构等特性,通过设计和优化金刚石衬底和钝化层以及TaN薄膜电阻器的结构,提升了TaN薄膜电阻器的散热效果和工作稳定性,从而获得高质量的具有金刚石衬底和钝化层的TaN薄膜电阻。本发明在保持TaN薄膜电阻器结构和性能的基础上,在器件中设计优化金刚石衬底、钝化层以及中间介质层的结构和组成,不仅可以降低界面热阻、提升TaN 薄膜电阻的散热效果,而且纳米金刚石具有良好的机械性能和气密性能,能够抵御机械冲击及气体环境影响,起到耐磨耐腐蚀保护作用。因此,本发明方法对于提高TaN薄膜电阻器的使用性能和应用推广有重要意义,可保障薄膜电阻元器件在高功率、高频率工况下长时间稳定工作。
为解决上述技术问题,本发明提供如下技术方案:
第一方面,本发明提供一种具有纳米金刚石钝化层的TaN薄膜电阻器的制备方法,包括以下步骤:
S1、提供自支撑金刚石膜,并进行表面粗糙化处理,使得自支撑金刚石膜的表面粗糙度整体达到Ra5nm以下;然后进行任选的清洗;
S2、将S1所得的自支撑金刚石膜放置于磁控溅射系统中,在其表面依次制备Ta和TaN薄膜;
S3、之后将S2所得的样品在真空条件下加热到700-800℃并保温 50-80min,真空度低于5×10-4Pa;
S4、通过MPCVD工艺,在S3所得的样品表面生长金刚石织构层;其中,生长温度控制在800℃以内。
其中优选地,步骤S1中,所述表面粗糙化处理的过程包括:进行三维高精度动态抛光。该优选方案下,能够满足高性能、高结合强度金刚石基薄膜电阻元件制备的基础要求。
更优选地,步骤S1中,所述表面粗糙化处理的过程还包括:在进行三维高精度动态抛光之前,先进行机械研磨,将金刚石衬底粗糙度控制在Ra5nm 以下。该优选方案下,能够满足高性能、高结合强度金刚石基薄膜电阻元件制备的基础要求。
其中优选地,所述提供自支撑金刚石膜的过程包括:采用CVD合成方法制备自支撑金刚石膜。
本发明中应当理解的是,自支撑金刚石膜为高导热材质。
其中优选地,步骤S1中,所述清洗的过程包括:使用浓H2SO4和浓HNO3按照3-5:1的体积比混合后对自支撑金刚石膜进行煮沸酸洗30-40min,接着连续使用丙酮、甲醇和异丙醇在超声波浴中进行溶剂清洗,然后用氮气吹干备用。其中,浓H2SO4的浓度为90-98wt%,浓HNO3的浓度为86-98wt%。
步骤S2中,在单层膜工艺参数方面的优化总是有所局限,因此溅射一层 Ta缓冲层,用来提高钽氮化物薄膜与基底结合力,改善电阻薄膜的耐功率性能。TaN晶体结构不完全匹配,难以与金刚石衬底很好的结合。由于Ta具有正的TCR,而TaN具有负的TCR,通过磁控溅射将两种材料沉积在一起,通过控制它们的比例,可以调节TCR接近于零,有助于解决现有技术中制备的氮化钽薄膜电阻的阻值波动较大的问题;同时Ta缓冲层还能帮助生长晶格匹配良好的钽氮化物薄膜以及其它杂质,在一定程度上增加表面的微观粗糙度,导致薄膜的附着性增加,有利于TaN与金刚石衬底的结合。
其中优选地,步骤S2中还包括:在所述制备Ta和TaN薄膜之前先进行预处理:先抽真空至6×10-4Pa以下,再对沉积台进行加热,加热温度为 400-600℃,当加热到相应温度,腔室抽真空至5×10-4Pa以下后,进行除氧处理(例如可以采用直流射频电源电压为400V);随后进行衬底清洗(例如可以采用偏压:-800V,频率:45HZ,清洗时间10min);接着钽靶预处理。所述钽靶预处理的条件包括:溅射功率为150-250W,Ar气通量为80-100sccm,预处理时间15-20min。
其中优选地,步骤S2中,所述制备Ta和TaN薄膜的过程包括:初期,控制N2流量为80-100sccm,溅射功率为150-250W,沉积过程中的基板温度为400-600℃,沉积时间10-20秒;该步骤用于先调整氮分压高一点防止Ta与 N反应不充分有Ta金属生成夹杂在薄膜中;随后在5-10秒内,梯度升高N2在氮气和氩气气流中的流量比直至2-3%、优选2.5-3%;保持N2流量,在沉积 150-200秒后,关闭等离子体,停止镀膜。
其中优选地,步骤S2制备Ta和TaN薄膜的过程中,通过控制流入腔体内的N2的保持流量和沉积时间(也即氮气梯度升高之后的流量保持和沉积时间)来控制TaN和Ta的厚度比例,调节TCR接近于零。该优选方案,有助于解决现有技术中制备的氮化钽薄膜电阻的阻值波动较大的问题,以达到所需的产品要求。而且,由于Ta具有正的TCR,而TaN具有负的TCR,通过磁控溅射将两种材料沉积在一起,通过控制它们的比例,可以调节TCR接近于零;并且有利于TaN与金刚石基底的结合,同时还能在一定程度上增加表面的微观粗糙度,导致薄膜的附着性增加。
本发明步骤S4中,将纳米金刚石膜的生长温度控制在800℃以内,既能获得导热性能良好的纳米金刚石钝化层,同时减少了二次高温对TaN薄膜电阻的影响。
其中优选地,步骤S4中,所述MPCVD工艺的条件包括:微波功率为1000-1500W,腔室压力为7-10kPa,气压为70-90torr,生长温度为600-750℃,生长时间为20-30min,氢气流量为250-350sccm,甲烷流量为9-15sccm。
本发明第二方面提供一种具有纳米金刚石钝化层的TaN薄膜电阻器,其包括依次设置的金刚石衬底、Ta缓冲层、TaN薄膜、纳米金刚石钝化层。
其中优选地,其通过第一方面所述的制备方法制得。
其中优选地,所述金刚石衬底的表面粗糙度在Ra5nm以下。
其中优选地,所述Ta缓冲层、TaN薄膜、纳米金刚石钝化层的厚度比为 1:10-15:45-50。
其中,纳米金刚石钝化层具有良好的机械性能和气密性能,能够抵御机械冲击及气体环境影响;且具有非常高的热导率,使得采用纳米金刚石作为钝化膜的薄膜电阻在高频下自热效应导致的温升更低;纳米金刚石钝化膜工艺与目前发展的半导体钝化膜工艺具有很好的兼容性,可进一步提高片式元件整体封装的紧凑性。
本发明的上述技术方案的有益效果如下:
本发明在具有特定表面粗糙度的金刚石衬底上,通过溅射一层Ta缓冲层来提高钽氮化物薄膜与基底结合力,改善电阻薄膜的耐功率性能。TaN晶体结构与金刚石基底不完全匹配,Ta缓冲层可帮助生长晶格匹配良好的钽氮化物薄膜,有利于TaN与金刚石基体的结合;然后设置金刚石织构层并使其生长温度控制在800℃以内,既能获得导热性能良好的纳米金刚石钝化层,同时减少了二次高温对TaN薄膜电阻的影响。本发明实现了一种界面强结合,散热能力好且结构稳定的金刚石基TaN薄膜电阻元件的制造。
而且,本发明通过采用金刚石衬底,且在TaN薄膜表面设置纳米金刚石钝化层,纳米金刚石膜的晶粒可以小到几个纳米,因此其摩擦系数很小(约 0.03),同时其硬度比常规金刚石膜相比低约10-20%,大大降低了其加工难度。纳米金刚石具有尺寸效应和较高的晶界密度,表现出优良的力学、电学、光学性能。而微米金刚石薄膜属于多晶柱状结构,且表面粗糙度较大(约为几百纳米到几个微米),不适用于传统微电子加工工艺过程;且传统抛光工艺不仅十分耗时耗力且成本较高,对此本发明采用的表面粗糙度低的纳米金刚石薄膜是一种行之有效的解决方法。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例进行详细描述。N2/Ar比等气体相关的计量均以体积计。
实施例1
一种具有金刚石钝化层的TaN薄膜电阻器制备方法,如下:
1)采用CVD合成技术制备高导热自支撑金刚石膜。随后对多自支撑金刚石膜进行激光切割,使其为尺寸25×25mm,厚度0.5mm;
2)金刚石膜研磨和抛光。对多自支撑金刚石膜进行机械研磨和三维高精度动态抛光,表面粗糙度整体达到Ra5nm以下,厚度0.38mm,偏差±5%以内。研磨抛光后的样品使用浓H2SO4(浓度为98wt%)和浓HNO3(浓度为98wt%) 按照4:1的体积比例进行煮沸酸洗40min,接着连续使用丙酮、甲醇和异丙醇分别在超声波浴中对样品进行溶剂清洗,然后用氮气吹干备用;
3)采用磁控射频溅射法镀制Ta和TaN薄膜。将上述金刚石衬底放入磁控溅射设备后,先抽真空至6×10-4Pa以下,再对沉积台进行加热,加热温度为 600℃,当加热到相应温度,腔室抽真空至5×10-4Pa以下后,进行直流射频电源电压为400V除氧处理;随后偏压:-800V,频率:45HZ进行衬底清洗,清洗时间10min;接着钽靶预处理,主要是设定溅射功率为250W,Ar气通量为 100sccm,预处理时间20min;
4)开始Ta薄膜镀制控制。N2流量设置为100sccm,溅射功率250W,沉积过程中的基板温度为600℃,沉积时间10秒,停止镀膜;
5)开始TaN薄膜镀制控制。N2/Ar比为10%薄膜,溅射功率250W,沉积过程中的基板温度为600℃,沉积时间50秒;随后在10秒内,梯度降低N2比例直至3%;保持N2流量3%,在沉积90秒后,关闭等离子体,停止镀膜。该步骤中TCR接近于零。
6)将上述样品在真空条件下再次加热到800℃保温1h,真空度要求低于 5×10- 4Pa;
7)保温结束后冷却至室温,取出样品;
8)将上述样品转移至微波等离子体化学气相沉积系统(CVD)中。采用 CVD方式在TaN薄膜上沉积纳米金刚石,沉积功率选择1500w,H2通量为 300sccm,CH4通量为12sccm,沉积温度700℃,沉积时间为30min,最后获得厚度500nm的纳米金刚石钝化层;
9)将上述样品进行涂胶和前烘处理,匀胶旋涂仪设置参数为第一步自旋速度为500rpm,时间持续5s,第二步自旋速度为4000rpm,时间持续60s,烘烤温度100℃;
10)将上述样品进行光刻显影后再图形化处理,然后把不需要的种子层腐蚀;后就得到具有纳米金刚石钝化层的TaN薄膜电阻器。
Ta缓冲层、TaN薄膜、纳米金刚石钝化层的厚度比为1:15:45。
实施例2
参照实施例1的方法进行,不同的是:
4)开始Ta薄膜镀制控制。N2流量设置为100sccm,溅射功率250W,沉积过程中的基板温度为800℃,沉积时间15秒,停止镀膜;
5)开始TaN薄膜镀制控制。N2/Ar比为15%薄膜,溅射功率250W,沉积过程中的基板温度为800℃,沉积时间60秒;随后在10秒内,梯度降低N2比例直至2%;保持N2流量2%,在沉积90秒后,关闭等离子体,停止镀膜。
6)将上述样品在真空条件下再次加热到1000℃并保温1h,真空度要求低于5×10- 4Pa;
7)保温结束后冷却至室温,取出样品;
8)将上述样品转移至微波等离子体化学气相沉积系统(MPCVD)中。采用 MPCVD方式在TaN薄膜上沉积纳米金刚石,沉积功率选择1200w,H2通量为 300sccm,CH4通量为12sccm,沉积温度750℃,沉积时间为25min,最后获得厚度500nm的纳米金刚石钝化层。
实施例3
参照实施例1的方法进行,不同的是:
4)开始Ta薄膜镀制控制。N2流量设置为100sccm,溅射功率250W,沉积过程中的基板温度为950℃,沉积时间20秒,停止镀膜;
5)开始TaN薄膜镀制控制。N2/Ar比为20%薄膜,溅射功率250W,沉积过程中的基板温度为950℃,沉积时间70秒;随后在10秒内,梯度降低N2比例直至1%;保持N2流量1%,在沉积90秒后,关闭等离子体,停止镀膜。
6)将上述样品在真空条件下再次加热到1100℃并保温1h,真空度要求低于5×10- 4Pa;
7)保温结束后冷却至室温,取出样品;
8)将上述样品转移至微波等离子体化学气相沉积系统(CVD)中。采用 CVD方式在TaN薄膜上沉积纳米金刚石,沉积功率选择1000w,H2通量为 300sccm,CH4通量为12sccm,沉积温度800℃,沉积时间为20min,最后获得厚度500nm的纳米金刚石钝化层。
对比例1
参照实施例1的方法进行,不同的是:金刚石衬底的表面粗糙度整体大于 Ra5nm,具体为Ra20nm。
对比例2
参照实施例1的方法进行,不同的是:纳米金刚石钝化层的生长温度为850℃,大于800℃。
测试例
将上述实施例和对比例所得的TaN薄膜电阻器采用四探针测试仪、矢量网络分析仪进行性能测试,测试结果如下表1所示。
表1
性能 TCR 微波功率性能
实施例1 25ppm/℃ VSWR=1.2
实施例2 60ppm/℃ VSWR=1.45
实施例3 32ppm/℃ VSWR=1.39
对比例1 90ppm/℃ VSWR=1.6
对比例2 70ppm/℃ VSWR=1.4
通过表1以及其他测试结果可知,采用本发明的实施例相比于对比例,具有更好的微波特性,同时具有良好的循环稳定性。进一步的,通过实施例1 和实施例2-3对比可以看出,采用本发明的优选实施例1能够在10-20GHz,薄膜电阻的反射系数S(1,1)<-10.3dB,VSWR<1.3,显示较好的微波特性,且经过热循环测试后,电阻的TCR仍然稳定在30ppm/℃以内,获得良好的循环稳定性。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种具有纳米金刚石钝化层的TaN薄膜电阻器的制备方法,其特征在于,包括以下步骤:
S1、提供自支撑金刚石膜,并进行表面粗糙化处理,使得自支撑金刚石膜的表面粗糙度整体达到Ra 5nm以下;然后进行任选的清洗;
S2、将S1所得的自支撑金刚石膜放置于磁控溅射系统中,在其表面依次制备Ta和TaN薄膜;
S3、之后将S2所得的样品在真空条件下加热到700-800℃并保温50-80min,真空度低于5×10-4Pa;
S4、通过MPCVD工艺,在S3所得的样品表面生长金刚石织构层;其中,生长温度控制在800℃以内。
2.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述表面粗糙化处理的过程包括:进行三维高精度动态抛光;和/或,所述提供自支撑金刚石膜的过程包括:采用CVD合成方法制备自支撑金刚石膜。
3.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述清洗的过程包括:使用浓H2SO4和浓HNO3按照3-5:1的体积比混合后对自支撑金刚石膜进行煮沸酸洗30-40min,接着连续使用丙酮、甲醇和异丙醇在超声波浴中进行溶剂清洗,然后用氮气吹干备用。
4.根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述制备Ta和TaN薄膜的过程包括:初期,控制N2流量为80-100sccm,溅射功率为150-250W,沉积过程中的基板温度为400-600℃,沉积时间10-20秒;随后在5-10秒内,梯度升高N2在氮气和氩气气流中的流量比直至2-3%;保持N2流量,在沉积150-200秒后,关闭等离子体,停止镀膜。
5.根据权利要求1或4所述的制备方法,其特征在于,步骤S2制备Ta和TaN薄膜的过程中,通过控制流入腔体内的N2的保持流量和沉积时间来控制TaN和Ta的厚度比例,调节TCR接近于零。
6.根据权利要求1所述的制备方法,其特征在于,步骤S4中,所述MPCVD工艺的条件包括:微波功率为1000-1500W,腔室压力为7-10kPa,气压为70-90torr,生长温度为600-750℃,生长时间为20-30min,氢气流量为250-350sccm,甲烷流量为9-15sccm。
7.一种具有纳米金刚石钝化层的TaN薄膜电阻器,其特征在于,其包括依次设置的金刚石衬底、Ta缓冲层、TaN薄膜、纳米金刚石钝化层。
8.根据权利要求7所述的氮化钽薄膜电阻器,其特征在于,其通过权利要求1-6中任一项所述的制备方法制得。
9.根据权利要求7所述的氮化钽薄膜电阻器,其特征在于,所述金刚石衬底的表面粗糙度在Ra 5nm以下。
10.根据权利要求7所述的氮化钽薄膜电阻器,其特征在于,所述Ta缓冲层、TaN薄膜、纳米金刚石钝化层的厚度比为1:10-15:45-50。
CN202211163967.2A 2022-09-23 2022-09-23 一种具有纳米金刚石钝化层的TaN薄膜电阻器及其制备方法 Active CN115632048B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211163967.2A CN115632048B (zh) 2022-09-23 2022-09-23 一种具有纳米金刚石钝化层的TaN薄膜电阻器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211163967.2A CN115632048B (zh) 2022-09-23 2022-09-23 一种具有纳米金刚石钝化层的TaN薄膜电阻器及其制备方法

Publications (2)

Publication Number Publication Date
CN115632048A true CN115632048A (zh) 2023-01-20
CN115632048B CN115632048B (zh) 2023-08-01

Family

ID=84903040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211163967.2A Active CN115632048B (zh) 2022-09-23 2022-09-23 一种具有纳米金刚石钝化层的TaN薄膜电阻器及其制备方法

Country Status (1)

Country Link
CN (1) CN115632048B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115323318A (zh) * 2022-07-07 2022-11-11 北京科技大学 一种提高金刚石基薄膜电阻附着力的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062077A1 (en) * 1998-05-22 1999-12-02 N.V. Bekaert S.A. Resistors with low temperature coefficient of resistance and methods of making
JP2011138991A (ja) * 2009-12-29 2011-07-14 Yamaha Corp 高音質抵抗膜及びその製造方法
CN106796883A (zh) * 2014-09-03 2017-05-31 应用材料公司 用于三维nand硬膜应用的纳米结晶金刚石碳膜
CN210606834U (zh) * 2019-12-09 2020-05-22 四川永星电子有限公司 一种cvd金刚石基体片式电阻器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062077A1 (en) * 1998-05-22 1999-12-02 N.V. Bekaert S.A. Resistors with low temperature coefficient of resistance and methods of making
JP2011138991A (ja) * 2009-12-29 2011-07-14 Yamaha Corp 高音質抵抗膜及びその製造方法
CN106796883A (zh) * 2014-09-03 2017-05-31 应用材料公司 用于三维nand硬膜应用的纳米结晶金刚石碳膜
CN210606834U (zh) * 2019-12-09 2020-05-22 四川永星电子有限公司 一种cvd金刚石基体片式电阻器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115323318A (zh) * 2022-07-07 2022-11-11 北京科技大学 一种提高金刚石基薄膜电阻附着力的方法
CN115323318B (zh) * 2022-07-07 2023-11-14 北京科技大学 一种提高金刚石基薄膜电阻附着力的方法

Also Published As

Publication number Publication date
CN115632048B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
US5110438A (en) Reduced pressure surface treatment apparatus
CN108695408B (zh) 一种管式pecvd沉积氮化硅叠层减反射膜工艺
CN115632048A (zh) 一种具有纳米金刚石钝化层的TaN薄膜电阻器及其制备方法
US20230399734A1 (en) Oxide film preparation method
CN111106202B (zh) 一种基于氮化镁薄膜的光电探测器件及其制备方法
CN109576677A (zh) 一种利用等离子体增强原子层沉积可控制备不同氧含量的SiON薄膜的方法
WO1994019509A1 (en) Film forming method and film forming apparatus
CN113862622B (zh) 一种金属化合物薄膜的制备方法
Zhang et al. Process control of reactive sputter deposition of AlO x and improved surface passivation of crystalline silicon
CN112103177B (zh) 一种非晶铟铝锡氧化物半导体薄膜的制备方法
CN106917088A (zh) 一种制备高度C轴取向的ScAlN薄膜的工艺
CN108411271B (zh) 一种制备多孔纳米铜结构的方法
CN103820763A (zh) 一种在金刚石/铜复合基体表面制备Mo/AlN/BN涂层的方法
JP2875984B2 (ja) 付着力のあるダイヤモンド薄膜の蒸着方法
CN111139439B (zh) 一种在大面积衬底上磁控溅射制备薄膜的方法
CN112760615A (zh) 一种二氧化硅薄膜及其低温制备方法
CN114107890A (zh) 一种用于红外光学窗口表面的高硬度SiCN增透保护薄膜及其制备方法
CN114752921A (zh) 一种倒装芯片中的镀膜方法
Wang et al. Fabrication of metal-insulator-metal capacitors with SiN x thin films deposited by plasma-enhanced chemical vapor deposition
CN115323318B (zh) 一种提高金刚石基薄膜电阻附着力的方法
CN114465086B (zh) 一种dfb激光器光学膜的制备方法
CN117497514A (zh) 一种低应力半导体器件及其制备方法、电子器件
CN113224200B (zh) 一种氮化镓半导体辐射探测器及其制备方法和检测设备
JPH11354303A (ja) 薄膜抵抗体及びその製造方法並びに当該薄膜抵抗体を内蔵した配線基板
CN116988024A (zh) 一种改善氮化钽薄膜均匀性的制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant