CN115629406A - A method, system, device, and computer-readable storage medium for automatic observation mode switching - Google Patents
A method, system, device, and computer-readable storage medium for automatic observation mode switching Download PDFInfo
- Publication number
- CN115629406A CN115629406A CN202211267488.5A CN202211267488A CN115629406A CN 115629406 A CN115629406 A CN 115629406A CN 202211267488 A CN202211267488 A CN 202211267488A CN 115629406 A CN115629406 A CN 115629406A
- Authority
- CN
- China
- Prior art keywords
- observation
- new
- satellite
- parameters
- mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000005540 biological transmission Effects 0.000 claims description 9
- 230000004044 response Effects 0.000 abstract description 6
- 238000007726 management method Methods 0.000 description 24
- 238000005259 measurement Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 238000003384 imaging method Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 235000019892 Stellar Nutrition 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- TVZRAEYQIKYCPH-UHFFFAOYSA-N 3-(trimethylsilyl)propane-1-sulfonic acid Chemical compound C[Si](C)(C)CCCS(O)(=O)=O TVZRAEYQIKYCPH-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/02—Details of the space or ground control segments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/35—Constructional details or hardware or software details of the signal processing chain
- G01S19/37—Hardware or software details of the signal processing chain
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
本发明公开了一种自动化观测模式切换方法、系统、设备及计算机可读存储介质,所述方法包括以下步骤:针对不同的卫星观测数据生成与卫星观测数据相匹配的卫星观测参数;根据所述卫星观测参数分别智能生成当日及下一日新卫星观测任务时间表、新卫星观测任务模板;根据所述当日及下一日新卫星观测任务时间表、新卫星观测任务模板,生成当日及下一日新卫星遥控指令链;根据所述当日及下一日新卫星遥控指令链,恢复某载荷观测任务和指令上注,以实现地面应用系统观测模式的智能控制切换。本发明可以一键式实现星地全业务系统的观测模式切换,不仅有效降低人工工作量,减少操作失误风险性,提高业务可靠性,同时还可以缩短应急响应时间。
The invention discloses an automatic observation mode switching method, system, equipment and computer-readable storage medium. The method includes the following steps: generating satellite observation parameters matching the satellite observation data for different satellite observation data; according to the Satellite observation parameters intelligently generate new satellite observation task schedules and new satellite observation task templates for the current day and the next day; Rixin satellite remote control command chain: According to the new satellite remote control command chain of the current day and the next day, restore a certain load observation task and command note, so as to realize the intelligent control switching of the observation mode of the ground application system. The invention can switch the observation mode of the satellite-to-earth full-service system with one button, which not only effectively reduces the manual workload, reduces the risk of operation errors, improves service reliability, but also shortens the emergency response time.
Description
技术领域technical field
本发明涉及常态化气象应急服务技术领域,尤其是涉及静止气象地面应用系统观测模式的技术,具体地说,涉及一种自动化观测模式切换方法、系统、设备及计算机可读存储介质。The present invention relates to the technical field of normalized meteorological emergency services, in particular to the technology of observation mode of static meteorological ground application system, in particular to an automatic observation mode switching method, system, equipment and computer-readable storage medium.
背景技术Background technique
目前静止气象卫星的观测模式均是人工操作进行业务切换,地面应用系统需要全程人工手动操作,选择符合新观测需求的观测模式,向系统提交新的观测模式,预估新的观测模式开始观测时间,调度地面系统针对新观测模式修改处理、分发,广播等,控制气象卫星清除星上已经上注指令并上注新的观测模式指令,最后启动卫星采用新观测模式进行观测。At present, the observation modes of geostationary meteorological satellites are all manually operated for business switching. The ground application system needs to be manually operated in the whole process to select the observation mode that meets the new observation requirements, submit the new observation mode to the system, and estimate the observation time of the new observation mode. , dispatch the ground system to modify, process, distribute, broadcast, etc. for the new observation mode, control the meteorological satellite to clear the instructions on the satellite and add new observation mode instructions, and finally start the satellite to use the new observation mode for observation.
在实际气象服务中,气象卫星观测应急响应的时效性高度依赖多名工作人员在全流程环节中的操作熟练程度。In actual meteorological services, the timeliness of meteorological satellite observation emergency response is highly dependent on the operational proficiency of multiple staff members in the whole process.
因此,为满足常态化灾害事件的应急观测需求,原有技术长期需要多名具备丰富判断多类型载荷观测模式需求经验且具备熟练操作的工作人员同时昼夜值守,在卫星进行观测模式切换期间,由于需要进行观测模式判断及切换熟练程度全部依赖工作经验,应急响应时效性无法完全保障。Therefore, in order to meet the emergency observation needs of normalized disaster events, the original technology has long required a number of staff with rich experience in judging the requirements of multi-type load observation modes and skilled operators to be on duty day and night at the same time. The need to judge the observation mode and switch proficiency all depend on work experience, and the timeliness of emergency response cannot be fully guaranteed.
有鉴于此特提出本发明。In view of this, the present invention is proposed.
发明内容Contents of the invention
本发明要解决的技术问题在于克服现有技术的不足,提供一种自动化观测模式切换方法、系统、设备及计算机可读存储介质,可以一键式实现星地全业务系统的观测模式切换,不仅有效降低人工工作量,减少操作失误风险性,提高业务可靠性,同时还可以缩短应急响应时间。The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art, and provide an automatic observation mode switching method, system, equipment and computer-readable storage medium, which can realize the observation mode switching of the satellite-earth full-service system with one button, not only Effectively reduce the manual workload, reduce the risk of operational errors, improve business reliability, and shorten the emergency response time.
第一方面,为解决上述技术问题,本发明采用技术方案的基本构思是:In the first aspect, in order to solve the problems of the technologies described above, the basic idea of the technical solution adopted by the present invention is:
一种自动化观测模式切换系统,所述切换方法,包括以下步骤:An automatic observation mode switching system, the switching method, comprising the following steps:
获取气象用户的卫星观测需求,并根据卫星观测需求生成对应的卫星观测数据;Obtain the satellite observation requirements of meteorological users, and generate corresponding satellite observation data according to the satellite observation requirements;
根据所述卫星观测数据,并针对不同的卫星观测数据生成与卫星观测数据相匹配的卫星观测参数;According to the satellite observation data, generating satellite observation parameters matching the satellite observation data for different satellite observation data;
根据所述卫星观测参数分别智能生成当日及下一日新卫星观测任务时间表、新卫星观测任务模板;Intelligently generate a new satellite observation task schedule and a new satellite observation task template for the current day and the next day according to the satellite observation parameters;
根据所述当日及下一日新卫星观测任务时间表、新卫星观测任务模板,生成当日及下一日新卫星遥控指令链;Generate new satellite remote control command chains for the current day and the next day according to the new satellite observation task schedule and the new satellite observation task template for the current day and the next day;
根据所述当日及下一日新卫星遥控指令链,恢复某载荷观测任务和指令上注,以实现地面应用系统观测模式的智能控制切换。According to the new satellite remote control command chain of the current day and the next day, restore a certain load observation task and command note, so as to realize the intelligent control switching of the observation mode of the ground application system.
在上述任一方案中优选的实施例中,所述卫星观测需求,包括:In a preferred embodiment of any of the above schemes, the satellite observation requirements include:
观测目标需求、单位观测时间需求、总观测时间需求、观测目标起始观测时间需求、观测目标结束观测时间需求、观测地面位置经纬度需求、观测太空区域需求以及观测频次需求;Observation target requirements, unit observation time requirements, total observation time requirements, observation target start observation time requirements, observation target end observation time requirements, observation ground position latitude and longitude requirements, observation space area requirements, and observation frequency requirements;
所述卫星观测数据,包括:The satellite observation data include:
观测目标数据、单位观测时间数据、总观测时间数据、观测目标起始观测时间数据、观测目标结束观测时间数据、观测地面位置经纬度数据、观测太空区域数据以及观测频次数据。Observation target data, unit observation time data, total observation time data, observation target start observation time data, observation target end observation time data, observation ground position latitude and longitude data, observation space area data, and observation frequency data.
在上述任一方案中优选的实施例中,所述卫星观测参数,包括:In a preferred embodiment of any of the above schemes, the satellite observation parameters include:
新观测目标参数、新单位观测时间参数、新总观测时间参数、新观测目标起始观测时间参数、新观测目标结束观测时间参数、新观测地面位置经纬度参数、新观测太空区域参数以及新观测频次参数。New observation target parameters, new unit observation time parameters, new total observation time parameters, new observation target start observation time parameters, new observation target end observation time parameters, new observation ground position latitude and longitude parameters, new observation space area parameters, and new observation frequency parameter.
在上述任一方案中优选的实施例中,所述根据所述当日及下一日新卫星遥控指令链,恢复某载荷观测任务和指令上注,以实现地面应用系统观测模式的智能控制切换,包括:In a preferred embodiment of any of the above schemes, according to the new satellite remote control command chain of the day and the next day, restore a certain load observation task and command note, so as to realize the intelligent control switching of the observation mode of the ground application system, include:
自动接收当日及下一日新卫星遥控指令链,其中,卫星指令提前2小时上注;Automatically receive the new satellite remote control command chain of the current day and the next day, among which, the satellite command is added 2 hours in advance;
暂停卫星观测,自动清除卫星平台已上注指令;Suspend satellite observation, and automatically clear the satellite platform that has posted instructions;
判断上注指令是否为未发送状态,若为未发送状态,则重置未发送状态,将所述上注指令设置为待发送状态;Judging whether the above note instruction is in an unsent state, if it is an unsent state, then reset the unsent state, and set the above note instruction to a pending state;
采用当日及下一日新卫星遥控指令链,恢复气象卫星的载荷观测模式,恢复指令上注,以实现地面应用系统观测模式的智能控制切换。Adopt the new satellite remote control command chain of the current day and the next day, restore the load observation mode of the meteorological satellite, and restore the command note, so as to realize the intelligent control switching of the observation mode of the ground application system.
在上述任一方案中优选的实施例中,所述气象卫星的载荷观测模式,包括:In a preferred embodiment of any of the above schemes, the load observation mode of the meteorological satellite includes:
扫描观测模式、定标模式、定位观测模式和高频观测模式。Scanning observation mode, calibration mode, positioning observation mode and high-frequency observation mode.
在上述任一方案中优选的实施例中,所述切换方法,还包括:In a preferred embodiment of any of the above schemes, the switching method further includes:
观测需求交互分析子系统作用是汇总卫星工作状态信息、卫星控制需求和来自多星系统指挥平台的单一载荷观测需求和多星多载荷同步观测需求,分解出不同载荷的观测模式、观测区域、观测时间等信息,结合卫星工作状态和卫星管理需求信息作为限制条件。The role of the interactive analysis subsystem for observation requirements is to summarize satellite working status information, satellite control requirements, single-load observation requirements and multi-satellite multi-load synchronous observation requirements from the multi-satellite system command platform, and decompose the observation modes, observation areas, and observations of different loads. Time and other information, combined with satellite working status and satellite management demand information as constraints.
观测需求客户端分别部署在用户单位及MCS系统,观测需求用户登录后分别输入观测目标区域中心点经纬度信息、总观测时间需求、观测范围需求、观测载荷需求等,为保障卫星安全30min内客户端仅接受一次应急观测申请。系统将用户观测需求和解析的观测任务,结合载荷观测任务时间表模板、卫星平台任务时间表信息,根据任务优先级等预定的判断规则,综合进行冲突分析,在总观测时间范围内自动剔除飞轮卸载、太阳规避、轨道控制等卫星平台维护时间段,合理化解析结果反馈至客户端。如果解析结果星地系统无法满足观测需求则拒绝执行观测变更并通知观测需求用户,如果满足则匹配最优扫描观测模式、定标模式、定位观测模式和高频观测模式等其中一种观测模式。Observation demand clients are deployed in user units and MCS systems respectively. After logging in, observation demand users input the longitude and latitude information of the center point of the observation target area, total observation time requirements, observation range requirements, observation load requirements, etc., to ensure satellite safety within 30 minutes. Only one emergency observation application is accepted. The system combines user observation requirements and analyzed observation tasks with load observation task schedule templates and satellite platform task schedule information, and according to predetermined judgment rules such as task priority, comprehensively conducts conflict analysis, and automatically eliminates flywheels within the total observation time range During the maintenance period of satellite platforms such as unloading, sun avoidance, and orbit control, rationalized analysis results are fed back to the client. If the analytical results of the satellite-earth system cannot meet the observation requirements, it will refuse to implement the observation change and notify the user of the observation requirements. If it is satisfied, it will match one of the observation modes such as the optimal scanning observation mode, calibration mode, positioning observation mode, and high-frequency observation mode.
接收当日新卫星观测任务时间表、下一日新卫星观测任务时间表,自动解析新卫星观测任务模板新观测目标参数、新单位观测时间参数、新总观测时间参数、新观测目标起始观测时间参数、新观测目标结束观测时间参数、新观测地面位置经纬度参数、新观测太空区域参数和新观测频次参数,并生成地面应用系统新观测模式任务运行计划、新观测模式数据传输计划、新观测模式产品分发计划,新观测模式产品广播任务时间表,以实现地面应用系统观测模式的控制切换,可以实现卫星15分钟以及地面系统30分钟将观测模式调整完毕。Receive the new satellite observation task schedule for the current day and the new satellite observation task schedule for the next day, and automatically analyze the new observation target parameters, new unit observation time parameters, new total observation time parameters, and new observation target start observation time of the new satellite observation task template Parameters, new observation target end observation time parameters, new observation ground position latitude and longitude parameters, new observation space area parameters and new observation frequency parameters, and generate ground application system new observation mode task operation plan, new observation mode data transmission plan, new observation mode The product distribution plan, the new observation mode product broadcast task schedule, to realize the control switching of the observation mode of the ground application system, and the observation mode can be adjusted within 15 minutes for the satellite and 30 minutes for the ground system.
第二方面,一种自动化观测模式切换系统,包括:In the second aspect, an automatic observation mode switching system includes:
获取模块,用于获取气象用户的卫星观测需求,并根据卫星观测需求生成对应的卫星观测数据;The acquisition module is used to obtain the satellite observation requirements of meteorological users, and generate corresponding satellite observation data according to the satellite observation requirements;
生成模块,用于接收并解析所述获取模块发送的卫星观测数据,并针对不同的卫星观测数据生成与卫星观测数据相匹配的卫星观测参数;A generation module, configured to receive and analyze the satellite observation data sent by the acquisition module, and generate satellite observation parameters matching the satellite observation data for different satellite observation data;
第一更新模块,用于接收并解析生成模块发送的卫星观测参数,并分别智能生成当日及下一日新卫星观测任务时间表、新卫星观测任务模板;The first update module is used to receive and analyze the satellite observation parameters sent by the generation module, and intelligently generate a new satellite observation task schedule and a new satellite observation task template for the current day and the next day respectively;
切换模块,用于自动接收新卫星观测任务时间表、下一日新卫星观测任务时间表,并生成当日及下一日新卫星遥控指令链;The switching module is used to automatically receive the new satellite observation task schedule and the next day's new satellite observation task schedule, and generate a new satellite remote control command chain for the current day and the next day;
控制模块,用于接收当日及下一日新卫星遥控指令链,并恢复某载荷观测任务和指令上注,以实现地面应用系统观测模式的智能控制切换。The control module is used to receive the new satellite remote control command chain of the current day and the next day, and restore a certain payload observation task and command note, so as to realize the intelligent control switching of the observation mode of the ground application system.
在上述任一方案中优选的实施例中,所述的自动化观测模式切换系统,还包括:In a preferred embodiment of any of the above schemes, the automatic observation mode switching system further includes:
第二更新模块,用于接收当日新卫星观测任务时间表、下一日新卫星观测任务时间表,自动解析新卫星观测任务模板新观测目标参数、新单位观测时间参数、新总观测时间参数、新观测目标起始观测时间参数、新观测目标结束观测时间参数、新观测地面位置经纬度参数、新观测太空区域参数和新观测频次参数,并生成地面应用系统新观测模式任务运行计划、新观测模式数据传输计划、新观测模式产品分发计划,新观测模式产品广播任务时间表,以实现地面应用系统观测模式的控制切换,其中,卫星在和对地观测模式主要分为四种:扫描观测模式、定标模式、定位观测模式和高频观测模式,其中:The second update module is used to receive the new satellite observation task schedule for the current day and the new satellite observation task schedule for the next day, and automatically analyze the new satellite observation task template new observation target parameters, new unit observation time parameters, new total observation time parameters, New observation target start observation time parameters, new observation target end observation time parameters, new observation ground position latitude and longitude parameters, new observation space area parameters and new observation frequency parameters, and generate ground application system new observation mode task operation plan, new observation mode Data transmission plan, new observation mode product distribution plan, and new observation mode product broadcast task schedule to realize the control switching of ground application system observation modes. Among them, satellite on-site and earth observation modes are mainly divided into four types: scanning observation mode, Calibration mode, positioning observation mode and high-frequency observation mode, among which:
扫描观测模式包括地球全圆盘常规成像,中国区域常规成像,区域常规成像,南半球成像,北半球成像,月球成像,定标观测模式包括:黑体定标,漫反射板定标、红外背景获取和恒星敏感,定位观测模式包括:地基激光观测和地标观测,高频观测模式:区域高频观测。Scanning observation modes include conventional imaging of the full disk of the earth, conventional imaging of the Chinese region, regional conventional imaging, southern hemisphere imaging, northern hemisphere imaging, and lunar imaging. Calibration observation modes include: black body calibration, diffuse reflection plate calibration, infrared background acquisition and stellar Sensitive, positioning observation modes include: ground-based laser observation and landmark observation, high-frequency observation mode: regional high-frequency observation.
详细的工作模式为:The detailed working mode is:
地球全圆盘常规成像:观测范围约21°EW×17.6°NS,有效图像范围为17.6°EW×17.6°NS,观测时间约13分钟,按常规扫描方式完成对地球全圆盘的观测。Conventional imaging of the full disk of the earth: the observation range is about 21°EW×17.6°NS, the effective image range is 17.6°EW×17.6°NS, and the observation time is about 13 minutes. The observation of the full disk of the earth is completed according to the conventional scanning method.
区域成像,包括南北半球、中国常规区域、区域常规成像:按常规扫描方式完成对指定区域的观测。观测位置和区域大小任意可选,区域观测重复次数可调。最小观测区域1000km×1000km;月球成像:按常规扫描模式完成对月球的观测;恒星敏感:恒星敏感范围23°EW×21°NS,具有观测亮度为B0级六等恒星的能力;黑体定标:扫描镜指向星上黑体,进行黑体定标。驻留观测黑体时间2s;漫反射板定标:扫描镜指向漫反射板,漫反射板定标门展开,进行漫反射定标;地基激光观测:扫描镜指向地球地基激光发射位置,进行地基激光定位观测;地标观测:扫描镜指向地球特定地标位置,例如渤海湾、孟加拉湾等,进行地标定位观测;区域高频观测:针对地球某固定区域进行1min周期内的连续观测。Regional imaging, including the northern and southern hemispheres, China's conventional regions, and regional conventional imaging: Observations of designated areas are completed in a conventional scanning manner. The observation position and area size are optional, and the number of repetitions of area observation is adjustable. The minimum observation area is 1000km×1000km; lunar imaging: complete the observation of the moon according to the conventional scanning mode; stellar sensitivity: the stellar sensitivity range is 23°EW×21°NS, and has the ability to observe stars whose brightness is B0-level sixth-magnitude; blackbody calibration: The scanning mirror points to the blackbody on the star for blackbody calibration. Dwell and observe the blackbody for 2s; diffuse reflection plate calibration: the scanning mirror points to the diffuse reflection plate, the diffuse reflection plate calibration door is opened, and diffuse reflection calibration is performed; ground-based laser observation: the scanning mirror points to the earth’s ground-based laser emission position, and the ground-based laser Positioning observation; landmark observation: the scanning mirror points to a specific landmark position on the earth, such as the Bohai Bay, the Bay of Bengal, etc., for landmark positioning observation; regional high-frequency observation: continuous observation within a period of 1 minute for a fixed area of the earth.
第三方面,一种自动化观测模式切换设备,包括:In the third aspect, an automatic observation mode switching device includes:
一个或多个处理器;one or more processors;
存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现所述的自动化观测模式切换方法。The storage device is used to store one or more programs, and when the one or more programs are executed by the one or more processors, the one or more processors implement the automatic observation mode switching method.
第四方面,一种计算机可读存储介质,所述计算机可读存储介质中存储有程序,该程序被处理器执行时实现所述的自动化观测模式切换方法。In a fourth aspect, a computer-readable storage medium stores a program in the computer-readable storage medium, and when the program is executed by a processor, the automatic observation mode switching method is implemented.
与现有技术相比,本申请具有以下有益效果。Compared with the prior art, the present application has the following beneficial effects.
通过根据当日及下一日新卫星遥控指令链,恢复某载荷观测任务和指令上注,以实现地面应用系统观测模式的智能控制切换,当维护人员使用本发明时,可以一键式实现星地全业务系统的观测模式切换,不仅有效降低人工工作量,减少操作失误风险性,提高业务可靠性,同时还可以缩短应急响应时间。According to the new satellite remote control command chain of the current day and the next day, a certain load observation task and command note are restored to realize the intelligent control switching of the observation mode of the ground application system. When the maintenance personnel use the present invention, they can realize satellite-ground The observation mode switching of the whole business system not only effectively reduces the manual workload, reduces the risk of operation errors, improves business reliability, but also shortens the emergency response time.
下面结合附图对本发明的具体实施方式作进一步详细的描述。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings.
附图说明Description of drawings
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。后文将参照附图以示例性而非限制性的方式详细描述本申请的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分,本领域技术人员应该理解的是,这些附图未必是按比例绘制的,在附图中:The drawings described here are used to provide a further understanding of the application and constitute a part of the application. The schematic embodiments and descriptions of the application are used to explain the application and do not constitute an improper limitation to the application. Hereinafter, some specific embodiments of the present application will be described in detail with reference to the accompanying drawings in an exemplary rather than restrictive manner. The same reference numerals in the drawings indicate the same or similar parts or parts, and those skilled in the art should understand that these drawings are not necessarily drawn to scale. In the drawings:
图1为本申请实施例自动化观测模式切换发方法流程示意图。Fig. 1 is a schematic flow chart of the automatic observation mode switching and sending method according to the embodiment of the present application.
图2为本申请实施例自动化观测模式切换系统示意图。Fig. 2 is a schematic diagram of an automatic observation mode switching system according to an embodiment of the present application.
图3为本申请实施例自动化观测模式切换设备示意图。Fig. 3 is a schematic diagram of an automatic observation mode switching device according to an embodiment of the present application.
需要说明的是,这些附图和文字描述并不旨在以任何方式限制本发明的构思范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。It should be noted that these drawings and text descriptions are not intended to limit the concept scope of the present invention in any way, but illustrate the concept of the present invention for those skilled in the art by referring to specific embodiments.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。In order to enable those skilled in the art to better understand the solutions of the present application, the technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Apparently, the described embodiments are only some of the embodiments of the present application, not all of them. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the scope of protection of this application.
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。It should be noted that the terms "first" and "second" are only used for descriptive purposes, and should not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the present application, "plurality" means two or more, unless otherwise specifically defined.
本申请下述实施例以自动化观测模式切换系统为例进行详细说明本申请的方案,但是此实施例并不能限制本申请保护范围。The following embodiments of the present application take the automatic observation mode switching system as an example to describe the solution of the present application in detail, but this embodiment cannot limit the scope of protection of the present application.
实施例Example
如图1所示,本发明提供了一种自动化观测模式切换系统,所述切换方法,包括以下步骤:As shown in Figure 1, the present invention provides a kind of automatic observation mode switching system, described switching method, comprises the following steps:
步骤1:获取气象用户的卫星观测需求,并根据卫星观测需求生成对应的卫星观测数据。Step 1: Obtain the satellite observation requirements of meteorological users, and generate corresponding satellite observation data according to the satellite observation requirements.
在本发明实施例中,获取模块获取气象用户的卫星观测需求,所述卫星观测需求包括观测目标需求、单位观测时间需求、总观测时间需求、观测目标起始观测时间需求、观测目标结束观测时间需求、观测地面位置经纬度需求、观测太空区域需求和观测频次需求,并自动生成观测目标数据、单位观测时间数据、总观测时间数据、观测目标起始观测时间数据、观测目标结束观测时间数据、观测地面位置经纬度数据、观测太空区域数据和观测频次数据,然后再自动发送至观测模式控制平台。In the embodiment of the present invention, the acquisition module acquires satellite observation requirements of meteorological users, and the satellite observation requirements include observation target requirements, unit observation time requirements, total observation time requirements, observation target start observation time requirements, and observation target end observation time requirements requirements, observation ground location latitude and longitude requirements, observation space area requirements, and observation frequency requirements, and automatically generate observation target data, unit observation time data, total observation time data, observation target start observation time data, observation target end observation time data, observation The ground position latitude and longitude data, observation space area data and observation frequency data are then automatically sent to the observation mode control platform.
其中,观测模式控制平台针对气象用户需求,气象卫星的载荷观测模式由常规观测模式切换至应急观测模式、定位观测模式、定标观测模式、跃频观测模式和月球观测等观测模式,为观测目标变更所造成的观测模式变更需求进行处理及解析,针对观测目标的观测目标数据、单位观测时间数据、总观测时间数据、观测目标起始观测时间数据、观测目标结束观测时间数据、观测地面位置经纬度数据、观测太空区域数据和观测频次数据,并将观测目标参数、单位观测时间参数、总观测时间参数、观测目标起始观测时间参数、观测目标结束观测时间参数、观测地面位置经纬度参数、观测太空区域参数、观测频次参数等需求参数匹配至满足用户需求的新观测任务时间表中,新观测任务时间表自动发送至卫星观测任务切换分系统,其中,卫星任务时间表是驱动地面应用系统的核心文件之一,主要用于生成控制卫星所有动作的指令。地面应用系统所有的分系统根据卫星任务时间表驱动作业,完成卫星数据的接收,处理,产品生成,存档,分发,广播等任务。所以卫星任务时间表需要分成2部分来处理,一部分由地面应用系统观测模式切换分系统生成指令控制卫星,一部分由地面观测模式更新分系统下发至各地面系统用于后续数据处理。Among them, the observation mode control platform is aimed at the needs of meteorological users. The load observation mode of the meteorological satellite is switched from the conventional observation mode to the emergency observation mode, the positioning observation mode, the calibration observation mode, the frequency jump observation mode and the moon observation mode. Process and analyze the observation mode change requirements caused by the change, for the observation target data, unit observation time data, total observation time data, observation target start observation time data, observation target end observation time data, observation ground position latitude and longitude Data, observation space area data and observation frequency data, and the observation target parameters, unit observation time parameters, total observation time parameters, observation target start observation time parameters, observation target end observation time parameters, observation ground position latitude and longitude parameters, observation space Required parameters such as regional parameters and observation frequency parameters are matched to the new observation task schedule that meets user needs, and the new observation task schedule is automatically sent to the satellite observation task switching subsystem. Among them, the satellite task schedule is the core that drives the ground application system One of the files, which is mainly used to generate commands to control all actions of the satellite. All subsystems of the ground application system drive operations according to the satellite mission schedule to complete satellite data reception, processing, product generation, archiving, distribution, broadcasting and other tasks. Therefore, the satellite task schedule needs to be divided into two parts for processing, one part is generated by the observation mode switching subsystem of the ground application system to control the satellite, and the other part is sent by the ground observation mode update subsystem to each ground system for subsequent data processing.
步骤2:根据所述卫星观测数据,并针对不同的卫星观测数据生成与卫星观测数据相匹配的卫星观测参数。Step 2: According to the satellite observation data, generate satellite observation parameters matching with the satellite observation data for different satellite observation data.
在本发明实施例中,智能地面应用系统观测模式生成模块自动接收并解析观测目标数据、单位观测时间数据、总观测时间数据、观测目标起始观测时间数据、观测目标结束观测时间数据、观测地面位置经纬度数据、观测太空区域数据和观测频次数据,针对不同观测目标、观测区域、观测时间、观测频次,智能匹配应急观测模式、定位观测模式、定标观测模式、跃频观测模式、月球观测等观测模式,生成与相应新观测模式及观测任务时间表格式相互匹配的新观测目标参数、新单位观测时间参数、新总观测时间参数、新观测目标起始观测时间参数、新观测目标结束观测时间参数、新观测地面位置经纬度参数、新观测太空区域参数、新观测频次参数。In the embodiment of the present invention, the observation mode generation module of the intelligent ground application system automatically receives and analyzes the observation target data, the unit observation time data, the total observation time data, the observation target start observation time data, the observation target end observation time data, the observation ground Position latitude and longitude data, observation space area data and observation frequency data, intelligently match emergency observation mode, positioning observation mode, calibration observation mode, frequency jump observation mode, lunar observation, etc. for different observation targets, observation areas, observation time, and observation frequency Observation mode, generate new observation target parameters, new unit observation time parameters, new total observation time parameters, new observation target start observation time parameters, new observation target end observation time that match the corresponding new observation mode and observation task schedule format parameters, new observation ground position latitude and longitude parameters, new observation space area parameters, new observation frequency parameters.
其中,智能地面应用系统观测模式生成模块自动将新观测目标参数、新单位观测时间参数、新总观测时间参数、新观测目标起始观测时间参数、新观测目标结束观测时间参数、新观测地面位置经纬度参数、新观测太空区域参数、新观测频次参数发送至第一更新模块。Among them, the observation mode generation module of the intelligent ground application system automatically converts the parameters of the new observation target, the new unit observation time parameter, the new total observation time parameter, the new observation target start observation time parameter, the new observation target end observation time parameter, the new observation ground position The latitude and longitude parameters, new observation space area parameters, and new observation frequency parameters are sent to the first update module.
步骤3:根据所述卫星观测参数分别智能生成当日及下一日新卫星观测任务时间表、新卫星观测任务模板。Step 3: Intelligently generate a new satellite observation task schedule and a new satellite observation task template for the current day and the next day according to the satellite observation parameters.
在本发明实施例中,所述第一更新模块自动接收并解析新观测目标参数、新单位观测时间参数、新总观测时间参数、新观测目标起始观测时间参数、新观测目标结束观测时间参数、新观测地面位置经纬度参数、新观测太空区域参数和新观测频次参数,分别智能生成当日新卫星观测任务时间表和新卫星观测任务模板;所述第一更新模块自动解析新卫星观测任务模板新观测目标参数、新单位观测时间参数、新总观测时间参数、新观测目标起始观测时间参数、新观测目标结束观测时间参数、新观测地面位置经纬度参数、新观测太空区域参数、新观测频次参数,智能生成下一日卫星观测任务时间表。In the embodiment of the present invention, the first update module automatically receives and analyzes new observation target parameters, new unit observation time parameters, new total observation time parameters, new observation target start observation time parameters, new observation target end observation time parameters , newly observed ground position latitude and longitude parameters, newly observed space area parameters and new observed frequency parameters, intelligently generate a new satellite observation task schedule and a new satellite observation task template for the day respectively; the first update module automatically parses the new satellite observation task template new Observation target parameters, new unit observation time parameters, new total observation time parameters, new observation target start observation time parameters, new observation target end observation time parameters, new observation ground position latitude and longitude parameters, new observation space area parameters, new observation frequency parameters , intelligently generate the satellite observation task schedule for the next day.
步骤4:根据所述当日及下一日新卫星观测任务时间表、新卫星观测任务模板,生成当日及下一日新卫星遥控指令链。Step 4: According to the new satellite observation task schedule for the current day and the next day, and the new satellite observation task template, generate a new satellite remote control command chain for the current day and the next day.
在本发明实施例中,切换模块自动接收新卫星观测任务时间表、下一日新卫星观测任务时间表,自动解析新卫星观测任务时间表新观测目标参数、新单位观测时间参数、新总观测时间参数、新观测目标起始观测时间参数、新观测目标结束观测时间参数、新观测地面位置经纬度参数、新观测太空区域参数、新观测频次参数,智能生成当日新卫星观测遥控指令链、下一日新卫星观测观测遥控指令链。In the embodiment of the present invention, the switching module automatically receives the new satellite observation task schedule and the next day's new satellite observation task schedule, and automatically analyzes the new satellite observation task schedule, new observation target parameters, new unit observation time parameters, new total observation Time parameter, start observation time parameter of new observation target, end observation time parameter of new observation target, longitude and latitude parameter of new observation ground position, new observation space area parameter, new observation frequency parameter, intelligently generate new satellite observation remote control command chain of the day, next Nissin Satellite Observation Observation Remote Control Command Chain.
其中,地面观测模式更新分系统解析新观测任务时间表,自动更新生成新的测控任务时间表,用于控制地面各系统设备配合启用或关闭对应地面设备接收和处理卫星下行数据或卫星平台任务;更新产品生成时间表,用于地面各系统按照新的时间安排及观测任务安排准时、准确传输及处理卫星各载荷下行数据,按时生成卫星数据产品;更新广播任务时间表,用于广播平台按时准时、准确广播传输卫星数据产品并自动分发至地面调度更新分系统,,这一部分属于即时当日更新;Among them, the ground observation mode update subsystem analyzes the new observation task schedule, automatically updates and generates a new measurement and control task schedule, which is used to control the coordination of various ground system equipment to enable or disable the corresponding ground equipment to receive and process satellite downlink data or satellite platform tasks; Update the product generation schedule, which is used for the punctual and accurate transmission and processing of satellite payload downlink data by ground systems according to the new schedule and observation task arrangement, and generate satellite data products on time; update the broadcast task schedule, which is used for the broadcast platform to be on time , Accurately broadcast and transmit satellite data products and automatically distribute them to the ground dispatching update subsystem, this part belongs to instant update on the same day;
地面调度更新分系统将新的测控任务时间表,产品生成时间表,广播任务时间表进行解析,自动生成新的任务运行计划、数据传输计划、产品分发计划,这一部分与上一段属于接续作用,用于下一日及以后使用,类似于上一段是地面的时间表,这一部分是地面的模板。The ground dispatch update subsystem analyzes the new measurement and control task schedule, product generation schedule, and broadcast task schedule, and automatically generates a new task operation plan, data transmission plan, and product distribution plan. This part is a continuation of the previous paragraph. For the next day and future use, similar to the previous section is the timetable for the ground, this part is the template for the ground.
步骤5:根据所述当日及下一日新卫星遥控指令链,恢复某载荷观测任务和指令上注,以实现地面应用系统观测模式的智能控制切换。Step 5: According to the new satellite remote control command chain of the current day and the next day, restore a certain load observation task and command note, so as to realize the intelligent control switching of the observation mode of the ground application system.
在本发明实施例中,控制模块自动接收当日及下一日新卫星遥控指令链,由于卫星指令提前2小时上注,为实现快速响应,需要首先暂停卫星观测,自动清除卫星平台已上注指令,由于原指令已经停止上注,所以系统自动判断为指令未发送状态,此时需线重置未发送状态至指令待发送状态,先进行这个动作是为了指令生成后马上开始进行上注,从而避免大量指令堵塞系统,进而采用当日及下一日新卫星遥控指令链,智能恢复某载荷观测任务,恢复指令上注,最终实现地面应用系统观测模式的智能控制切换,控制模块控制卫星实现新观测模式观测,既可以修改一个卫星中一个载荷的观测模式,也可以同时切换一个卫星多个载荷观测模式,也可以依次切换多颗卫星多个载荷的观测模式。In the embodiment of the present invention, the control module automatically receives the new satellite remote control command chain of the current day and the next day. Since the satellite command is added 2 hours in advance, in order to achieve a quick response, it is necessary to first suspend the satellite observation and automatically clear the satellite platform. , because the original command has stopped placing bets, the system automatically judges that the command has not been sent. At this time, the line needs to reset the unsent state to the command to be sent state. This action is performed first to start placing bets immediately after the command is generated, so that Avoid a large number of commands from clogging the system, and then use the new satellite remote control command chain on the same day and the next day to intelligently restore a certain load observation task, restore command annotations, and finally realize the intelligent control switching of the observation mode of the ground application system, and the control module controls the satellite to achieve new observations Mode observation can not only modify the observation mode of one payload in one satellite, but also switch the observation modes of multiple payloads of one satellite at the same time, or switch the observation modes of multiple payloads of multiple satellites in sequence.
步骤6:接收当日新卫星观测任务时间表、下一日新卫星观测任务时间表,自动解析新卫星观测任务模板新观测目标参数、新单位观测时间参数、新总观测时间参数、新观测目标起始观测时间参数、新观测目标结束观测时间参数、新观测地面位置经纬度参数、新观测太空区域参数和新观测频次参数,并生成地面应用系统新观测模式任务运行计划、新观测模式数据传输计划、新观测模式产品分发计划,新观测模式产品广播任务时间表,以实现地面应用系统观测模式的控制切换。Step 6: Receive the new satellite observation task schedule for the current day and the new satellite observation task schedule for the next day, and automatically analyze the new observation target parameters, new unit observation time parameters, new total observation time parameters, and new observation target start parameters of the new satellite observation task template. Observation start time parameters, new observation target end observation time parameters, new observation ground position latitude and longitude parameters, new observation space area parameters, and new observation frequency parameters, and generate new observation mode task operation plans for ground application systems, new observation mode data transmission plans, The new observation mode product distribution plan, the new observation mode product broadcast task schedule, in order to realize the control switching of the observation mode of the ground application system.
如图2所示,一种自动化观测模式切换系统,包括:As shown in Figure 2, an automatic observation mode switching system includes:
获取模块,用于获取气象用户的卫星观测需求,并根据卫星观测需求生成对应的卫星观测数据;The acquisition module is used to obtain the satellite observation requirements of meteorological users, and generate corresponding satellite observation data according to the satellite observation requirements;
生成模块,用于接收并解析所述获取模块发送的卫星观测数据,并针对不同的卫星观测数据生成与卫星观测数据相匹配的卫星观测参数;A generation module, configured to receive and analyze the satellite observation data sent by the acquisition module, and generate satellite observation parameters matching the satellite observation data for different satellite observation data;
第一更新模块,用于接收并解析生成模块发送的卫星观测参数,并分别智能生成当日及下一日新卫星观测任务时间表、新卫星观测任务模板;The first update module is used to receive and analyze the satellite observation parameters sent by the generation module, and intelligently generate a new satellite observation task schedule and a new satellite observation task template for the current day and the next day respectively;
切换模块,用于自动接收新卫星观测任务时间表、下一日新卫星观测任务时间表,并生成当日及下一日新卫星遥控指令链;The switching module is used to automatically receive the new satellite observation task schedule and the next day's new satellite observation task schedule, and generate a new satellite remote control command chain for the current day and the next day;
控制模块,用于接收当日及下一日新卫星遥控指令链,并恢复某载荷观测任务和指令上注,以实现地面应用系统观测模式的智能控制切换。The control module is used to receive the new satellite remote control command chain of the current day and the next day, and restore a certain payload observation task and command note, so as to realize the intelligent control switching of the observation mode of the ground application system.
在本发明实施例中,所述的自动化观测模式切换系统,还包括:In an embodiment of the present invention, the automatic observation mode switching system further includes:
第二更新模块,用于接收当日新卫星观测任务时间表、下一日新卫星观测任务时间表,自动解析新卫星观测任务模板新观测目标参数、新单位观测时间参数、新总观测时间参数、新观测目标起始观测时间参数、新观测目标结束观测时间参数、新观测地面位置经纬度参数、新观测太空区域参数和新观测频次参数,并生成地面应用系统新观测模式任务运行计划、新观测模式数据传输计划、新观测模式产品分发计划,新观测模式产品广播任务时间表,以实现地面应用系统观测模式的控制切换。The second update module is used to receive the new satellite observation task schedule for the current day and the new satellite observation task schedule for the next day, and automatically analyze the new satellite observation task template new observation target parameters, new unit observation time parameters, new total observation time parameters, New observation target start observation time parameters, new observation target end observation time parameters, new observation ground position latitude and longitude parameters, new observation space area parameters and new observation frequency parameters, and generate ground application system new observation mode task operation plan, new observation mode Data transmission plan, new observation mode product distribution plan, and new observation mode product broadcast task schedule to realize the control switching of ground application system observation mode.
在本发明实施例中,为了实现实时获取卫星的状态,因此本发明包括观测需求交互分析子系统,观测需求交互分析子系统作用是汇总卫星工作状态信息、卫星控制需求和来自多星系统指挥平台的单一载荷观测需求和多星多载荷同步观测需求,分解出不同载荷的观测模式、观测区域、观测时间等信息,结合卫星工作状态和卫星管理需求信息作为限制条件。对以上信息进行汇总分析,为进一步生成任务时间表提供依据。具体的功能要求如下:In the embodiment of the present invention, in order to obtain the status of satellites in real time, the present invention includes an interactive analysis subsystem for observation requirements. Observation requirements for a single payload and multi-satellite multi-load synchronous observation requirements, decompose the observation mode, observation area, observation time and other information of different payloads, and combine satellite working status and satellite management requirements information as constraints. Summarize and analyze the above information to provide a basis for further generation of task schedules. The specific functional requirements are as follows:
1)卫星工作状态分析模块:获取卫星平台及载荷状态信息和特殊事件预报信息,对卫星状态信息和特殊事件信息进行分析,确定影响地面应用系统任务管理的卫星工作状态,生成“卫星工作状态分析结果”文件。1) Satellite working status analysis module: obtain satellite platform and load status information and special event forecast information, analyze satellite status information and special event information, determine satellite working status that affects task management of ground application systems, and generate "satellite working status analysis Result" file.
2)卫星控制需求汇总模块:汇总MCS记录的来自卫星研制方、地面应用系统、地面测控系统的卫星控制管理需求信息,生成“卫星控制管理需求汇总表”。2) Satellite control demand summary module: summarize the satellite control management demand information recorded by the MCS from the satellite developer, ground application system, and ground measurement and control system, and generate a "satellite control management demand summary table".
3)卫星平台管理需求分析模块:根据卫星工作状态和卫星控制管理汇总结果,对卫星状态信息、特殊事件信息、卫星控制信息进行分析,生成“卫星平台任务需求汇总表”,作为“卫星平台管理任务生成子系统”进一步生成“卫星管理任务时间表”的依据。3) Satellite platform management demand analysis module: According to satellite working status and satellite control management summary results, analyze satellite status information, special event information, and satellite control information, and generate a "satellite platform task demand summary table" as a "satellite platform management Task generation subsystem" further generates the basis for "satellite management task schedule".
4)成像仪观测需求汇总分析模块:根据内外部用户的成像仪单载荷观测需求和多载荷同步观测需求申请进行汇总并转换为成像仪观测任务,作为“成像仪任务需求汇总表生成子功能”进一步生成“成像仪任务需求汇总表”的依据。4) Imager observation requirements summary analysis module: According to the application of internal and external users' imager single-load observation requirements and multi-load simultaneous observation requirements, it is summarized and converted into imager observation tasks, as the "imager task requirement summary table generation sub-function" The basis for further generating the "summary of imager task requirements".
5)探测仪观测需求汇总分析模块:根据内外部用户的探测仪单载荷观测需求和多载荷同步观测需求申请进行汇总并转换为探测仪观测任务,作为“探测仪任务需求汇总表生成子功能”进一步生成“探测仪任务需求汇总表”的依据。5) Detector observation requirements summary analysis module: According to the internal and external users' detector single-load observation requirements and multi-load synchronous observation requirements applications, summarize and convert them into detector observation tasks, as a "detector task requirement summary table generation sub-function" The basis for further generating the "Summary of Detector Task Requirements".
6)闪电仪观测需求汇总分析模块:根据内外部用户的闪电仪单载荷观测需求和多载荷同步观测需求申请进行汇总并转换为闪电仪观测任务,作为“闪电仪任务需求汇总表生成子功能”进一步生成“闪电仪任务需求汇总表”的依据。6) Lightning meter observation requirements summary analysis module: According to the internal and external users' lightning meter single-load observation requirements and multi-load synchronous observation requirements applications, summarize and convert them into lightning meter observation tasks, as a "lightning meter task requirement summary table generation sub-function" The basis for further generating the "Summary of Lightning Instrument Task Requirements".
7)快速成像仪观测需求汇总分析模块:根据内外部用户的快速成像仪观测需求申请,汇总分析区域观测、台风跟踪观测、月球观测等信息,解析出观测模式、区域范围、观测时间和频次等信息,生成“快速成像仪任务需求汇总表”,作为“智能化快速成像仪观测任务生成子系统”进一步生成“快速成像仪任务时间表”的依据。7) Rapid imager observation demand summary analysis module: According to the application of internal and external users for fast imager observation requirements, summarize and analyze information such as regional observation, typhoon tracking observation, lunar observation, etc., and analyze the observation mode, area scope, observation time and frequency, etc. Information, generate a "rapid imager task requirement summary table", as the basis for the "intelligent rapid imager observation task generation subsystem" to further generate a "rapid imager task schedule".
当使用时,具体操作如下:When using, the specific operation is as follows:
FY-4B(风云四号B星)地面应用系统为了实现整个运行期间内观测模式的灵活调整,为各个载荷预设了业务观测模式库,当某载荷的业务观测模式发生切换时,MCS可通过以下流程实现对整个地面应用系统的业务观测模式切换调度控制。In order to realize the flexible adjustment of the observation mode during the whole operation period, the ground application system of FY-4B (Fengyun-4B) presets a business observation mode library for each load. When the business observation mode of a certain load is switched, the MCS can pass The following process realizes the switching and dispatching control of the operational observation mode of the entire ground application system.
1)用户登录智能控制平台,选择智能控制类型为业务观测模式切换流程,选择载荷及控制开始时间,从区域查找表库中智能匹配观测区域;1) The user logs in to the intelligent control platform, selects the intelligent control type as the business observation mode switching process, selects the load and control start time, and intelligently matches the observation area from the area lookup table library;
2)点击提交申请:根据选择的控制开始时间,将时间落在之后临近的整点/半点,点击立即提交:控制开始时间取当前时间10分钟之后第一个任务时间;2) Click to submit the application: According to the selected control start time, set the time at the next hour/half point, click Submit immediately: the control start time is the first task time 10 minutes after the current time;
3)智能控制管理将根据控制类型、切换开始时间,使用智能控制流程匹配算法为用户推荐出正确的控制流程,用户确认执行后,智能控制管理根据控制流程执行控制操作,记录操作状态,智能控制平台将用图形化的方式显示整个控制流程的执行状态;3) The intelligent control management will use the intelligent control process matching algorithm to recommend the correct control process for the user according to the control type and switching start time. The platform will graphically display the execution status of the entire control process;
4)当某载荷的业务观测模式需要在当前两个小时内进行切换时,控制流程最为复杂,需要完成下列各项操作:4) When the business observation mode of a load needs to be switched within the current two hours, the control process is the most complicated, and the following operations need to be completed:
a)发送测控管理命令“暂停某载荷测控”;a) Send the measurement and control management command "suspend the measurement and control of a certain load";
b)发送测控管理命令“清除某载荷星上指令”;b) Send the measurement and control management command "clear the command on a certain payload";
c)切换该载荷业务观测模式任务模板;c) switch the task template of the load business observation mode;
d)发送任务管理命令“更新并向NRS下发某载荷任务时间表”;d) Send a task management command "update and send a certain payload task schedule to NRS";
e)发送测控管理命令“重置未发送状态”e) Send the measurement and control management command "reset unsent status"
f)发送测控管理命令“更新某载荷测控计划”;f) Send the measurement and control management command "update a certain load measurement and control plan";
g)检查NRS指令参数文件是否更新;g) Check whether the NRS command parameter file is updated;
h)发送测控管理命令“恢复某载荷测控”;h) Send the measurement and control management command "resume measurement and control of a certain load";
i)发送任务管理命令“向CVS下发某载荷任务时间表”;i) Send a task management command "send a certain payload task schedule to the CVS";
j)发送任务管理命令“向PGS下发某载荷任务时间表”;j) Send a task management command "send a certain load task schedule to the PGS";
k)发送任务管理命令“更新并向各系统下发次日某载荷任务时间表”;k) Send a task management command "update and send a load task schedule for the next day to each system";
5)卫星测控调度管理接收测控管理命令,执行暂停现行测控、清除已经上注星上指令、更新新观测模式测控计划、恢复测控等一系列操作,然后等待NRS生成新的指令参数文件后恢复新观测模式的指令上注;5) Satellite measurement and control scheduling management receives measurement and control management commands, executes a series of operations such as suspending the current measurement and control, clearing the on-board instructions, updating the new observation mode measurement and control plan, and restoring measurement and control, and then waits for the NRS to generate a new command parameter file and resumes the new one. Note on the instruction of the observation mode;
6)MCS任务管理分系统收到任务管理命令后执行某载荷新观测模式任务时间表,下发流程增加某载荷新观测模式任务时间表,生成新观测模式任务时间表,并将新观测模式任务时间表下发到各个系统,同时发送“更新任务时间表”一级调度令通知各个系统切换新观测模式;生成新观测模式的观测时间表发送给DSS,广播时间表发送给DTS;6) After receiving the task management order, the MCS task management subsystem executes the task schedule of a new observation mode of a load, adds a task schedule of a new observation mode of a load to the delivery process, generates a task schedule of the new observation mode, and transfers the task schedule of the new observation mode The timetable is sent to each system, and at the same time, the "update task timetable" first-level dispatch order is sent to notify each system to switch to the new observation mode; the observation timetable of the new observation mode is generated and sent to DSS, and the broadcast timetable is sent to DTS;
7)MCS调度控制分系统该载荷的任务调度管理接收到“更新任务时间表”一级调度令,读取更新后的某载荷新观测模式任务时间表,更新本载荷新观测模式任务运行计划、各系统新观测模式关键作业执行计划、各系统新观测模式数据传输计划、新观测模式产品广播计划,加载各类新的计划并按新的计划进行新观测模式任务流程跟踪监视;将更新后的产品广播计划发送给DTS;7) The task scheduling management of the load in the MCS scheduling control subsystem receives the first-level scheduling order of "updating the task schedule", reads the updated task schedule of a new observation mode of a load, and updates the task operation plan of the new observation mode of the load, The key operation execution plan of the new observation mode of each system, the data transmission plan of the new observation mode of each system, and the product broadcast plan of the new observation mode, load various new plans and follow up the task process of the new observation mode according to the new plan; the updated Product Broadcast Schedule sent to DTS;
8)各技术系统在接收到“更新任务时间表”一级调度令后,解析更新后的载荷新观测模式任务时间表,更新该载荷的本系统新观测模式作业执行计划,并根据更新后的作业计划实现新的观测模式模式的数据接收、处理、分发等;8) After receiving the first-level scheduling order of "updating the task schedule", each technical system analyzes the updated task schedule of the new observation mode of the load, updates the execution plan of the new observation mode of the system for the load, and according to the updated The operation plan realizes the data reception, processing, distribution, etc. of the new observation mode;
9)MCS智能运行监视分系统将对切换后的业务观测模式进行全系统集中监视。9) The MCS intelligent operation monitoring subsystem will conduct centralized system-wide monitoring of the switched business observation mode.
图3为本发明实施例提供的一种自动化观测模式切换设备的结构示意图。图3示出了适于用来实现本发明实施方式的示例性自动化观测模式切换设备的框图。图3显示的自动化观测模式切换设备仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。Fig. 3 is a schematic structural diagram of an automatic observation mode switching device provided by an embodiment of the present invention. Fig. 3 shows a block diagram of an exemplary automated observation mode switching device suitable for implementing embodiments of the present invention. The automatic observation mode switching device shown in FIG. 3 is only an example, and should not impose any limitation on the functions and application scope of the embodiments of the present invention.
如图3所示,自动化观测模式切换设备以通用计算设备的形式表现。自动化观测模式切换设备的组件可以包括但不限于:一个或者多个处理器或者处理单元,存储器,连接不同系统组件(包括存储器和处理单元)的总线。As shown in Figure 3, the automated observation mode switching device is represented in the form of a general-purpose computing device. The components of the automatic observation mode switching device may include, but are not limited to: one or more processors or processing units, memory, and a bus connecting different system components (including memory and processing units).
总线表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(ISA)总线,微通道体系结构(MAC)总线,增强型ISA总线、视频电子标准协会(VESA)局域总线以及外围组件互连(PCI)总线。Bus refers to one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, a processor, or a local bus using any of a variety of bus structures. These architectures include, by way of example, but are not limited to Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MAC) bus, Enhanced ISA bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect ( PCI) bus.
自动化观测模式切换设备典型地包括多种计算机系统可读介质。这些介质可以是任何能够被自动化观测模式切换设备访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。An automated viewing mode switching device typically includes a variety of computer system readable media. These media can be any available media that can be accessed by the automated observation mode switching device, including volatile and non-volatile media, removable and non-removable media.
存储器可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(RAM)30和/或高速缓存存储器。自动化观测模式切换设备可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统可以用于读写不可移动的、非易失性磁介质(图3未显示,通常称为“硬盘驱动器”)。尽管图3中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如CD-ROM,DVD-ROM或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线相连。存储器可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本发明各实施例的功能。The memory may include computer system readable media in the form of volatile memory, such as random access memory (RAM) 30 and/or cache memory. The automatic observation mode switching device may further include other removable/non-removable, volatile/nonvolatile computer system storage media. By way of example only, the storage system may be used to read and write to non-removable, non-volatile magnetic media (not shown in Figure 3, commonly referred to as "hard drives"). Although not shown in FIG. 3, a disk drive for reading and writing to removable nonvolatile disks (e.g., "floppy disks") may be provided, as well as for removable nonvolatile optical disks (e.g., CD-ROM, DVD-ROM or other optical media) CD-ROM drive. In these cases, each drive can be connected to the bus via one or more data medium interfaces. The memory may include at least one program product having a set (eg, at least one) of program modules configured to perform the functions of various embodiments of the present invention.
具有一组(至少一个)程序模块的程序/实用工具,可以存储在例如存储器中,这样的程序模块包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块通常执行本发明所描述的实施例中的功能和/或方法。program/utility having a set (at least one) of program modules, such as stored in memory, such program modules including, but not limited to, an operating system, one or more application programs, other program modules, and program data, among these examples Each or some combination of these may include implementations of network environments. The program modules generally perform the functions and/or methodologies of the described embodiments of the invention.
自动化观测模式切换设备也可以与一个或多个外部设备(例如键盘、指向设备、显示器等)通信,还可与一个或者多个使得用户能与该自动化观测模式切换设备交互的设备通信,和/或与使得该自动化观测模式切换设备能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口进行。并且,自动化观测模式切换设备还可以通过网络适配器与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器通过总线与自动化观测模式切换设备的其它模块通信。应当明白,尽管图中未示出,可以结合自动化观测模式切换设备使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。The automatic observation mode switching device can also communicate with one or more external devices (such as keyboards, pointing devices, displays, etc.), and can also communicate with one or more devices that enable users to interact with the automatic observation mode switching device, and/ Or communicate with any device (eg, network card, modem, etc.) that enables the automated observation mode switching device to communicate with one or more other computing devices. Such communication may occur through input/output (I/O) interfaces. Moreover, the automatic observation mode switching device can also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN) and/or a public network such as the Internet) through a network adapter. As shown, the network adapter communicates with other modules of the automated observation mode switching device through a bus. It should be understood that although not shown in the figures, other hardware and/or software modules may be used in conjunction with the automated observation mode switching device, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, Tape drives and data backup storage systems, etc.
处理单元通过运行存储在存储器中的程序,从而执行各种功能应用以及数据处理,例如实现本发明任意实施例提供的堆叠分裂的处理方法。也即:获取气象用户的卫星观测需求,并根据卫星观测需求生成对应的卫星观测数据;根据所述卫星观测数据,并针对不同的卫星观测数据生成与卫星观测数据相匹配的卫星观测参数;根据所述卫星观测参数分别智能生成当日及下一日新卫星观测任务时间表、新卫星观测任务模板;根据所述当日及下一日新卫星观测任务时间表、新卫星观测任务模板,生成当日及下一日新卫星遥控指令链;根据所述当日及下一日新卫星遥控指令链,恢复某载荷观测任务和指令上注,以实现地面应用系统观测模式的智能控制切换。The processing unit executes various functional applications and data processing by running the program stored in the memory, for example, implements the stack split processing method provided by any embodiment of the present invention. That is to say: obtain the satellite observation requirements of meteorological users, and generate corresponding satellite observation data according to the satellite observation requirements; according to the satellite observation data, generate satellite observation parameters that match the satellite observation data for different satellite observation data; The satellite observation parameters intelligently generate a new satellite observation task schedule and a new satellite observation task template for the current day and the next day respectively; The next day's new satellite remote control command chain; according to the current day and next day's new satellite remote control command chain, restore a certain payload observation task and command note, so as to realize the intelligent control switching of the observation mode of the ground application system.
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有程序,该程序被处理器执行时实现如本发明任意实施例所述的堆叠分裂的处理方法,该方法包括:An embodiment of the present invention also provides a computer-readable storage medium, where a program is stored in the computer-readable storage medium, and when the program is executed by a processor, the method for processing stack splitting as described in any embodiment of the present invention is implemented. The method includes:
获取气象用户的卫星观测需求,并根据卫星观测需求生成对应的卫星观测数据;Obtain the satellite observation requirements of meteorological users, and generate corresponding satellite observation data according to the satellite observation requirements;
根据所述卫星观测数据,并针对不同的卫星观测数据生成与卫星观测数据相匹配的卫星观测参数;According to the satellite observation data, generating satellite observation parameters matching the satellite observation data for different satellite observation data;
根据所述卫星观测参数分别智能生成当日及下一日新卫星观测任务时间表、新卫星观测任务模板;Intelligently generate a new satellite observation task schedule and a new satellite observation task template for the current day and the next day according to the satellite observation parameters;
根据所述当日及下一日新卫星观测任务时间表、新卫星观测任务模板,生成当日及下一日新卫星遥控指令链;Generate new satellite remote control command chains for the current day and the next day according to the new satellite observation task schedule and the new satellite observation task template for the current day and the next day;
根据所述当日及下一日新卫星遥控指令链,恢复某载荷观测任务和指令上注,以实现地面应用系统观测模式的智能控制切换。According to the new satellite remote control command chain of the current day and the next day, restore a certain load observation task and command note, so as to realize the intelligent control switching of the observation mode of the ground application system.
本发明实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质,例如可以是,但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。The computer storage medium in the embodiments of the present invention may use any combination of one or more computer-readable media. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer-readable storage medium, for example, may be, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer readable storage media include: electrical connections with one or more leads, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above. In this document, a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。A computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for carrying out the operations of the present invention may be written in one or more programming languages, or combinations thereof, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. Where a remote computer is involved, the remote computer may be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., via an Internet connection using an Internet service provider). ).
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present application, and are not intended to limit it; although the application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the application. scope.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211267488.5A CN115629406A (en) | 2022-10-17 | 2022-10-17 | A method, system, device, and computer-readable storage medium for automatic observation mode switching |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211267488.5A CN115629406A (en) | 2022-10-17 | 2022-10-17 | A method, system, device, and computer-readable storage medium for automatic observation mode switching |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115629406A true CN115629406A (en) | 2023-01-20 |
Family
ID=84905196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211267488.5A Pending CN115629406A (en) | 2022-10-17 | 2022-10-17 | A method, system, device, and computer-readable storage medium for automatic observation mode switching |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115629406A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116148544A (en) * | 2023-04-04 | 2023-05-23 | 国家卫星气象中心(国家空间天气监测预警中心) | Satellite lightning imager lightning detection original pixel area automatic patrol system |
-
2022
- 2022-10-17 CN CN202211267488.5A patent/CN115629406A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116148544A (en) * | 2023-04-04 | 2023-05-23 | 国家卫星气象中心(国家空间天气监测预警中心) | Satellite lightning imager lightning detection original pixel area automatic patrol system |
CN116148544B (en) * | 2023-04-04 | 2023-06-23 | 国家卫星气象中心(国家空间天气监测预警中心) | Satellite lightning imager lightning detection original pixel area automatic patrol system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9519873B2 (en) | System and method for widespread low cost orbital satellite access | |
CN111191920A (en) | Large-scale ground resource scheduling method and device | |
US20080082222A1 (en) | Real-time concurrent processing system and method of telemetry data and simulated telemetry data | |
Balzer et al. | The HESS central data acquisition system | |
Han et al. | The automatic observation management system of the GWAC network. I. System architecture and workflow | |
CN113554262B (en) | Carbon satellite-ground integrated automatic control ground data system | |
CN116002087A (en) | A satellite on-orbit north-south turn measurement and control method, system, equipment and computer-readable storage medium | |
CN115629406A (en) | A method, system, device, and computer-readable storage medium for automatic observation mode switching | |
US12330820B2 (en) | Systems and methods for scalable and automated satellite fleet tasking and control | |
US20240267117A1 (en) | Systems and methods for automated prioritization of satellite activities | |
Steppa et al. | Updates on the transients handler of the Cherenkov Telescope Array Observatory | |
Wing et al. | Initial Implementation and Operational Use of TASAR in Alaska Airlines Flight Operations | |
Buck | Concept, Design, & Implementation of a Remote Vehicle Operations Center for Autonomous Missions | |
US20100161153A1 (en) | Method and apparatus for automatically determining stopover airports for flight planning | |
Rose et al. | The CYGNSS ground segment; innovative mission operations concepts to support a micro-satellite constellation | |
Saffle et al. | NEXRAD product improvement overview | |
Sindiy et al. | Lessons learned from optical payload for lasercomm science (OPALS) mission operations | |
US20200279492A1 (en) | Unified Data Management System for Unmanned Vehicles using Distributed Architecture | |
Gärtner et al. | A mobile and compact control center for quick decentral satellite access | |
Zender et al. | The Projects for Onboard Autonomy (PROBA2) Science Centre: Sun Watcher Using APS Detectors and Image Processing (SWAP) and Large-Yield Radiometer (LYRA) Science Operations and Data Products | |
CN116222513A (en) | Intelligent decision-making method, system, equipment and computer-readable storage medium for fast imager observation requirements | |
Sorensen et al. | Development of a comprehensive mission operations system designed to operate multiple small satellites | |
CN118134090B (en) | Complete interaction system for commercial aerospace field | |
KR100646856B1 (en) | Integrated Mission Analysis Plan Device and Method for Satellite Control | |
Royer et al. | Sagittarius a* small satellite mission: Capabilities and commissioning preview |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |