CN115608350B - 基于棒状氧化锌的异质结的制备方法及应用 - Google Patents

基于棒状氧化锌的异质结的制备方法及应用 Download PDF

Info

Publication number
CN115608350B
CN115608350B CN202211236832.4A CN202211236832A CN115608350B CN 115608350 B CN115608350 B CN 115608350B CN 202211236832 A CN202211236832 A CN 202211236832A CN 115608350 B CN115608350 B CN 115608350B
Authority
CN
China
Prior art keywords
zno
ceo
rod
heterojunction
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211236832.4A
Other languages
English (en)
Other versions
CN115608350A (zh
Inventor
高尧
于罗丹
向慧静
郑亚玲
陈雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202211236832.4A priority Critical patent/CN115608350B/zh
Publication of CN115608350A publication Critical patent/CN115608350A/zh
Application granted granted Critical
Publication of CN115608350B publication Critical patent/CN115608350B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种基于棒状氧化锌的纳米异质结,以乙酰丙酮锌及乙酰丙酮铈作为原料,在水热反应釜中以高温合成。该纳米异质结由棒状氧化锌和量子点氧化铈构成,主体长90nm±15nm,宽20nm±1nm,具有声波响应特性,用于声敏剂。此外,该ZnO/CeO2异质结在超声下具有比ZnO更优异的产生羟基自由基的能力,作为抗菌剂可用作声动力抗菌剂。

Description

基于棒状氧化锌的异质结的制备方法及应用
技术领域
本发明涉及一种无机纳米材料技术领域,尤其涉及一种粒径均一的可增强ZnO的电子-空穴对分离效果的异质结结构,具有声动力响应,及作为抗菌剂的相关应用。
背景技术
光动力治疗作为非侵入性治疗手段,已被投入大量应用且其作用机制也有充分的解释,但光的组织穿透深度则限制了光动力治疗在肝脏、胰腺等深层器官的应用。而基于超声(US)激发而发展的声动力治疗(Sonodynamic Therapy,SDT)策略因可以穿透更深层次的组织,受到了人们重视(Chem.Soc.Rev.,2020,49,3244-3261)。
CN114652686公开了一种负载罗米地辛有声动力效果的异质结纳米粒子的制备方法,包括:中腔介孔二氧化钛的制备;氮化碳量子点(g-C3N4 QD)的制备及与二氧化钛材料的复合制备;再通过上载内源性响应小分子药物罗米地辛,制备出负载罗米地辛有声动力效果的异质结纳米粒子,具有声动力和化疗协同治疗的效果,适用于肿瘤治疗。
CN114712501公开了一种用于超声治疗牙周炎的纳米复合物,以树枝状大孔二氧化硅为模板,在其基础上继续生长声敏剂二氧化钛。在光催化下,在其表面原位还原银以增强其声动力性能。通过季铵化壳聚糖与细菌的亲合作用,使纳米材料吸附并进入细菌。通过联合声动力和化学动力治疗实现对牙周炎的高效无创治疗,克服顽固性牙周炎难以治疗的难题。
当前,声动力治疗普遍采用超声激发声敏剂的方式产生多种活性氧(ROS),如单线态氧(·1O2)和羟基自由基(·OH),并由这些活性氧激活细胞凋亡相关通路或破坏细菌细胞膜。在众多声敏剂中,以无机材料为主体的声敏剂的稳定性相对更好,成本相对低。很多具有压电效应的无机声敏剂在超声激发下,内部电子-空穴对分离并形成内部电场,该电场催化环境中的氧气、水和过氧化氢等形成活性氧(J.Phys.Chem.Lett.,2020,11,1228-1238)。氧化锌纳米棒(ZnO Nanorod,ZnO NR)作为金属氧化物半导体,其能带分布易于活性氧的产生,且成本低,是研究广泛的声敏剂之一。在超声施加的横向应力下,ZnO的两端分别出现正负电荷形成电势(Adv.Funct.Mater.,2020,30,48,2005158)。但ZnO属于直接带隙型半导体,电子-空穴对容易复合而使能量损耗,超声催化与光催化能力降低。为解决这一问题,人们采取了很多措施,包括掺杂、沉积贵金属、与碳材料结合和形成异质结结构等(ACSAppl.Mater.Interfaces.,2018,10,39679-39687),这些措施均未能解决ZnO电子-空穴对复合快而导致催化能力降低的问题。
发明内容
本发明的一个目的在于提供一种基于棒状氧化锌的异质结,加入CeO2以解决ZnO电子-空穴对复合快导致催化能力降低的问题。
本发明的另一个目的在于提供一种ZnO/CeO2纳米异质结,作为声敏剂的应用。
本发明的再一个目的在于提供一种ZnO/CeO2纳米异质结,在声波作用下,作为抗菌剂的应用。
一种基于棒状氧化锌的纳米异质结,由棒状ZnO及量子点CeO2组成,CeO2量子点修饰于棒状ZnO上,由此实现电子-空穴对有效分离。
另一种基于棒状氧化锌的纳米异质结,包括棒状ZnO及量子点状CeO2,以及修饰在表面的氨基丙基基团。
棒状ZnO,长90nm±15nm,宽20nm±1nm。
量子点CeO2直径2nm±1nm。
在表面的氨基丙基基团如:≡Si-(CH2)2-NH2,与ZnO的物质的量比例为3∶47~1∶9。
本发明提供的基于棒状氧化锌的纳米异质结,具有声波响应的性能,且信号强于纯ZnO,适用于作为声敏剂。
经声波作用后,本发明提供的基于棒状氧化锌的纳米异质结的抗菌性能亦得到显著提高,可作为声波响应的抗菌剂。
一种制取本发明提供ZnO/CeO2纳米异质结的方法,包括:
先将乙酰丙酮铈水合物和乙酰丙酮锌固体经溶剂(如:苯甲醇)溶解混合均匀后移入反应容器,再于200℃±10℃下反应72±2小时后,室温冷却,并收集产物(如:12,000g离心7~10分钟),即为ZnO/CeO2纳米异质结。
乙酰丙酮铈与乙酰丙酮锌物质的量的比例为:3∶97~10∶90。
本发明的方法,还包括在ZnO/CeO2纳米异质结上修饰的氨基丙基基团,以提高ZnO/CeO2在水溶液中的分散性。
即将10μL三氨基丙基3-甲氧基硅烷可修饰50mg的ZnO/CeO2,比如:将ZnO/CeO2分散在无水乙醇中,将分散后的悬浊液置于容器内,并在氮气保护下搅拌并加热至80℃±3℃。随后加入溶于无水乙醇的三氨基丙基3-甲氧基硅烷,并混匀,并持续反应6±1小时后,冷却至室温,分离(如:12,000g离心7~10分钟)即得基于棒状氧化锌的异质结。
为防止加入三氨基丙基3-甲氧基硅烷后烧瓶内溶液温度变化过大,用于分散ZnO/CeO2的无水乙醇应远多于溶解三氨基丙基3-甲氧基硅烷的无水乙醇。比如:但不限于2倍以上、3倍以上、4倍以上或5倍以上。用于分散ZnO/CeO2的无水乙醇应远多于溶解三氨基丙基3-甲氧基硅烷的无水乙醇体积比为5~6∶1,比如:15∶3、16∶3、17∶3或18∶3。
本发明技术方案实现的有益效果:
本发明提供的基于棒状氧化锌的纳米异质结,由棒状ZnO及量子点状CeO2组成,CeO2量子点修饰于棒状ZnO上,由此实现电子-空穴对有效分离,解决了ZnO电子-空穴对复合快导致催化能力降低的问题。
本发明提供的基于棒状氧化锌的纳米异质结,经声波作用后,其相应的强度更强,对声波的灵敏度更强。
经验证,本发明提供的基于棒状氧化锌的纳米异质结经声波作用后,其抗菌性能亦得到显著提高,可以作为抑菌剂应用。
制取本发明纳米异质结的方法,其工艺操作简便、无污染,可形成稳定的纳米异质结结构。
附图说明
图1为本发明制备纳米异质结的流程图;
图2为本发明制备的ZnO/CeO2的TEM图;
图3为本发明制备的ZnO/CeO2的HR-TEM图;
图4为ZnO/CeO2的SEM-EDS结构;
图5为ZnO/CeO2的XPS图谱;
图6为ZnO/CeO2和ZnO在有、无超声刺激下的电子顺磁共振(EPR)图谱;
图7为ZnO/CeO2的抗菌应用结果图;
图8为图7中抗菌结果统计图。
具体实施方式
以下结合附图详细描述本发明的技术方案。本发明实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。
图1为本发明一实施方式的制备纳米异质结的流程。如图1所示,ZnO/CeO2纳米异质结可一步完成合成,无需分别合成ZnO或CeO2
将乙酰丙酮锌和乙酰丙酮铈固体经溶剂(如:苯甲醇)溶解混合,然后在反应釜内200℃±10℃下反应72±2小时后,室温冷却。再经分离(如:12,000g离心7~10分钟),获得固体产物,即为ZnO/CeO2纳米异质结。采用无水乙醇对其进行洗涤。
本实施实例中,乙酰丙酮铈与乙酰丙酮锌的加入物质的量的比例约1∶9。
制得的ZnO/CeO2纳米异质结采用氨基丙基修饰,可提升纳米异质结水相中的分散性。具体方法如:将ZnO/CeO2分散在无水乙醇中,将分散后的悬浊液置于容器(如:三颈烧瓶)内,并在氮气保护下搅拌并加热至80℃±5℃。随后加入溶于无水乙醇的三氨基丙基3-甲氧基硅烷,并混匀,并持续反应6±1小时后,冷却至室温,分离(如:12,000g离心7~10分钟)即得基于棒状氧化锌的异质结。所得产物使用无水乙醇洗涤。
本实施例中,以10μL三氨基丙基3-甲氧基硅烷相应修饰50mgZnO/CeO2纳米异质结。为防止加入三氨基丙基3-甲氧基硅烷后容器内溶液温度变化过大,用于分散ZnO/CeO2的无水乙醇应远多于溶解三氨基丙基3-甲氧基硅烷的无水乙醇,比如:但不限于2倍以上、3倍以上、4倍以上或5倍以上。用于分散ZnO/CeO2的无水乙醇应远多于溶解三氨基丙基3-甲氧基硅烷的无水乙醇体积比为5~6∶1,比如:15∶3、16∶3、17∶3或18∶3。
制得的基于棒状氧化锌的异质结进行TEM和HR-TEM检测,结果分别如图2和图3所示。从TEM图中可见,ZnO纳米棒长约80-100nm,宽约20nm,CeO2为直径约1nm的量子点。HR-TEM直观显示了ZnO/CeO2的棒状ZnO和量子点型的CeO2,以及两者的晶格条纹。从图中可见,棒状样品的晶格宽度符合ZnO的(1 0 0)晶面,量子点样品的晶格宽度符合CeO2的(1 1 1)晶面,表明本实施例制得的基于棒状氧化锌的异质结含有ZnO和CeO2
进一步采用,SEM-EDS和XPS检测,结果如图4和图5所示。SEM-EDS能谱图片表明,在同一样品区域内检测到Zn的信号、Ce的信号和O的信号,证明Zn、Ce和O等元素共同分布在纳米材料上。XPS谱图表明Zn和Ce的不同电子轨道,与电子显微镜图片共同证明ZnO/CeO2合成成功。
ZnO/CeO2、ZnO和5,5-二甲基-1-吡咯啉-N-氧化物(DMPO,捕获剂对照组)在超声处理前后的电子顺磁共振(EPR)检测,ZnO/CeO2和ZnO的浓度为500μg/mL(此处材料浓度通过电感耦合等离子体-原子发射光谱仪(ICP-AES)测定Zn元素含量后计算得到),超声频率为1MHz,功率为1.0W/cm2,占空比为50%,时间为3分钟,结果如图6所示。图中,ZnO/CeO2超声后出现强于纯ZnO和DMPO信号,证明ZnO/CeO2在超声下可产生羟基自由基,且产生能力强于普通的ZnO。本实施例制得的ZnO/CeO2纳米异质结具有声波相应,且其作为声敏剂效果更好。
采用稀释涂布平板法计数,使用E.coli对ZnO/CeO2纳米异质结在超声下的抗菌性能进行评价。进行该实验时,首先将浓度为1×109CFU/mL的细菌悬液用无菌水稀释5000倍,将稀释后的菌液以每孔50μL的体积加入96孔板。分别使用不同浓度(0、100、250、500μg/mL)的ZnO/CeO2纳米异质结水分散液与菌液等体积混合,并在37℃下孵育1小时。随后使用超声治疗仪超声含混合液的孔(频率为1MHz,功率为1.5W/cm2,占空比为50%,时间为6分钟)。超声后将各孔液体用水稀释50倍,并涂布LB固体培养平板,结果如图7和图8所示,随着ZnO/CeO2纳米异质结浓度的增加,其表现出些许抗菌的效果。与无超声相比,ZnO/CeO2纳米异质结在超声下的抗菌性能显著提高,其杀菌效果得到增强。

Claims (5)

1.一种基于棒状氧化锌的纳米异质结作为声敏剂的应用,其特征在于所述纳米异质结由棒状ZnO及量子点CeO2组成,其表面还具有氨基丙基基团,所述氨基丙基基团与ZnO的物质的量比例为3∶47~1∶9,CeO2量子点修饰于棒状ZnO上;
所述的棒状ZnO,长90nm±15nm,宽20nm±1nm;
所述的量子点CeO2直径2nm±1nm。
2.根据权利要求1所述的应用,其特征在于按如下方法制取所述的基于棒状氧化锌的纳米异质结:
先将乙酰丙酮铈水合物和乙酰丙酮锌固体经溶剂溶解混合均匀后移入反应容器,再于200°C±10°C下反应72±2小时后,室温冷却,并收集产物;
所述的乙酰丙酮铈与乙酰丙酮锌物质的量的比例为3∶97~10∶90。
3.根据权利要求2所述的应用,其特征在于所述的乙酰丙酮铈与所述的乙酰丙酮锌物质的量的比例为1∶9。
4.根据权利要求2所述的应用,其特征在于还将所述的ZnO/CeO2分散在无水乙醇中,将分散后的悬浊液置于容器内,并在氮气保护下搅拌并加热至80°C±5°C;随后加入溶于无水乙醇的三氨基丙基3-甲氧基硅烷,并混匀,并持续反应6±1小时后,冷却至室温,经分离而得。
5.根据权利要求4所述的应用,其特征在于用于分散ZnO/CeO2的无水乙醇与溶解三氨基丙基3-甲氧基硅烷的无水乙醇体积比为5~6∶1。
CN202211236832.4A 2022-10-10 2022-10-10 基于棒状氧化锌的异质结的制备方法及应用 Active CN115608350B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211236832.4A CN115608350B (zh) 2022-10-10 2022-10-10 基于棒状氧化锌的异质结的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211236832.4A CN115608350B (zh) 2022-10-10 2022-10-10 基于棒状氧化锌的异质结的制备方法及应用

Publications (2)

Publication Number Publication Date
CN115608350A CN115608350A (zh) 2023-01-17
CN115608350B true CN115608350B (zh) 2023-11-21

Family

ID=84862144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211236832.4A Active CN115608350B (zh) 2022-10-10 2022-10-10 基于棒状氧化锌的异质结的制备方法及应用

Country Status (1)

Country Link
CN (1) CN115608350B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125203A (zh) * 2007-07-27 2008-02-20 许川山 具有携氧功能的声敏剂
WO2011133228A2 (en) * 2010-04-23 2011-10-27 Pixelligent Technologies, Llc Synthesis, capping and dispersion of nanocrystals
CN111876273A (zh) * 2020-08-06 2020-11-03 郑州大学 一种基于亲水性氧化锌杀菌洗衣液、制备方法及其应用
CN112813514A (zh) * 2021-01-21 2021-05-18 包头中科陶瓷科技有限公司 一种抗菌无纺布及其制备方法
CN113023786A (zh) * 2021-03-15 2021-06-25 南京医科大学 超顺磁性氧化铁-氧化锌复合纳米团簇及其制备方法、用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125203A (zh) * 2007-07-27 2008-02-20 许川山 具有携氧功能的声敏剂
WO2011133228A2 (en) * 2010-04-23 2011-10-27 Pixelligent Technologies, Llc Synthesis, capping and dispersion of nanocrystals
CN111876273A (zh) * 2020-08-06 2020-11-03 郑州大学 一种基于亲水性氧化锌杀菌洗衣液、制备方法及其应用
CN112813514A (zh) * 2021-01-21 2021-05-18 包头中科陶瓷科技有限公司 一种抗菌无纺布及其制备方法
CN113023786A (zh) * 2021-03-15 2021-06-25 南京医科大学 超顺磁性氧化铁-氧化锌复合纳米团簇及其制备方法、用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Modification of Antibacterial ZnO Nanorods with CeO2 Nanoparticles: Role of CeO2 in Impacting Morphology and Antibacterial Activity;Shi Lan,et al.,;《Colloid and Interface Science Communications》;第26卷;32-38 *
Shi Lan,et al.,.Modification of Antibacterial ZnO Nanorods with CeO2 Nanoparticles: Role of CeO2 in Impacting Morphology and Antibacterial Activity.《Colloid and Interface Science Communications》.第26卷32-38. *
氧化锌型复合抗菌材料抗菌活性研究进展;麻晓霞;马玉龙;;功能材料(第09期);全文 *

Also Published As

Publication number Publication date
CN115608350A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
Ma et al. Bienzymatic synergism of vanadium oxide nanodots to efficiently eradicate drug-resistant bacteria during wound healing in vivo
Zhang et al. Synthesis and enhanced piezophotocatalytic activity of Ag2O/K0. 5Na0. 5NbO3 composites
Xing et al. Synthesis of carbon doped Bi2MoO6 for enhanced photocatalytic performance and tumor photodynamic therapy efficiency
CN108479811B (zh) 一种降解抗生素废水的z型声催化剂及其制备方法和应用
Wang et al. Mechanism analysis of surface structure-regulated Cu2O in photocatalytic antibacterial process
CN112521617B (zh) 一种可用于吸附抗生素的多酸基金属有机框架材料及其制备方法和用途
Wang et al. A modified Z-scheme Er3+: YAlO3@(PdS/BiPO4)/(Au/rGO)/CdS photocatalyst for enhanced solar-light photocatalytic conversion of nitrite
Zheng et al. Oxygen‐Vacancy‐Engineered W18O49− x Nanobrush with a Suitable Band Structure for Highly Efficient Sonodynamic Therapy
Qi et al. An oxygen self-supplied CuO2@ g-C3N4 heterojunction endows photodynamic antibacterial performance of scaffold
CN113332427B (zh) 一种Fe2O3@Pt多功能纳米颗粒及其制备方法、应用
CN115608350B (zh) 基于棒状氧化锌的异质结的制备方法及应用
CN112209445B (zh) 一种三氧化钼纳米点抑菌材料的制备方法及其应用
Li et al. Chitosan synergizes with bismuth-based metal-organic frameworks to construct double S-type heterojunctions for enhancing photocatalytic antimicrobial activity
CN106970059B (zh) 一种双光子荧光探针的制备及其应用
KR101129694B1 (ko) 나노 실리카-금속 복합 입자체 및 이의 제조방법
CN113387395B (zh) 一种高效磁响应催化医学用纳米颗粒及其制备方法和应用
CN110882389B (zh) 一氧化钛纳米材料及其制备方法和用途
CN113353939A (zh) 一种带隙可调、降解性可控的二维氢硅烯纳米材料及其制备方法和应用
Guan et al. Metainterface Heterostructure Enhances Sonodynamic Therapy for Disrupting Secondary Biofilms
CN116785258A (zh) 一种碳包覆钛酸钡压电异质结及其制备方法和应用
CN115845849A (zh) 一种二价铁离子掺杂的黑色二氧化钛纳米片及制备方法
CN108485644B (zh) 具有增强光动力活性的纳米复合材料及其制备方法
Chawda et al. Undoped and carbon-doped calcium molybdate as photocatalyst for degradation of methylene blue
CN114949186A (zh) 一种pod-god协同改性的介孔硅纳米材料、制备方法及用途
CN108186677B (zh) 自由基高效产生的可降解纳米材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant