CN115602751A - 一种用于红外雪崩探测芯片的激光退火装置及其检测方法 - Google Patents

一种用于红外雪崩探测芯片的激光退火装置及其检测方法 Download PDF

Info

Publication number
CN115602751A
CN115602751A CN202211314394.9A CN202211314394A CN115602751A CN 115602751 A CN115602751 A CN 115602751A CN 202211314394 A CN202211314394 A CN 202211314394A CN 115602751 A CN115602751 A CN 115602751A
Authority
CN
China
Prior art keywords
detection chip
infrared avalanche
avalanche detection
laser
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211314394.9A
Other languages
English (en)
Inventor
徐鹏飞
王岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Huaxing Optoelectronics Research Co ltd
Jiangsu Huaxing Laser Technology Co ltd
Original Assignee
Wuxi Huaxing Optoelectronics Research Co ltd
Jiangsu Huaxing Laser Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Huaxing Optoelectronics Research Co ltd, Jiangsu Huaxing Laser Technology Co ltd filed Critical Wuxi Huaxing Optoelectronics Research Co ltd
Priority to CN202211314394.9A priority Critical patent/CN115602751A/zh
Publication of CN115602751A publication Critical patent/CN115602751A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/265Contactless testing
    • G01R31/2656Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种用于红外雪崩探测芯片的激光退火装置及其检测方法,涉及半导体技术领域,包括激光光源、连续光衰减片、分光镜、透镜、红外雪崩探测芯片、光功率计、电压电流源和计算机;利用激光进行退火可以选择性的对芯片进行局部退火,不影响电极与材料的欧姆接触,同时激光的波长及能量可以调节,可以对不同的吸收层材料进行有选择性的退火;主要针对探测芯片的吸收层材料进行选择性退火,同时选择的激光波长通过衰减至合适范围,可以对探测芯片的光响应性能进行检测,达到对退火效果的监测。

Description

一种用于红外雪崩探测芯片的激光退火装置及其检测方法
技术领域
本发明涉及半导体技术领域,更具体地说,它涉及一种用于红外雪崩探测芯片的激光退火装置及其检测方法。
背景技术
半导体退火是一种常见的优化半导体材料质量的方法,通常的方法是在材料刚生长完后利用高温条件对材料进行一定时间的退火处理用于提升半导体材料的结晶质量。然而当材料已经做成芯片,高温退火就不太合适,因为芯片端已经做好了各种电极,高温处理会影响欧姆接触。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种用于红外雪崩探测芯片的激光退火装置及其检测方法,可以选择性的对芯片进行局部退火,不影响电极与材料的欧姆接触,通过调节激光的波长及能量,可以对不同的吸收层材料有选择性的退火,同时将选择的激光波长通过衰减至合适范围,可以对探测芯片的光响应性能进行检测,达到对退火效果的监测。
为实现上述目的,本发明提供了如下技术方案:一种用于红外雪崩探测芯片的激光退火装置,包括激光光源、连续光衰减片、分光镜、透镜、红外雪崩探测芯片、光功率计、电压电流源和计算机;
所述激光光源经过连续光衰减片经透镜聚焦照射在所述红外雪崩探测芯片表面,用于对所述红外雪崩探测芯片的吸收层材料进行退火;
所述光功率计用于对激光光源的强度进行监测;
所述连续光衰减片用于将激光强度衰减至所述红外雪崩探测芯片的线性响应范围;
所述电压电流源用于测量所述红外雪崩探测芯片的电压电流曲线;
所述计算机用于采集电压电流曲线,获得所述红外雪崩探测芯片的光响应信息。
作为本发明进一步的方案:所述激光光源的波长为1310nm或1550nm,光谱半高宽范围为0.01nm-10nm,输出最大光功率>1mW。
作为本发明进一步的方案:所述连续光衰减片为中性衰减片,衰减波长范围处于为300nm-2000nm,衰减倍数在10-6~1内连续可调。
作为本发明进一步的方案:所述分光镜的反射透射比为1:1,波长范围为300nm-2000nm。
作为本发明进一步的方案:所述红外雪崩探测芯片,其吸收层为In0.47Ga0.43As材料,电荷层与倍增层为In0.48Al0.42As材料。
作为本发明进一步的方案:所述光功率计检测波长范围为300nm-2000nm,功率范围为0.01μW-1W。
作为本发明进一步的方案:所述电压电流源电流检测范围为10-15A~10A。
一种利用红外雪崩探测芯片的激光退火装置的检测方法,其特征在于,包括如下步骤:
步骤一:将激光光源经过连续光衰减片并经透镜聚焦照射在所述红外雪崩探测芯片表面,对所述红外雪崩探测芯片的吸收层材料进行退火;
步骤二:利用光功率计对激光光源的强度进行监测;
步骤三:利用连续光衰减片将激光强度衰减至红外雪崩探测芯片的线性响应范围;
步骤四:利用电压电流源测量所述红外雪崩探测芯片的电压电流曲线,并利用计算机采集电压电流曲线,获得红外雪崩探测芯片的光响应信息;
步骤五:通过对比退火前后的光响应信息,可以达到对激光退火效果的监测。
与现有技术相比,本发明具备以下有益效果:利用激光进行退火可以选择性的对芯片进行局部退火,不影响电极与材料的欧姆接触,同时激光的波长及能量可以调节,可以对不同的吸收层材料进行有选择性的退火;主要针对探测芯片的吸收层材料进行选择性退火,同时选择的激光波长通过衰减至合适范围,可以对探测芯片的光响应性能进行检测,达到对退火效果的监测。
附图说明
为了更清楚的说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为一种用于红外雪崩探测芯片的激光退火装置的结构组成示意图;
图2为红外雪崩探测芯片吸收层材料的结构示意图;
图3为一种用于红外雪崩探测芯片的激光退火装置的检测方法的流程图;
图4为电压电流曲线图;
1、激光光源;2、连续光衰减片;3、分光镜;4、透镜;5、红外雪崩探测芯片;6、光功率计;7、电压电流源;8、计算机;9、P-InP层;10、u-InGaAs层;11、InAlAs电荷层;12、InAlAs倍增层;13、InP缓冲层;14、InP缓冲层;15、InP衬底。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
参照图1至图4对本发明一种用于红外雪崩探测芯片的激光退火装置及其检测方法实施例做进一步说明。
一种用于红外雪崩探测芯片的激光退火装置,包括激光光源1、连续光衰减片2、分光镜3、透镜4、红外雪崩探测芯片5、光功率计6、电压电流源7和计算机8;所述激光光源1经过连续光衰减片2经透镜4聚焦照射在所述红外雪崩探测芯片5表面,用于对所述红外雪崩探测芯片5的吸收层材料进行退火;所述光功率计6用于对激光光源1的强度进行监测;所述连续光衰减片2用于将激光强度衰减至所述红外雪崩探测芯片5的线性响应范围;所述电压电流源7用于测量所述红外雪崩探测芯片5的电压电流曲线;所述计算机8用于采集电压电流曲线,获得所述红外雪崩探测芯片5的光响应信息。
所述红外雪崩探测芯片5的吸收层材料包括P-InP层9、u-InGaAs层10、InAlAs电荷层11、InAlAs倍增层12、InAlAs缓冲层13、InP缓冲层14和InP衬底15;
优选的,所述激光光源1的波长为1310nm或1550nm,光谱半高宽范围为0.01nm-10nm,输出最大光功率>1mW。
优选的,所述连续光衰减片2为中性衰减片,衰减波长范围处于为300nm-2000nm,衰减倍数在10-6~1内连续可调。
优选的,所述分光镜3的反射透射比为1:1,波长范围为300nm-2000nm。
优选的,所述红外雪崩探测芯片5,其吸收层为In0.47Ga0.43As材料,电荷层与倍增层为In0.48Al0.42As材料。
优选的,所述光功率计6检测波长范围为300nm-2000nm,功率范围为0.01μW-1W。
优选的,所述电压电流源7电流检测范围为10-15A~10A。
需要说明的是本发明提出的所述用于红外雪崩探测芯片的激光退火装置中,所述计算机包括数据采集与数据处理分析软件。
一种利用红外雪崩探测芯片的激光退火装置的检测方法,包括如下步骤:
步骤一:将激光光源1经过连续光衰减片2并经透镜4聚焦照射在所述红外雪崩探测芯片5表面,对所述红外雪崩探测芯片5的吸收层材料进行退火;
步骤二:利用光功率计6对激光光源1的强度进行监测;
步骤三:利用连续光衰减片2将激光强度衰减至红外雪崩探测芯片5的线性响应范围;
步骤四:利用电压电流源7测量所述红外雪崩探测芯片5的电压电流曲线,并利用计算机8采集电压电流曲线,获得红外雪崩探测芯片5的光响应信息;
步骤五:通过对比退火前后的光响应信息,可以达到对激光退火效果的监测。
以下为激光退火前和激光退火后的击穿电压、光增益和光响应的对比数据信息:
击穿电压(V) 光增益 光响应(A/W)
激光退火前 43.6 7.9 6.3
激光退火后 43.2 10.7 8.6
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种用于红外雪崩探测芯片的激光退火装置,其特征在于,包括激光光源(1)、连续光衰减片(2)、分光镜(3)、透镜(4)、红外雪崩探测芯片(5)、光功率计(6)、电压电流源(7)和计算机(8);
所述激光光源(1)经过连续光衰减片(2)经透镜(4)聚焦照射在所述红外雪崩探测芯片(5)表面,用于对所述红外雪崩探测芯片(5)的吸收层材料进行退火;
所述光功率计(6)用于对激光光源(1)的强度进行监测;
所述连续光衰减片(2)用于将激光强度衰减至所述红外雪崩探测芯片(5)的线性响应范围;
所述电压电流源(7)用于测量所述红外雪崩探测芯片(5)的电压电流曲线;
所述计算机(8)用于采集电压电流曲线,获得所述红外雪崩探测芯片(5)的光响应信息。
2.根据权利要求1所述的一种用于红外雪崩探测芯片的激光退火装置,其特征在于,所述激光光源(1)的波长为1310nm或1550nm,光谱半高宽范围为0.01nm-10nm,输出最大光功率>1mW。
3.根据权利要求2所述的一种用于红外雪崩探测芯片的激光退火装置,其特征在于,所述连续光衰减片(2)为中性衰减片,衰减波长范围处于为300nm-2000nm,衰减倍数在10-6~1内连续可调。
4.根据权利要求3所述的一种用于红外雪崩探测芯片的激光退火装置,其特征在于,所述分光镜(3)的反射透射比为1:1,波长范围为300nm-2000nm。
5.根据权利要求4所述的一种用于红外雪崩探测芯片的激光退火装置,其特征在于,所述红外雪崩探测芯片(5),其吸收层为In0.47Ga0.43As材料,电荷层与倍增层为In0.48Al0.42As材料。
6.根据权利要求5所述的一种用于红外雪崩探测芯片的激光退火装置,其特征在于,所述光功率计(6)检测波长范围为300nm-2000nm,功率范围为0.01μW-1W。
7.根据权利要求6所述的一种用于红外雪崩探测芯片的激光退火装置,其特征在于,所述电压电流源(7)电流检测范围为10-15A~10A。
8.一种利用如权利要求1-7任一项所述的用于红外雪崩探测芯片的激光退火装置的检测方法,其特征在于,包括如下步骤:
步骤一:将激光光源(1)经过连续光衰减片(2)并经透镜(4)聚焦照射在所述红外雪崩探测芯片(5)表面,对所述红外雪崩探测芯片(5)的吸收层材料进行退火;
步骤二:利用光功率计(6)对激光光源(1)的强度进行监测;
步骤三:利用连续光衰减片(2)将激光强度衰减至红外雪崩探测芯片(5)的线性响应范围;
步骤四:利用电压电流源(7)测量所述红外雪崩探测芯片(5)的电压电流曲线,并利用计算机(8)采集电压电流曲线,获得红外雪崩探测芯片(5)的光响应信息;
步骤五:通过对比退火前后的光响应信息,可以达到对激光退火效果的监测。
CN202211314394.9A 2022-10-25 2022-10-25 一种用于红外雪崩探测芯片的激光退火装置及其检测方法 Pending CN115602751A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211314394.9A CN115602751A (zh) 2022-10-25 2022-10-25 一种用于红外雪崩探测芯片的激光退火装置及其检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211314394.9A CN115602751A (zh) 2022-10-25 2022-10-25 一种用于红外雪崩探测芯片的激光退火装置及其检测方法

Publications (1)

Publication Number Publication Date
CN115602751A true CN115602751A (zh) 2023-01-13

Family

ID=84848081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211314394.9A Pending CN115602751A (zh) 2022-10-25 2022-10-25 一种用于红外雪崩探测芯片的激光退火装置及其检测方法

Country Status (1)

Country Link
CN (1) CN115602751A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060202243A1 (en) * 2005-03-11 2006-09-14 The Boeing Company Metamorphic avalanche photodetector
CN104078339A (zh) * 2013-03-26 2014-10-01 上海微电子装备有限公司 一种激光退火装置和方法
CN106935491A (zh) * 2015-12-30 2017-07-07 上海微电子装备有限公司 一种激光退火装置及其退火方法
CN206422052U (zh) * 2017-02-14 2017-08-18 桂林电子科技大学 红外探测器薄膜激光退火系统
CN107665821A (zh) * 2016-07-29 2018-02-06 上海微电子装备(集团)股份有限公司 一种激光退火装置及方法
CN114614891A (zh) * 2022-03-22 2022-06-10 Nano科技(北京)有限公司 一种雪崩光电探测器光响应度测量系统及测量方法
CN217182204U (zh) * 2022-01-27 2022-08-12 合肥本源量子计算科技有限责任公司 一种用于超导量子芯片的激光退火系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060202243A1 (en) * 2005-03-11 2006-09-14 The Boeing Company Metamorphic avalanche photodetector
CN104078339A (zh) * 2013-03-26 2014-10-01 上海微电子装备有限公司 一种激光退火装置和方法
CN106935491A (zh) * 2015-12-30 2017-07-07 上海微电子装备有限公司 一种激光退火装置及其退火方法
CN107665821A (zh) * 2016-07-29 2018-02-06 上海微电子装备(集团)股份有限公司 一种激光退火装置及方法
CN206422052U (zh) * 2017-02-14 2017-08-18 桂林电子科技大学 红外探测器薄膜激光退火系统
CN217182204U (zh) * 2022-01-27 2022-08-12 合肥本源量子计算科技有限责任公司 一种用于超导量子芯片的激光退火系统
CN114614891A (zh) * 2022-03-22 2022-06-10 Nano科技(北京)有限公司 一种雪崩光电探测器光响应度测量系统及测量方法

Similar Documents

Publication Publication Date Title
US7989729B1 (en) Detecting and repairing defects of photovoltaic devices
JP5024865B2 (ja) 半導体基板の評価方法
CN109374264B (zh) 一种光学薄膜缺陷激光损伤阈值的测试方法
US20120244656A1 (en) Method and apparatus for producing solar cell
CN110849815B (zh) 一种预测光学元件表面激光损伤性能的方法和系统
CN108196178B (zh) 一种表面陷阱能级分布的测量装置及光电导分析方法
KR100896229B1 (ko) 폴리실리콘을 평가하는 방법과 시스템, 및 박막트랜지스터를 제조하는 방법과 시스템
Zhang et al. Mechanisms for laser-induced functional damage to silicon charge-coupled imaging sensors
CN109079313B (zh) 激光抛光设备及方法
US7420684B2 (en) Method and apparatus for measuring surface carrier recombination velocity and surface Fermi level
CN103730386B (zh) 一种基于光载流子辐射技术的半导体硅片激光退火在线检测方法
CN115602751A (zh) 一种用于红外雪崩探测芯片的激光退火装置及其检测方法
US20020110962A1 (en) System for manufacturing a thin-film transistor, method of manufacturing a thin-film transistor, method of evaluating polysilicon, and apparatus for inspecting polysilicon
CN107884423B (zh) 一种基于典型缺陷特征的kdp晶体损伤阈值预测方法
US20010038105A1 (en) Polysilicon evaluating method, polysilicon inspection apparatus and method for preparation of thin film transistor
US9245810B2 (en) Electrical and opto-electrical characterization of large-area semiconductor devices
US10161848B2 (en) Methods for aligning a light source with a flow stream and systems thereof
JP2937557B2 (ja) 拡散層深さ測定装置
JP2015032686A (ja) 半導体素子の評価方法及び半導体素子の評価装置
EP2137771B1 (en) Photovoltaic module comprising layer with conducting spots
JP2002008976A (ja) 半導体装置の製造方法および半導体装置の製造装置
CN109632114B (zh) 一种超导单光子探测系统中光纤对准装置及光纤对准方法
JPH055187B2 (zh)
CN113984787B (zh) 一种半导体缺陷分布成像检测装置及检测方法
CN117811499B (zh) 一种高速检测太阳能电池板的光电流成像系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination