CN115612482A - 一种光-气协同变色材料及其合成方法和应用 - Google Patents

一种光-气协同变色材料及其合成方法和应用 Download PDF

Info

Publication number
CN115612482A
CN115612482A CN202211309809.3A CN202211309809A CN115612482A CN 115612482 A CN115612482 A CN 115612482A CN 202211309809 A CN202211309809 A CN 202211309809A CN 115612482 A CN115612482 A CN 115612482A
Authority
CN
China
Prior art keywords
color
gas
light
photo
changing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211309809.3A
Other languages
English (en)
Inventor
房文健
卢奇宏
上官文峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202211309809.3A priority Critical patent/CN115612482A/zh
Publication of CN115612482A publication Critical patent/CN115612482A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种光‑气协同变色材料及其合成方法和应用。利用酸溶液浸泡层状钙钛矿材料,通过离子置换,部分氢离子取代层状钙钛矿中的碱金属离子,在无氧条件下通过紫外光照射发生光致变色,而有氧光照条件下可以瞬间恢复原始颜色。相对于其它光致变色材料,其优点为:一是传统光致变色材料只响应紫外光产生变色,对材料所处的气氛环境没有要求;二是该光‑气协同变色材料变色效率极高,响应快,并且可逆;三是对于氧气极为敏感,有氧条件下光照瞬间恢复原来的颜色。基于这些特点,该新型光‑气协同变色材料可用于气密性检测,防伪标码、保险柜防盗、可见光光催化剂等用途。

Description

一种光-气协同变色材料及其合成方法和应用
技术领域
本发明涉及一种光-气协同变色材料及其合成方法和应用,属于光致变色和气致变色领域。
背景技术
光致变色材料(PC)是指化合物A在受到某一波长的光照时,可通过特定的化学反应生成结构和光谱性能不同的产物B,而在另一波长的光照或热的作用下,B又可逆地生成化合物 A 的现象。目前,光致变色材料被大量的研究,特别是集中在过度金属氧化物材料,通过对光致变色特性的研究,将其应用于汽车玻璃、激光印刷、显示器以及超高密度光信息存储及防伪辨伪等诸多行业。
气致变色材料(GC)在接触某些挥发性有机化合物后会发生颜色或发射率可逆的变化,由于其在化学传感器、发光二极管和环境监测仪等方面的广泛应用,近年来受到越来越多的关注。例如,当暴露在空气或无氧中时,一些气致变色材料可以分解气体分子并迅速恢复其原有的颜色。随着新型高稳定性蒸汽色体系统的发展,蒸汽色体材料在化学传感器和电子元件中得到更广泛的应用。
目前,光致变色材料和气致变色材料,只能单一的在光照或者气体存在下相应地发生颜色变化。传统光致变色材料只响应紫外光产生变色,对材料所处的气氛环境没有要求。另外,这些变色材料恢复的时间也比较长,普遍存在敏感度低和恢复原色时间较长等问题。
发明内容
为了解决上述现有技术存在的不足,本发明提供一种光-气协同致变色材料及其合成方法和应用,其中,在无氧条件下,该材料可在紫外光照射下迅速发生变色;而在氧气条件下进行光照,可瞬间变为原来颜色。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提出的一种光-气协同变色材料及其合成方法,利用酸溶液浸泡层状钙钛矿材料,通过离子置换,部分氢离子取代层状钙钛矿中的碱金属离子,包括以下步骤:
(1)将层状钙钛矿材料加入酸溶液中;
(2)恒温搅拌数天;
(3)离心洗涤;
(4)样品干燥。
较佳的,步骤(1)中,酸溶液为硝酸溶液或盐酸溶液,其浓度为1M~6M。
较佳的,步骤(1)中,层状钙钛矿材料需耐强酸,层状钙钛矿材料为K-Ca-Nb-O或Na-Ca-Nb-O材料。
较佳的,步骤(2)中,搅拌温度为20℃~80℃,搅拌时间为1天~1周。
较佳的,步骤(3)中,所述样品洗涤需要要用纯水和乙醇洗涤数次至PH=7。
较佳的,步骤(4)中,干燥温度为60℃~80℃,干燥时间不少于12h。
本发明还提供了上述光-气协同变色材料在光致变色和气致变色方面的用途。
较佳的,上述光-气协同变色材料的作为防伪材料的用途。
较佳的,上述光-气协同变色材料在真空密闭环境气密性排查中的用途。
较佳的,上述光-气协同变色材料在保险柜防盗中的用途。
较佳的,将所述光-气协同变色材料置于无氧环境中,经紫外光照射,发生光致变色;将变色样品暴露于空气中,恢复原色。
更佳的,将所述光-气协同变色材料置于无氧环境中,经紫外光照射,发生光致变色,可见光照射下不变色;将变色样品暴露于空气中,经光照(紫外光或可见光)可以瞬间恢复原色,无光照缓慢恢复原色。
更佳的,无氧环境为真空或者或其它不含氧的气氛。
本发明还提供了上述光-气协同变色材料作为可见光分解水制氢光催化剂的用途。
较佳的,该光-气协同变色材料在有氧环境下表现为白色只能吸收紫外光,经过无氧紫外光活化变成蓝色后,具有可见光吸收特性能够作为分解水制氢光催化剂。
与现有技术相比,本发明的优点是:一是传统光致变色材料只响应紫外光产生变色,对材料所处的气氛环境没有要求;二是该光-气协同变色材料变色效率极高,响应快,并且可逆;三是对于氧气极为敏感,有氧条件下光照瞬间恢复原来的颜色。与现有技术相比,实现了光-气协同变色。
附图说明
图1为本发明所述光-气协同变色材料的光-气协同变色过程。
图2 为本发明所述光-气协同变色材料的光-气协同致变色展示图。
图3 为本发明所述光-气协同变色材料经过无氧紫外照射后在可见光下分解水制氢的性能图。
具体实施方式
下面结合附图和实施例对本发明进行进一步阐述。
本发明的原理是:本申请通过将层状钙钛矿材料(K-Ca-Nb-O或Na-Ca-Nb-O)采用酸浸泡数天,其作用主要是把K-Ca-Nb-O或Na-Ca-Nb-O中的K或Na置换为H,这样层状钙钛矿材料的光电性能会提高很多,层状钙钛矿材料吸收光子后,激发出电子-空穴对,在无氧的环境下光生电子会将Nb还原为低价态,从而发生光致变色;而在有氧的环境下光生电子会优先与O2结合,所以不发生光致变色。结合图1,具体变色过程为:首先,该材料在有氧环境下光照(紫外光或可见光)不发生变色;其次,当该材料处于无氧环境下紫外光照,材料由白色变为蓝色;继而将变为蓝色的材料放入无氧无光照(或无氧可见光照)的环境下,保持蓝色不变;最后,将变为蓝色的材料暴露氧气在环境下,在光照(紫外光或可见光)恢复为白色。另外,该材料(不管变色前还是变色后)在无氧可见光光照下均不发生变色。
下面实施例中仅以KCa2Nb3O10层状钙钛矿材料作为代表,然其并非用以限定本发明的保护范围。
实施例1
一种新型光-气协同变色材料合成方法,过程如下:
(1)配制3M的硝酸溶液;(2)将层状钙钛矿材料KCa2Nb3O10(0.6g)加入硝酸溶液中;(3)40℃恒温搅拌3天;(4)用纯水和乙醇洗涤数次至PH=7;(5)放入烘箱60℃烘干24h;(6)回收样品,颜色为白色。光-气协同致变色性能如图2所示,把样品放入反应器后抽真空,放在太阳光下光照5秒变成蓝色;打开反应器使空气进入其中,瞬间变回白色。
实施例2
一种新型光-气协同变色材料应用方法,过程如下:
(1)配制3M的硝酸溶液;(2)将层状钙钛矿材料KCa2Nb3O10(0.6g)加入硝酸溶液中;(3)40℃恒温搅拌3天;(4)用纯水和乙醇洗涤数次至PH=7;(5)放入烘箱60℃烘干24h;(6)回收样品,颜色为白色。
将上述样品制作成薄膜附着在贴纸上。将贴纸贴在贵重物品保护罩内下层,保护罩内通入保护气排尽罩内空气,用紫外光灯照射贴纸,贴纸表面的产品薄膜变为蓝色;当保护罩气密性不好有空气进入后,贴纸由蓝色变为白色,表示工作人员需要检查展示品保护罩的气密性。
实施例3
一种新型光-气协同变色材料应用方法,过程如下:
(1)配制3M的硝酸溶液;(2)将层状钙钛矿材料KCa2Nb3O10(0.6g)加入硝酸溶液中;(3)40℃恒温搅拌3天;(4)用纯水和乙醇洗涤数次至PH=7;(5)放入烘箱60℃烘干24h;(6)回收样品,颜色为白色。
将上述样品制作成薄膜附着在贴纸上。将贴纸放入密封压缩袋中,放入保险柜内,保险柜内设置一紫外光源,只要保险柜非正常打开,就会触发紫外灯自动打开,贴纸瞬间变成蓝色,定期查看保险箱内贴纸便可以知道柜子是否被打开过。
实施例4
一种新型光-气协同变色材料应用方法,过程如下:
(1)配制3M的硝酸溶液;(2)将层状钙钛矿材料KCa2Nb3O10(0.6g)加入硝酸溶液中;(3)40℃恒温搅拌3天;(4)用纯水和乙醇洗涤数次至至PH=7;(5)放入烘箱60℃烘干24h;(6)回收样品,颜色为白色。
将P25粉体制备成薄膜覆盖在衬底(如:FTO、ITO玻璃)表面,再把上述样品粉体印刷成标码喷涂在P25材料表面,待覆盖平整后表面呈现纯白色;把密钥放入无氧环境后采用紫外光照射,表面的标码立刻显现为蓝色,暴露空气立马消失变成白色。
实施例5
一种新型光-气协同变色材料合成方法,过程如下:
(1)配制3M的硝酸溶液;(2)将层状钙钛矿材料KCa2Nb3O10(0.6g)加入硝酸溶液中;(3)40℃恒温搅拌3天;(4)用纯水和乙醇洗涤数次至PH=7;(5)放入烘箱60℃烘干24h;(6)回收样品,颜色为白色。
取0.2g上述样品和100mL去离子水放入光催化制氢反应器后抽真空,先在300W氙灯下全波段照射5分钟,待颜色变为蓝色后,再在氙灯上加上420nm截止滤光片(中教金源cutoff-420nm)滤掉紫外光,由于上述材料(不管变色前还是变色后)在无氧可见光光照下均不发生变色,所以在可见光照射下溶液颜色一直保持蓝色,可见光分解水制氢的性能如图3所示,可以看出这种光-气协同变色材料在有氧环境下表现为白色只能吸收紫外光,但在经过无氧紫外光活化变成蓝色后便具有了可见光吸收特性且能够满足分解水制氢的化学电位要求,实现可见光分解水制氢。

Claims (10)

1.一种光-气协同变色材料的合成方法,其特征在于,包括以下步骤:
(1)将层状钙钛矿材料加入酸溶液中;
(2)恒温搅拌数天;
(3)离心洗涤;
(4)样品干燥。
2.如权利要求1所述的方法,其特征在于,酸溶液为硝酸溶液或盐酸溶液,其浓度为1M~6M;层状钙钛矿材料为K-Ca-Nb-O或Na-Ca-Nb-O材料;搅拌温度为20℃~80℃,搅拌时间为1天~1周;干燥温度为60℃~80℃,干燥时间不少于12h。
3.如权利要求1或2所述的方法制备的光-气协同变色材料。
4.如权利要求1或2所述的方法制备的光-气协同变色材料在光致变色和气致变色方面的用途。
5.如权利要求4所述的用途,其特征在于,将所述光-气协同变色材料置于无氧环境中,经紫外光照射,发生光致变色;将变色样品暴露于空气中,恢复原色。
6.如权利要求4所述的用途,其特征在于,将所述光-气协同变色材料置于无氧环境中,经紫外光照射,发生光致变色;将变色样品暴露于空气中,经光照(紫外光或可见光)瞬间恢复原色,无光照缓慢恢复原色。
7.如权利要求1或2所述的方法制备的光-气协同变色材料作为防伪材料的用途。
8.如权利要求1或2所述的方法制备的光-气协同变色材料在真空密闭环境气密性排查中的用途。
9.如权利要求1或2所述的方法制备的光-气协同变色材料在保险柜防盗中的用途。
10.如权利要求1或2所述的方法制备的光-气协同变色材料作为可见光分解水制氢光催化剂的用途。
CN202211309809.3A 2022-10-25 2022-10-25 一种光-气协同变色材料及其合成方法和应用 Pending CN115612482A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211309809.3A CN115612482A (zh) 2022-10-25 2022-10-25 一种光-气协同变色材料及其合成方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211309809.3A CN115612482A (zh) 2022-10-25 2022-10-25 一种光-气协同变色材料及其合成方法和应用

Publications (1)

Publication Number Publication Date
CN115612482A true CN115612482A (zh) 2023-01-17

Family

ID=84864145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211309809.3A Pending CN115612482A (zh) 2022-10-25 2022-10-25 一种光-气协同变色材料及其合成方法和应用

Country Status (1)

Country Link
CN (1) CN115612482A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003260356A (ja) * 2002-03-08 2003-09-16 Univ Waseda H型層状ペロブスカイト系光触媒の製造方法およびh型層状ペロブスカイト系光触媒
CN103191714A (zh) * 2013-04-16 2013-07-10 桂林理工大学 层状复合氧化物光催化剂Sr2KM3O10及其制备方法
CN103588249A (zh) * 2013-11-26 2014-02-19 哈尔滨工业大学 一种能够光致变色的五氧化二铌及其制备方法
US20140128252A1 (en) * 2011-07-08 2014-05-08 Kyoto University Perovskite oxide containing hydride ion, and method for manufacturing same
CN105817231A (zh) * 2016-04-12 2016-08-03 河海大学 一种铁负载的NaNbO3钙钛矿型光催化剂的制备方法
CN109174126A (zh) * 2018-09-18 2019-01-11 张玉英 一种钙钛矿型层状结构的光催化剂及制备方法
CN111969199A (zh) * 2020-08-24 2020-11-20 福州大学 一种用于钾离子电池的铌酸钙钾复合盐负极材料及其制备工艺
CN113134349A (zh) * 2021-04-21 2021-07-20 岭南生态文旅股份有限公司 一种蓝色层状Nb2O5光催化剂的制备方法及应用
CN113753947A (zh) * 2021-09-06 2021-12-07 山东大学 自掺杂TiO2-x纳米颗粒/氧化还原染料光致变色体系及其应用
CN114684786A (zh) * 2020-12-25 2022-07-01 江苏康润净化科技有限公司 一种基于钙钛矿二氧化钛异质结构高效制氢制氧的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003260356A (ja) * 2002-03-08 2003-09-16 Univ Waseda H型層状ペロブスカイト系光触媒の製造方法およびh型層状ペロブスカイト系光触媒
US20140128252A1 (en) * 2011-07-08 2014-05-08 Kyoto University Perovskite oxide containing hydride ion, and method for manufacturing same
CN103191714A (zh) * 2013-04-16 2013-07-10 桂林理工大学 层状复合氧化物光催化剂Sr2KM3O10及其制备方法
CN103588249A (zh) * 2013-11-26 2014-02-19 哈尔滨工业大学 一种能够光致变色的五氧化二铌及其制备方法
CN105817231A (zh) * 2016-04-12 2016-08-03 河海大学 一种铁负载的NaNbO3钙钛矿型光催化剂的制备方法
CN109174126A (zh) * 2018-09-18 2019-01-11 张玉英 一种钙钛矿型层状结构的光催化剂及制备方法
CN111969199A (zh) * 2020-08-24 2020-11-20 福州大学 一种用于钾离子电池的铌酸钙钾复合盐负极材料及其制备工艺
CN114684786A (zh) * 2020-12-25 2022-07-01 江苏康润净化科技有限公司 一种基于钙钛矿二氧化钛异质结构高效制氢制氧的方法
CN113134349A (zh) * 2021-04-21 2021-07-20 岭南生态文旅股份有限公司 一种蓝色层状Nb2O5光催化剂的制备方法及应用
CN113753947A (zh) * 2021-09-06 2021-12-07 山东大学 自掺杂TiO2-x纳米颗粒/氧化还原染料光致变色体系及其应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DOMARADZKI J: "Characterization and properties of multicomponent oxide thin films with gasochromic effect", ELECTRON TECHNOLOGY CONFERENCE 2013, vol. 8902, 31 December 2013 (2013-12-31), pages 1 - 5 *
MACIAK E.: "Optical hydrogen sensitivity of Pd-metal oxide composite films prepared on fiber optics", PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, vol. 5952, 31 December 2005 (2005-12-31), pages 1 - 8 *
MIYAZAKI H等: "Nb2O5 nanoparticle-based composite films using transparent urethane resin matrix", COMPOSITES COMMUNICATIONS, vol. 12, 30 April 2019 (2019-04-30), pages 98 - 100 *
YAO JN等: "PHOTOCHROMIC RESPONSE OF VACUUM-EVAPORATED NB2O5 THIN-FILMS IN ETHANOL VAPOR", BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 96, no. 5, 31 May 1992 (1992-05-31), pages 699 - 701 *
YIM H等: "Li Storage of Calcium Niobates for Lithium Ion Batteries", JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, vol. 15, no. 10, 31 October 2015 (2015-10-31), pages 8103 - 8107 *

Similar Documents

Publication Publication Date Title
Li et al. Ultra‐Sensitive, Selective and Repeatable Fluorescence Sensor for Methanol Based on a Highly Emissive 0D Hybrid Lead‐Free Perovskite
Xu et al. Intelligent molecular searcher from logic computing network based on Eu (III) functionalized UMOFs for environmental monitoring
Hayon et al. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2-, SO3-, SO4-, and SO5-radicals
Houlding et al. Photochemical hydrogen generation by visible light. Sensitization of titanium dioxide particles by surface complexation with 8-hydroxyquinoline
Wang et al. Enhanced photoreversible color switching of redox dyes catalyzed by barium‐doped TiO2 nanocrystals
Bresolin et al. Methylammonium iodo bismuthate perovskite (CH3NH3) 3Bi2I9 as new effective visible light-responsive photocatalyst for degradation of environment pollutants
Egerton The mechanism of the photochemical degradation of textile material
Wang et al. Recent advances and perspectives of photostability for halide perovskite solar cells
Li et al. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution
Aleisa et al. Rapid High‐Contrast Photoreversible Coloration of Surface‐Functionalized N‐Doped TiO2 Nanocrystals for Rewritable Light‐Printing
Letifi et al. Enhanced Photocatalytic Activity of Vanadium‐Doped SnO2 Nanoparticles in Rhodamine B Degradation
Tennakone et al. The photostability of dye-sensitized solid state photovoltaic cells: factors determining the stability of the pigment in a nanoporous n-/cyanidin/p-CuI cell
Uji et al. Visible‐to‐UV Photon Upconversion: Recent Progress in New Materials and Applications
Liu et al. Critical effect of iron red pigment on photoaging behavior of polypropylene microplastics in artificial seawater
Mavridi-Printezi et al. Extending photocatalysis to the visible and NIR: the molecular strategy
Zhang et al. Light-controlled reversible photoluminescence modulation in photochromic Sr2SnO4: Eu3+
Hussien et al. Enhancement of Urbach's energy and non-lattice oxygen content of TiO1. 7 ultra-thin films for more photocatalytic activity
Cheng et al. Hot electrons in carbon nitride with ultralong lifetime and their application in reversible dynamic color displays
Qi et al. Hydrothermal synthesis of stable lead-free Cs 4 MnBi 2 Cl 12 perovskite single crystals for efficient photocatalytic degradation of organic pollutants
CN115612482A (zh) 一种光-气协同变色材料及其合成方法和应用
Shen et al. Construction of Ternary Bismuth‐Based Heterojunction by Using (BiO) 2CO3 as Electron Bridge for Highly Efficient Degradation of Phenol
CN108339544A (zh) 富勒烯羧基衍生物修饰的光催化剂/超疏水膜复合材料
Geng et al. Boosting photocatalytic Cr (VI) reduction activities of layered COF through regulating donor-acceptor units and the orientation of imine bonds
Pietro et al. Elucidating charge-transfer mechanisms and their effect on the light-induced reactivity of metastable MIL-125 (Ti)
Jendoubi et al. Optical properties and visible-light-driven photocatalytic activity of Na2Mn2 (MoO4) 3

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination