CN115589760A - A metal substrate-based micro-nano film heat flow sensor and its manufacturing method - Google Patents
A metal substrate-based micro-nano film heat flow sensor and its manufacturing method Download PDFInfo
- Publication number
- CN115589760A CN115589760A CN202211247445.0A CN202211247445A CN115589760A CN 115589760 A CN115589760 A CN 115589760A CN 202211247445 A CN202211247445 A CN 202211247445A CN 115589760 A CN115589760 A CN 115589760A
- Authority
- CN
- China
- Prior art keywords
- metal
- layer
- substrate
- insulating layer
- heat flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 325
- 239000002184 metal Substances 0.000 title claims abstract description 325
- 239000000758 substrate Substances 0.000 title claims abstract description 98
- 239000002120 nanofilm Substances 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 230000007704 transition Effects 0.000 claims abstract description 71
- 238000000034 method Methods 0.000 claims abstract description 58
- 238000000151 deposition Methods 0.000 claims abstract description 27
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 25
- 238000001755 magnetron sputter deposition Methods 0.000 claims abstract description 24
- 238000004528 spin coating Methods 0.000 claims abstract description 20
- 239000003822 epoxy resin Substances 0.000 claims abstract description 16
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 16
- 230000008021 deposition Effects 0.000 claims abstract description 14
- 238000009713 electroplating Methods 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims description 41
- 238000004544 sputter deposition Methods 0.000 claims description 18
- 239000010409 thin film Substances 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 9
- 238000000206 photolithography Methods 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- 238000011161 development Methods 0.000 claims description 8
- 239000003292 glue Substances 0.000 claims description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- 238000001020 plasma etching Methods 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- 238000002791 soaking Methods 0.000 claims description 4
- 230000003746 surface roughness Effects 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 3
- 238000005498 polishing Methods 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 285
- 239000011241 protective layer Substances 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 6
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 238000001259 photo etching Methods 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 30
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 17
- 239000010936 titanium Substances 0.000 description 17
- 229910052719 titanium Inorganic materials 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000956 alloy Substances 0.000 description 8
- 238000013461 design Methods 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 238000004806 packaging method and process Methods 0.000 description 7
- 239000004642 Polyimide Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 230000032683 aging Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 229910000943 NiAl Inorganic materials 0.000 description 1
- 229910005883 NiSi Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/003—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using pyroelectric elements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
技术领域technical field
本发明属于传感器技术领域,涉及一种基于金属衬底的微纳米薄膜热流传感器及其制作方法。The invention belongs to the technical field of sensors, and relates to a micro-nano film heat flow sensor based on a metal substrate and a manufacturing method thereof.
背景技术Background technique
热场检测是现代工业生产和科学研究过程中时常会开展的一项工作,其中主要涉及温度和热流两个物理量,而对于热场分布和传热过程动态变化特征的充分理解以及相关生产工艺和产品质量控制影响因素的正确分析,后者往往更能体现出物理机制上的密切关联性,其重要性尤为突出。对于热流的检测,传统的热电堆由于尺寸大、响应慢等缺点,往往在一些对安装空间尺寸限制严格以及瞬时动态变化较为剧烈的场景中难以应用,即使勉强能用,也会在准确性、可靠性、及时性和耐用性等方面性能大打折扣。Thermal field detection is a work that is often carried out in the process of modern industrial production and scientific research. It mainly involves two physical quantities of temperature and heat flow. A full understanding of the thermal field distribution and dynamic change characteristics of the heat transfer process, as well as related production processes and The correct analysis of the influencing factors of product quality control, the latter often can better reflect the close correlation in the physical mechanism, is particularly important. For the detection of heat flow, due to the shortcomings of large size and slow response, traditional thermopiles are often difficult to apply in some scenarios where the size of the installation space is strictly limited and the instantaneous dynamic changes are severe. Performance in terms of reliability, timeliness, and durability is greatly compromised.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种基于金属衬底的微纳米薄膜热流传感器及其制作方法。In view of this, the object of the present invention is to provide a micro-nano film heat flow sensor based on a metal substrate and a manufacturing method thereof.
为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
一种基于金属衬底的微纳米薄膜热流传感器,主要包括金属基底、金属过渡层I、金属粘结层I、绝缘层I、金属传感层、金属过渡层II、金属粘结层II、绝缘层II、金属保护片、金属过渡层III、金属粘结层III和环氧树脂。A micro-nano film heat flow sensor based on a metal substrate, mainly including a metal substrate, a metal transition layer I, a metal bonding layer I, an insulating layer I, a metal sensing layer, a metal transition layer II, a metal bonding layer II, an insulating layer Layer II, metal protection sheet, metal transition layer III, metal bonding layer III and epoxy resin.
所述金属基底为衬底,表面电镀有金属过渡层I。The metal base is a substrate, and the metal transition layer I is electroplated on the surface.
所述金属基底的厚度范围为50μm~800μm。The metal base has a thickness ranging from 50 μm to 800 μm.
所述金属过渡层I表面溅射有金属粘结层I。A metal bonding layer I is sputtered on the surface of the metal transition layer I.
所述金属粘结层I、金属粘结层II的厚度范围为10nm~100nm。The metal bonding layer I and the metal bonding layer II have a thickness ranging from 10 nm to 100 nm.
所述金属过渡层I、金属过渡层II的厚度范围为5μm~30μm。The metal transition layer I and the metal transition layer II have a thickness ranging from 5 μm to 30 μm.
所述金属粘接层I表面涂覆有绝缘层I。The surface of the metal bonding layer I is coated with an insulating layer I.
所述绝缘层I、绝缘层II的厚度范围为1μm~5μm。The thickness range of the insulating layer I and the insulating layer II is 1 μm˜5 μm.
所述金属传感层表面电镀有金属过渡层II。The surface of the metal sensing layer is electroplated with a metal transition layer II.
所述金属传感层包括第一极传感回路和第二极传感回路。The metal sensing layer includes a first pole sensing loop and a second pole sensing loop.
所述金属传感层的厚度范围为300nm~900nm。The metal sensing layer has a thickness ranging from 300nm to 900nm.
所述第一极传感回路包括依次沉积的金属层I、金属层II和金属层III。The first pole sensing loop includes metal layer I, metal layer II and metal layer III deposited in sequence.
所述第二极传感回路沉积在第一极传感回路的表面,包括依次沉积的金属层IV、金属层V和金属层VI。The second pole sensing circuit is deposited on the surface of the first pole sensing circuit, including metal layer IV, metal layer V and metal layer VI deposited in sequence.
所述金属过渡层II表面溅射有金属粘结层II。A metal bonding layer II is sputtered on the surface of the metal transition layer II.
所述金属粘结层II表面涂覆有绝缘层II。The surface of the metal bonding layer II is coated with an insulating layer II.
所述绝缘层II的表面粘接金属保护片。The surface of the insulating layer II is bonded with a metal protection sheet.
所述金属保护片的一个表面电镀有金属过渡层III,另一表面涂覆环氧树脂。One surface of the metal protection sheet is electroplated with a metal transition layer III, and the other surface is coated with epoxy resin.
所述绝缘层II和金属粘结层III表面粘接,从而令金属基底和金属保护片粘接。The surfaces of the insulating layer II and the metal bonding layer III are bonded, so that the metal substrate and the metal protection sheet are bonded.
所述金属过渡层III的溅射有金属粘结层III。The metal transition layer III is sputtered with a metal bonding layer III.
基于金属衬底的高温微纳米薄膜热流传感器上沉积若干组热电堆回路,实现局部区域内的多点检测。其中一组热电堆回路包括依次沉积的金属传感层、金属过渡层II、金属粘结层II、绝缘层II和金属保护片。Several sets of thermopile circuits are deposited on the high-temperature micro-nano thin-film heat flow sensor based on the metal substrate to realize multi-point detection in a local area. One set of thermopile loops includes a metal sensing layer, a metal transition layer II, a metal bonding layer II, an insulating layer II and a metal protection sheet deposited sequentially.
基于金属衬底的微纳米薄膜热流传感器耐400℃温度。The micro-nano thin-film heat flow sensor based on the metal substrate can withstand the temperature of 400°C.
基于金属衬底的微纳米薄膜热流传感器通过采集电势信号检测热流。The micro-nano film heat flow sensor based on metal substrate detects heat flow by collecting potential signals.
一种基于金属衬底的微纳米薄膜热流传感器的制作方法,主要包括以下步骤:A method for manufacturing a micro-nano thin-film heat flow sensor based on a metal substrate, mainly comprising the following steps:
步骤1、选取用于传感器沉积的金属基底。
金属基底表面粗糙度范围为100nm~400nm。The surface roughness of the metal substrate ranges from 100nm to 400nm.
步骤2、对金属基底进行研磨和化学机械抛光,并通过磁控溅射工艺在金属基底表面沉积金属过渡层I。
步骤3、通过磁控溅射工艺在金属过渡层I表面上沉积金属粘结层I。
步骤4、通过匀胶旋涂工艺在金属粘结层I表面上涂覆绝缘层I,并在热板和烘箱中分别进行软烘和固化。
步骤5、通过匀胶旋涂工艺在绝缘层I表面上涂覆光刻胶,并在热板上对金属基底进行前烘。在光刻机上采用掩模板进行曝光。曝光后,在热板上对金属基底进行后烘。将金属基底放置于显影液中进行显影,烘干后得到传感器图版。
步骤6、通过磁控溅射工艺在光刻胶层表面上沉积金属传感层,主要步骤为:
步骤6.1、在光刻胶层表面依次沉积金属层I、金属层II和金属层III,形成第一极传感回路。Step 6.1, sequentially depositing metal layer I, metal layer II and metal layer III on the surface of the photoresist layer to form a first pole sensing circuit.
步骤6.2、在第一极传感回路表面依次沉积金属层IV、金属层V和金属层VI,形成第二极传感回路后,放置于丙酮中进行浸泡剥离光刻胶后烘干。Step 6.2. Deposit metal layer IV, metal layer V and metal layer VI in sequence on the surface of the first-pole sensing circuit to form the second-pole sensing circuit, soak in acetone to peel off the photoresist, and then dry.
步骤7、基于传感器图版,切割出金属保护片。Step 7. Cut out the metal protection sheet based on the sensor plate.
所述金属保护片为圆冠形。The metal protection sheet is in the shape of a round crown.
步骤8、在金属保护片的表面采用电镀工艺沉积金属过渡层III,再通过磁控溅射工艺在金属过渡层III表面沉积金属粘结层III。Step 8: Deposit a metal transition layer III on the surface of the metal protection sheet by electroplating, and then deposit a metal bonding layer III on the surface of the metal transition layer III by magnetron sputtering.
步骤9、通过匀胶旋涂工艺在金属传感层表面涂覆绝缘层II。
步骤10、利用绝缘层II的粘接性将金属保护片贴合到金属基片上,并裸露出焊盘。
步骤11、对贴合有金属保护片的金属基片进行烘烤固化,再通过等离子刻蚀工艺去除掉焊盘表面的绝缘层。Step 11: Baking and curing the metal substrate bonded with the metal protection sheet, and then removing the insulating layer on the pad surface through a plasma etching process.
步骤12、采用导电银胶将焊盘与补偿导线连接,然后经热板烘烤后,在表面涂覆环氧树脂。对环氧树脂进行固化。Step 12, using conductive silver glue to connect the pad to the compensation wire, and then coating the surface with epoxy resin after baking on a hot plate. The epoxy resin is cured.
补偿导线的直径范围为0.2mm~0.5mm。The diameter of the compensation wire ranges from 0.2mm to 0.5mm.
值得说明的是,微纳米薄膜热流传感器基于超净间MEMS微机电加工工艺制作而成,其中主要制程环节涉及光刻、磁控溅射、电子束蒸发及原子层堆积等工艺,是一种相对更为先进、更为前沿的传感器技术,其工作层厚度通常仅有数百纳米,加上保护层通常也不超过1mm,同时其工作层的线宽和节点尺寸都处于微米量级,这样的小尺寸特性赋予了其安装方便灵活、动态响应快捷、检测真实可靠等技术特征,且还能在局部较小的区域内通过线路优化设计合理布置出多个检测点,可显着改进传统检测组件在这些方面的技术限制,另外采用硬度高、熔点高、导热性良好的金属衬底作为保护层可大幅提升薄膜传感器的耐高温高压恶劣环境能力及使用寿命,为各类工业场景中热流检测方案的进一步优化和检测手段的进一步丰富提供了重要的硬件基础。It is worth noting that the micro-nano thin-film heat flow sensor is manufactured based on the ultra-clean room MEMS micro-electromechanical processing technology, and the main process links involve photolithography, magnetron sputtering, electron beam evaporation and atomic layer deposition. For more advanced and cutting-edge sensor technologies, the thickness of the working layer is usually only a few hundred nanometers, and the protective layer is usually no more than 1mm. At the same time, the line width and node size of the working layer are on the order of microns. The small size endows it with technical features such as convenient and flexible installation, fast dynamic response, and reliable detection, and it can also reasonably arrange multiple detection points through circuit optimization design in a small local area, which can significantly improve traditional detection components. Due to technical limitations in these aspects, the use of a metal substrate with high hardness, high melting point, and good thermal conductivity as a protective layer can greatly improve the ability and service life of the film sensor to withstand high temperature, high pressure and harsh environments, and provide heat flow detection solutions in various industrial scenarios. Further optimization and further enrichment of detection methods provide an important hardware foundation.
本发明基于经典的塞贝克效应及多组K型热电偶串联的热电堆原理,在超净间通过匀胶旋涂、光刻显影、磁控溅射等MEMS微机电加工工艺,以熔点和硬度相对较高、导热和导电性良好的金属为衬底基片,制作出典型三明治层状封装结构的可耐400℃高温的微纳米薄膜热流传感器。The present invention is based on the classical Seebeck effect and the thermopile principle of multiple sets of K-type thermocouples connected in series, through the MEMS micro-electromechanical processing technology such as uniform glue spin coating, photolithography development, and magnetron sputtering in the ultra-clean room, the melting point and hardness Relatively high metal with good thermal conductivity and electrical conductivity is used as the substrate substrate, and a micro-nano thin-film heat flow sensor with a typical sandwich layer packaging structure that can withstand high temperatures of 400 ° C is produced.
本发明的技术效果是毋庸置疑的,本发明公开的微纳米薄膜传感器尺寸小、响应快,对原始热场的扰动较小,可以及时准确地捕捉到热场的瞬时动态变化,获取瞬态热流,可以灵活方便地安装在狭小空间中以及更接近待测点进行检测,可以根据需求在一个检测区域同时布置多组热电堆回路以实现局部多点检测;基于熔点硬度相对较高以及导热导电性能良好的金属衬底的封装方式使得传感器具有良好的耐高温高压性能和抗干扰性能,能有效保障传感器在恶劣工业环境中的使用效果,并有助于大幅提升其使用寿命。The technical effect of the present invention is unquestionable. The micro-nano film sensor disclosed by the present invention has small size, fast response, and less disturbance to the original thermal field, and can capture the instantaneous dynamic changes of the thermal field in time and accurately, and obtain the transient heat flow , can be flexibly and conveniently installed in a narrow space and closer to the point to be tested for detection, and multiple sets of thermopile circuits can be arranged in one detection area at the same time according to requirements to achieve local multi-point detection; based on relatively high melting point hardness and thermal conductivity The good metal substrate packaging method makes the sensor have good high temperature and high pressure resistance and anti-interference performance, which can effectively guarantee the use effect of the sensor in harsh industrial environments and help to greatly increase its service life.
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。Other advantages, objects and features of the present invention will be set forth in the following description to some extent, and to some extent, will be obvious to those skilled in the art based on the investigation and research below, or can be obtained from Taught in the practice of the present invention. The objects and other advantages of the invention may be realized and attained by the following specification.
附图说明Description of drawings
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:In order to make the purpose of the present invention, technical solutions and advantages clearer, the present invention will be described in detail below in conjunction with the accompanying drawings, wherein:
图1为微纳米薄膜热流传感器设计示意图。Figure 1 is a schematic diagram of the design of the micro-nano film heat flow sensor.
图2为基片完成电镀镍后的结构示意图。Fig. 2 is a schematic diagram of the structure of the substrate after electroplating nickel.
图3为基片完成溅射钛后的结构示意图。FIG. 3 is a schematic diagram of the structure of the substrate after titanium sputtering is completed.
图4为基片完成旋涂聚酰亚胺后的结构示意图。Fig. 4 is a schematic diagram of the structure of the substrate after the spin-coating of polyimide is completed.
图5为曝光&显影工艺步骤示意图。Fig. 5 is a schematic diagram of exposure & development process steps.
图6为溅射沉积金属传感层示意图。Fig. 6 is a schematic diagram of a metal sensing layer deposited by sputtering.
图7为完成沉积两极传感回路后的示意图。Fig. 7 is a schematic diagram after the deposition of a two-pole sensing circuit is completed.
图8为完成RIE刻蚀后的三明治层状封装结构示意图。FIG. 8 is a schematic diagram of a sandwich layer package structure after RIE etching is completed.
图9为微纳米薄膜热流传感器核心工作层示意图。Fig. 9 is a schematic diagram of the core working layer of the micro-nano film heat flow sensor.
图10为传感器封装所需金属片的结构示意图。FIG. 10 is a schematic structural diagram of a metal sheet required for sensor packaging.
附图标记:1-金属基底、2-金属过渡层I、3-金属粘结层I、4-绝缘层I、5-光刻胶、6-金属传感层、601-金属层I、602-金属层II、603-金属层III、604-金属层IV、605-金属层V、606-金属层VI、7-金属保护片、8-补偿导线、9-焊盘、10-金属过渡层II、11-金属粘结层II、12-绝缘层II、13-金属过渡层III、14-金属粘结层III、15-环氧树脂、A-阴极、B-阳极、T0-下端感温接点、T1-上端感温接点。Reference signs: 1-metal substrate, 2-metal transition layer I, 3-metal bonding layer I, 4-insulating layer I, 5-photoresist, 6-metal sensing layer, 601-metal layer I, 602 -Metal layer II, 603-Metal layer III, 604-Metal layer IV, 605-Metal layer V, 606-Metal layer VI, 7-Metal protection sheet, 8-Compensation wire, 9-Pad, 10-Metal transition layer II, 11-metal bonding layer II, 12-insulating layer II, 13-metal transition layer III, 14-metal bonding layer III, 15-epoxy resin, A-cathode, B-anode, T0-lower temperature sensing Contact, T1-upper temperature-sensing contact.
具体实施方式detailed description
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that the diagrams provided in the following embodiments are only schematically illustrating the basic concept of the present invention, and the following embodiments and the features in the embodiments can be combined with each other in the case of no conflict.
其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本发明的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。Wherein, the accompanying drawings are for illustrative purposes only, and represent only schematic diagrams, rather than physical drawings, and should not be construed as limiting the present invention; in order to better illustrate the embodiments of the present invention, some parts of the accompanying drawings may be omitted, Enlargement or reduction does not represent the size of the actual product; for those skilled in the art, it is understandable that certain known structures and their descriptions in the drawings may be omitted.
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或组件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本发明的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。In the drawings of the embodiments of the present invention, the same or similar symbols correspond to the same or similar components; , "front", "rear" and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, which are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred devices or components must It has a specific orientation, is constructed and operated in a specific orientation, so the terms describing the positional relationship in the drawings are for illustrative purposes only, and should not be construed as limiting the present invention. For those of ordinary skill in the art, the understanding of the specific meaning of the above terms.
实施例1:Example 1:
请参阅图1至图10,一种基于金属衬底的微纳米薄膜热流传感器,主要包括金属基底(1)、金属过渡层I(2)、金属粘结层I(3)、绝缘层I(4)、光刻胶(5)、金属传感层(6)、金属过渡层II(10)、金属粘结层II(11)、绝缘层II(12)、金属保护片(7)、金属过渡层III(13)、金属粘结层III(14)和环氧树脂(15)。Please refer to Fig. 1 to Fig. 10, a kind of micronano film heat flow sensor based on metal substrate, mainly comprises metal substrate (1), metal transition layer I (2), metal bonding layer I (3), insulating layer I ( 4), photoresist (5), metal sensing layer (6), metal transition layer II (10), metal bonding layer II (11), insulating layer II (12), metal protection sheet (7), metal Transition layer III (13), metal bond layer III (14) and epoxy resin (15).
所述金属基底(1)为衬底,表面电镀有金属过渡层I(2)。金属基底(1)材料为铜。The metal base (1) is a substrate, and the surface is electroplated with a metal transition layer I (2). The material of the metal base (1) is copper.
所述金属过渡层I(2)表面溅射有金属粘结层I(3)。粘结层的材料为钛。The surface of the metal transition layer I(2) is sputtered with a metal bonding layer I(3). The material of the bonding layer is titanium.
所述金属粘接层I(3)表面涂覆有绝缘层I(4)。The surface of the metal bonding layer I(3) is coated with an insulating layer I(4).
制作时,所述绝缘层I(4)表面涂覆有光刻胶(5)。During manufacture, the surface of the insulating layer I (4) is coated with photoresist (5).
所述光刻胶(5)表面沉积金属传感层(6)。A metal sensing layer (6) is deposited on the surface of the photoresist (5).
所述金属传感层(6)表面电镀有金属过渡层II(10)。The surface of the metal sensing layer (6) is electroplated with a metal transition layer II (10).
所述金属传感层(6)包括第一极传感回路和第二极传感回路。The metal sensing layer (6) includes a first pole sensing loop and a second pole sensing loop.
所述第一极传感回路包括依次沉积的金属层I(601)、金属层II(602)和金属层III(603)。The first pole sensing loop includes metal layer I (601), metal layer II (602) and metal layer III (603) deposited in sequence.
所述第二极传感回路沉积在第一极传感回路的表面,包括依次沉积的金属层IV(604)、金属层V(605)和金属层VI(606)。金属层I(601)、金属层III(603)、金属层IV(604)和金属层VI(606)为粘结层,用于提高上一层和下一层的粘接性。The second pole sensing loop is deposited on the surface of the first pole sensing loop, including metal layer IV (604), metal layer V (605) and metal layer VI (606) deposited in sequence. Metal layer I ( 601 ), metal layer III ( 603 ), metal layer IV ( 604 ) and metal layer VI ( 606 ) are bonding layers, which are used to improve the adhesion between the upper layer and the lower layer.
所述金属过渡层II(10)表面溅射有金属粘结层II(11)。A metal bonding layer II (11) is sputtered on the surface of the metal transition layer II (10).
所述金属粘结层II(11)表面涂覆有绝缘层II(12)。The surface of the metal bonding layer II (11) is coated with an insulating layer II (12).
所述绝缘层II(12)的表面粘接金属保护片(7)。The surface of the insulating layer II (12) is bonded with a metal protection sheet (7).
所述金属保护片(7)的一个表面电镀有金属过渡层III(13),另一表面涂覆环氧树脂(15)。One surface of the metal protection sheet (7) is electroplated with a metal transition layer III (13), and the other surface is coated with epoxy resin (15).
所述绝缘层II(12)和金属粘结层III(14)表面粘接,从而令金属基底(1)和金属保护片(7)粘接。The insulating layer II (12) is bonded to the surface of the metal bonding layer III (14), so that the metal base (1) and the metal protection sheet (7) are bonded.
所述金属过渡层III(13)的溅射有金属粘结层III(14)。The metal transition layer III (13) is sputtered with a metal bonding layer III (14).
基于金属衬底的高温微纳米薄膜热流传感器上沉积若干组热电堆回路,实现局部区域内的多点检测。其中一组热电堆回路包括依次沉积的金属传感层(6)、金属过渡层II、金属粘结层II、绝缘层II和金属保护片(7)。Several sets of thermopile circuits are deposited on the high-temperature micro-nano thin-film heat flow sensor based on the metal substrate to realize multi-point detection in a local area. One set of thermopile circuits includes a metal sensing layer (6), a metal transition layer II, a metal bonding layer II, an insulating layer II and a metal protection sheet (7) deposited in sequence.
基于金属衬底的微纳米薄膜热流传感器耐400℃温度。The micro-nano thin-film heat flow sensor based on the metal substrate can withstand the temperature of 400°C.
基于金属衬底的微纳米薄膜热流传感器通过采集电势信号检测热流。The micro-nano film heat flow sensor based on metal substrate detects heat flow by collecting potential signals.
实施例2:Example 2:
一种基于金属衬底的微纳米薄膜热流传感器,主要结构见实施例1,其中,A micro-nano thin-film heat flow sensor based on a metal substrate, the main structure is shown in Example 1, wherein,
金属基底(1)的厚度为50μm;The metal base (1) has a thickness of 50 μm;
金属过渡层I(2)、金属过渡层II(10)的厚度为5μm;The thickness of metal transition layer I (2) and metal transition layer II (10) is 5 μm;
金属粘结层I(3)、金属粘结层II(11)的厚度为10nm;The thickness of metal bonding layer I (3), metal bonding layer II (11) is 10nm;
绝缘层I(4)、绝缘层II(12)的厚度为1μm;The thickness of insulating layer I (4) and insulating layer II (12) is 1 μm;
金属传感层(6)的厚度为300nm。The metal sensing layer (6) has a thickness of 300nm.
实施例3:Example 3:
一种基于金属衬底的微纳米薄膜热流传感器,主要结构见实施例1,其中,A micro-nano thin-film heat flow sensor based on a metal substrate, the main structure is shown in Example 1, wherein,
金属基底(1)的厚度为800μm;The metal base (1) has a thickness of 800 μm;
金属过渡层I(2)、金属过渡层II(10)的厚度为30μm;The thickness of metal transition layer I (2) and metal transition layer II (10) is 30 μm;
金属粘结层I(3)、金属粘结层II(11)的厚度为100nm;The thickness of metal bonding layer I (3), metal bonding layer II (11) is 100nm;
绝缘层I(4)、绝缘层II(12)的厚度为5μm;The thickness of insulating layer I (4) and insulating layer II (12) is 5 μm;
金属传感层(6)的厚度为900nm。The metal sensing layer (6) has a thickness of 900nm.
实施例4:Example 4:
一种基于金属衬底的微纳米薄膜热流传感器,主要结构见实施例1,其中,A micro-nano thin-film heat flow sensor based on a metal substrate, the main structure is shown in Example 1, wherein,
金属基底(1)的厚度为425μm;The metal base (1) has a thickness of 425 μm;
金属过渡层I(2)、金属过渡层II(10)的厚度为17.5μm;The thickness of metal transition layer I (2) and metal transition layer II (10) is 17.5 μm;
金属粘结层I(3)、金属粘结层II(11)的厚度为55nm;The thickness of metal bonding layer I (3), metal bonding layer II (11) is 55nm;
绝缘层I(4)、绝缘层II(12)的厚度为3μm;The thickness of insulating layer I (4) and insulating layer II (12) is 3 μm;
金属传感层(6)的厚度为600nm。The metal sensing layer (6) has a thickness of 600nm.
实施例5:Example 5:
一种基于金属衬底的微纳米薄膜热流传感器,主要如下:A micro-nano film heat flow sensor based on a metal substrate, mainly as follows:
以金属作为传感器的衬底基片,通过电镀、旋涂、光刻、磁控溅射等工艺步骤将过渡层、粘结层、绝缘层、传感层和保护层逐层沉积上去,形成典型的三明治层状结构;传感层的设计基于热电堆原理,即将多个K型热电偶进行串联,且采用两种不同镍基合金作为构成温差电偶回路的两极材料,通过放大后的温差电动势信号的采读来获得检测点热流值;在同一衬底基片的传感层上可以同时沉积多组热电堆回路,实现狭小局部区域内的多点检测,空间分辨率较高,且即使一个检测点损坏掉,剩余的其它检测点仍可正常工作,检测冗余性较好;传感器膜厚仅数百个纳米,线宽和热结点尺寸小,质量和热容量小,对热场的快速变化响应迅速,其响应时间可达微秒级,且对检测点的真实热场干扰破坏性较小;传感器采用导电性和导热性良好的金属作为保护层,且采用热稳定性和力学性能较好的高分子绝缘材料作为绝缘层,能可靠实现400℃环境下的热流检测;衬底基片上电镀一层与其相似且具有较好导热导电性和强度的金属作为过渡层;传感层合金材料上下分别溅射一层金属作为粘结层,以有效增强传感层与绝缘层之间的结合性,防止分层现象的产生;传感器焊盘采用可以耐高温的导电性粘结材料来作为导线连接材料,可确保传感器在长期高温环境下使用的可靠性和稳定性。Using metal as the substrate substrate of the sensor, the transition layer, bonding layer, insulating layer, sensing layer and protective layer are deposited layer by layer through electroplating, spin coating, photolithography, magnetron sputtering and other process steps to form a typical The sandwich layer structure; the design of the sensing layer is based on the thermopile principle, that is, multiple K-type thermocouples are connected in series, and two different nickel-based alloys are used as the bipolar materials that constitute the thermocouple circuit. Signal acquisition and reading to obtain the heat flow value of the detection point; multiple sets of thermopile circuits can be deposited on the sensing layer of the same substrate at the same time to achieve multi-point detection in a narrow local area, with high spatial resolution, and even one If the detection point is damaged, the remaining detection points can still work normally, and the detection redundancy is good; the film thickness of the sensor is only hundreds of nanometers, the line width and thermal junction size are small, the mass and heat capacity are small, and the rapid The change response is rapid, and its response time can reach the microsecond level, and it is less destructive to the real thermal field interference at the detection point; A good polymer insulating material is used as an insulating layer, which can reliably realize heat flow detection in an environment of 400°C; a layer of metal similar to it and having good thermal conductivity and strength is electroplated on the substrate as a transition layer; the alloy material of the sensing layer A layer of metal is sputtered on the top and bottom as the bonding layer to effectively enhance the bonding between the sensing layer and the insulating layer and prevent delamination; the sensor pad uses a conductive bonding material that can withstand high temperatures as a wire The connection material can ensure the reliability and stability of the sensor in long-term high-temperature environment.
采用导电性和导热性良好、熔点和硬度相对较高的金属作为传感器制作的衬底基片。Metals with good electrical and thermal conductivity, relatively high melting point and hardness are used as the substrate for the sensor.
传感器为典型的三明治层状结构,包含过渡层、粘结层、绝缘层、传感器和保护层,通过电镀、旋涂、光刻和磁控溅射等工艺实现依次逐层沉积。其中,过渡层厚度为5μm~30μm,粘结层厚度为10nm~100nm,绝缘层厚度为1μm~5μm、传感层厚度为300nm~900nm。The sensor is a typical sandwich layer structure, including transition layer, bonding layer, insulating layer, sensor and protective layer, which are sequentially deposited layer by layer through processes such as electroplating, spin coating, photolithography and magnetron sputtering. Wherein, the thickness of the transition layer is 5 μm-30 μm, the thickness of the bonding layer is 10 nm-100 nm, the thickness of the insulating layer is 1 μm-5 μm, and the thickness of the sensing layer is 300 nm-900 nm.
传感器的设计基于串联多组K型热电偶的热电堆原理,采用NiCr—NiAlMnSi、NiCr—NiAl、NiCr—NiSi合金作为构成温差电偶回路的两极材料。The design of the sensor is based on the thermopile principle of multiple sets of K-type thermocouples in series, and NiCr-NiAlMnSi, NiCr-NiAl, NiCr-NiSi alloys are used as the two-pole materials forming the thermocouple circuit.
在同一衬底基片的传感层上同时沉积多组热电堆回路,实现狭小局部区域内的多点检测。Multiple sets of thermopile circuits are simultaneously deposited on the sensing layer of the same substrate to realize multi-point detection in a narrow local area.
传感器膜厚薄至数百个纳米,线宽和热结点尺寸小,质量和热容量小,可快速反映热场瞬态变化,其响应时间可达微秒级,且对检测点的真实热场干扰破坏性较小。The film thickness of the sensor is as thin as hundreds of nanometers, the line width and thermal junction size are small, the mass and heat capacity are small, and it can quickly reflect the transient changes of the thermal field, and its response time can reach the microsecond level, and it does not interfere with the real thermal field of the detection point Less destructive.
传感器采用热稳定性和力学性能较好的聚酰亚胺作为绝缘层,能可靠实现400℃环境下的热流检测。The sensor uses polyimide with good thermal stability and mechanical properties as the insulating layer, which can reliably realize heat flow detection in an environment of 400 °C.
过渡层表面上溅射一层金属钛作为粘结层,以有效增强金属衬底基片与绝缘层的结合性。A layer of metal titanium is sputtered on the surface of the transition layer as a bonding layer to effectively enhance the bonding between the metal substrate and the insulating layer.
传感器传感层上下分别溅射一层金属钛作为粘结层,以有效增强传感层与绝缘层之间的结合性。A layer of metal titanium is sputtered on the top and bottom of the sensing layer of the sensor as a bonding layer to effectively enhance the bonding between the sensing layer and the insulating layer.
传感器焊盘采用可以双组分导电银胶来作为导线连接材料,可确保传感器在长期高温环境下使用的可靠性和稳定性。The sensor pad uses two-component conductive silver glue as the wire connection material to ensure the reliability and stability of the sensor in long-term high-temperature environments.
其中,金属衬底的微纳米薄膜热流传感器的阴极记为A,阳极记为B,上端感温接点记为T1,下端感温接点记为T0。Among them, the cathode of the micro-nano thin-film heat flow sensor on the metal substrate is marked as A, the anode is marked as B, the upper temperature-sensing contact is marked as T1, and the lower-end temperature-sensing contact is marked as T0.
实施例6:Embodiment 6:
一种基于金属衬底的微纳米薄膜热流传感器的制作方法,主要包括以下步骤:A method for manufacturing a micro-nano thin-film heat flow sensor based on a metal substrate, mainly comprising the following steps:
1)选取用于传感器沉积的金属基底(1)。1) Select the metal substrate (1) for sensor deposition.
金属基底(1)表面粗糙度范围为100nm~400nm。The surface roughness of the metal substrate (1) ranges from 100nm to 400nm.
2)对金属基底(1)进行研磨和化学机械抛光,并通过磁控溅射工艺在金属基底(1)表面沉积金属过渡层I(2)。2) Grinding and chemical-mechanical polishing the metal substrate (1), and depositing a metal transition layer I (2) on the surface of the metal substrate (1) through a magnetron sputtering process.
3)通过磁控溅射工艺在金属过渡层I(2)表面上沉积金属粘结层I(3)。3) Depositing the metal bonding layer I(3) on the surface of the metal transition layer I(2) by magnetron sputtering process.
4)通过匀胶旋涂工艺在金属粘结层I(3)表面上涂覆绝缘层I(4),并在热板和烘箱中分别进行软烘和固化。4) Coating the insulating layer I(4) on the surface of the metal bonding layer I(3) by a spin-coating process, and performing soft drying and curing on a hot plate and an oven, respectively.
5)通过匀胶旋涂工艺在绝缘层I(4)表面上涂覆光刻胶(5),并在热板上对金属基底(1)进行前烘。在光刻机上采用掩模板进行曝光。曝光后,在热板上对金属基底1进行后烘。将金属基底(1)放置于显影液中进行显影,烘干后得到传感器图版。5) Coating a photoresist (5) on the surface of the insulating layer I (4) by a spin-coating process, and pre-baking the metal substrate (1) on a hot plate. Exposure is performed on a photolithography machine using a mask. After exposure, the
6)通过磁控溅射工艺在光刻胶层表面上沉积金属传感层(6),主要步骤为:6) Depositing a metal sensing layer (6) on the surface of the photoresist layer by a magnetron sputtering process, the main steps are:
6.1)在光刻胶层表面依次沉积金属层I(601)、金属层II(602)和金属层III(603),形成第一极传感回路。6.1) Metal layer I (601), metal layer II (602) and metal layer III (603) are sequentially deposited on the surface of the photoresist layer to form a first pole sensing circuit.
6.2)在第一极传感回路表面依次沉积金属层IV(604)、金属层V(605)和金属层VI(606),形成第二极传感回路后,放置于丙酮中进行浸泡剥离光刻胶(5)后烘干。6.2) Deposit metal layer IV (604), metal layer V (605) and metal layer VI (606) sequentially on the surface of the first-pole sensing circuit to form the second-pole sensing circuit, then place it in acetone for soaking and stripping Carving (5) and then drying.
7)基于传感器图版,切割出金属保护片(7)。7) Based on the sensor plate, cut out the metal protection sheet (7).
所述金属保护片(7)为圆冠形。The metal protection sheet (7) is in the shape of a round crown.
8)在金属保护片(7)的表面采用电镀工艺沉积金属过渡层III(13),再通过磁控溅射工艺在金属过渡层III(13)表面沉积金属粘结层III(14)。8) Depositing a metal transition layer III (13) on the surface of the metal protection sheet (7) by electroplating, and then depositing a metal bonding layer III (14) on the surface of the metal transition layer III (13) by magnetron sputtering.
9)通过匀胶旋涂工艺在金属传感层(6)表面涂覆绝缘层II(12)。9) Coating an insulating layer II (12) on the surface of the metal sensing layer (6) by means of a spin-coating process.
10)利用绝缘层II的粘接性将金属保护片(7)贴合到金属基片(1)上,并裸露出焊盘(9)。10) Using the adhesiveness of the insulating layer II, attach the metal protection sheet (7) to the metal substrate (1), and expose the pad (9).
11)对贴合有金属保护片(7)的金属基片(1)进行烘烤固化,再通过等离子刻蚀工艺去除掉焊盘(9)表面的绝缘层。11) Baking and curing the metal substrate (1) bonded with the metal protection sheet (7), and then removing the insulating layer on the surface of the pad (9) through a plasma etching process.
12)采用导电银胶将焊盘(9)与补偿导线(8)连接,然后经热板烘烤后,在表面涂覆环氧树脂。对环氧树脂(15)进行固化。12) Connect the pad (9) to the compensation wire (8) with conductive silver glue, and then coat the surface with epoxy resin after baking on a hot plate. The epoxy resin (15) is cured.
补偿导线(8)的直径范围为0.2mm~0.5mm。The diameter of the compensation wire (8) ranges from 0.2 mm to 0.5 mm.
实施例7:Embodiment 7:
一种基于金属衬底的微纳米薄膜热流传感器的制作方法,主要如下:A method for manufacturing a micro-nano film heat flow sensor based on a metal substrate, mainly as follows:
1)根据热流检测的要求,设计并制造出微纳米薄膜热流传感器,包括传感器的形状、尺寸及数量,见图1所示。1) According to the requirements of heat flow detection, design and manufacture micro-nano film heat flow sensors, including the shape, size and quantity of the sensors, as shown in Figure 1.
2)采用直径4”、厚度800μm金属作为传感器沉积的衬底基片,铜片经抛光打磨后表面沉积一层厚度5μm~30μm的金属过渡层,见图2所示。2) A metal with a diameter of 4” and a thickness of 800 μm is used as the substrate substrate for sensor deposition. After the copper sheet is polished and polished, a metal transition layer with a thickness of 5 μm to 30 μm is deposited on the surface, as shown in Figure 2.
3)通过磁控溅射工艺在过渡层表面上沉积一层厚度10nm~100nm的金属钛,见图3所示。3) Deposit a layer of metal titanium with a thickness of 10nm-100nm on the surface of the transition layer by a magnetron sputtering process, as shown in FIG. 3 .
4)通过匀胶旋涂工艺在钛层表面上涂上一层厚度1μm~5μm的有机高分子材料聚酰亚胺,并在热板和烘箱中分别进行软烘和固化,见图4所示。4) Coat a layer of polyimide, an organic polymer material with a thickness of 1 μm to 5 μm, on the surface of the titanium layer through the spin coating process, and perform soft drying and curing on a hot plate and an oven, as shown in Figure 4 .
5)通过匀胶旋涂工艺在绝缘层表面上涂上一层厚度1μm~5μm的光刻胶,并在热板上进行前烘,然后在光刻机上采用掩模板进行曝光,完毕后再放置于热板上进行后烘,随后放置于显影液中进行显影,待清洗吹干后便会形成传感器形状及尺寸的图版,见图5所示。5) Coat a layer of photoresist with a thickness of 1 μm to 5 μm on the surface of the insulating layer through a uniform coating and spin coating process, and perform pre-baking on a hot plate, and then use a mask to expose on a photolithography machine, and then place it Post-baking on a hot plate, and then placed in a developer solution for development, after cleaning and drying, a plate of the shape and size of the sensor will be formed, as shown in Figure 5.
6)通过磁控溅射工艺在光刻胶层表面上依次沉积三层金属,分别为厚度10nm~100nm的金属钛、厚度300nm~900nm的镍基合金和厚度10nm~100nm的金属钛,形成第一极传感回路。6) Three layers of metal are sequentially deposited on the surface of the photoresist layer by magnetron sputtering, which are metal titanium with a thickness of 10nm to 100nm, nickel-based alloy with a thickness of 300nm to 900nm, and titanium metal with a thickness of 10nm to 100nm to form the first One pole sensing loop.
7)重复上述工艺步骤,依次将金属钛、另一极镍基合金、金属钛沉积上去,形成第二极传感回路后,放置于丙酮中进行浸泡剥离光刻胶后烘干,见图6与图7所示。7) Repeat the above process steps, deposit metal titanium, another pole nickel-based alloy, and metal titanium in sequence to form the second pole sensing circuit, place it in acetone for soaking and peel off the photoresist, and then dry it, as shown in Figure 6 with Figure 7.
8)按照传感器尺寸特点切割好呈圆冠形的保护层金属片,并同样采用电镀工艺和磁控溅射工艺依次分别沉积过渡层和粘结层。8) According to the size characteristics of the sensor, the metal sheet of the protective layer in the shape of a circular crown is cut, and the transition layer and the bonding layer are sequentially deposited by the electroplating process and the magnetron sputtering process respectively.
9)通过匀胶旋涂工艺在制作完成的传感层上再涂上一层厚度1μm~5μm的聚酰亚胺,利用其粘接性将上一步处理好的铜片贴合到基片上,恰好裸露出焊盘部位,然后进行烘烤固化以形成三明治层状封装结构,最后再通过等离子刻蚀工艺去除掉焊盘表面的绝缘层,露出引线用的焊盘,见图8所示。9) Apply a layer of polyimide with a thickness of 1 μm to 5 μm on the finished sensing layer through the spin-coating process, and use its adhesiveness to bond the copper sheet processed in the previous step to the substrate. The pads are just exposed, and then baked and solidified to form a sandwich layer packaging structure. Finally, the insulating layer on the surface of the pads is removed by plasma etching to expose the pads for wiring, as shown in Figure 8.
10)采用导电银胶对传感层上所有焊盘连接补偿导线,经热板烘烤固化后再涂抹上一层环氧树脂,再经10小时~36小时的时效固化后即完成整个传感器的制作,其通过采集电势信号来检测热流,传感层为其核心工作层,见图9所示。10) Use conductive silver glue to connect compensation wires to all pads on the sensing layer, apply a layer of epoxy resin after baking and curing on a hot plate, and then complete the entire sensor after 10 hours to 36 hours of aging curing. production, which detects heat flow by collecting potential signals, and the sensing layer is its core working layer, as shown in Figure 9.
实施例8:Embodiment 8:
一种基于金属衬底的微纳米薄膜热流传感器的制作方法,主要如下:A method for manufacturing a micro-nano film heat flow sensor based on a metal substrate, mainly as follows:
1)首先根据热流检测的要求,设计出微纳米薄膜热流传感器,如图1所示,其中包括传感器的形状、尺寸以及数量。传感器的设计基于塞贝克效应热电原理及串联多组K型热电偶的热电堆原理,即:两种不同的导体分别作为阳极和阴极,其两端相互紧密地连接在一起,组成一个闭合回路,当两接点温度不等时T1>T0,回路中就会产生电动势,从而形成热电流;将多组物理性能相同的热电偶进行串联以组成热电堆,则传热方向上两点间的温差电势会放大,且放大倍数取决于串联组数。热电堆的一个关键指标为灵敏度,即单位热流下的热电势输出,其值取决于基片材质导热率、热电偶串联组数和上下两端感温接点之间的距离,且满足,良好的设计必须确保具有足够大的灵敏度。传感器采用多组K型热电偶串联而成的热电堆,并选用K型热电偶合金作为传感层。根据需求在基片上布置多组传感器,且每组传感器可布置多对温差电偶热电堆回路,回路走线设计应尽量对称美观并便于切割加工,同时在考虑传感器的平面尺寸时还应兼顾传感器制作的成功率,即单个电极的线宽尺寸以及每一对电极之间的距离不宜过小,另外为减小引线连接的难度以及保证每一对焊盘之间的绝缘,单个正方形焊盘的边长尺寸和每一对焊盘之间的距离也不宜太小。1) Firstly, according to the requirements of heat flow detection, a micro-nano film heat flow sensor is designed, as shown in Figure 1, including the shape, size and quantity of the sensor. The design of the sensor is based on the thermoelectric principle of the Seebeck effect and the thermopile principle of multiple sets of K-type thermocouples in series, that is, two different conductors are used as anode and cathode respectively, and their two ends are closely connected to each other to form a closed loop. When the temperature of the two junctions is not equal, T1>T0, an electromotive force will be generated in the circuit, thereby forming a thermal current; multiple sets of thermocouples with the same physical properties are connected in series to form a thermopile, and the temperature difference between two points in the heat transfer direction It will be enlarged, and the magnification depends on the number of series groups. A key indicator of the thermopile is sensitivity, that is, the thermoelectric potential output per unit heat flow, and its value depends on the thermal conductivity of the substrate material, the number of thermocouples in series and the distance between the temperature-sensing junctions at the upper and lower ends, and satisfies, good The design must ensure sufficient sensitivity. The sensor adopts a thermopile composed of multiple sets of K-type thermocouples connected in series, and uses a K-type thermocouple alloy as the sensing layer. Multiple sets of sensors are arranged on the substrate according to requirements, and each set of sensors can be arranged with multiple pairs of thermocouple thermopile circuits. The design of the circuit wiring should be as symmetrical and beautiful as possible and easy to cut and process. At the same time, the sensor should also be considered when considering the plane size of the sensor. The success rate of production, that is, the line width of a single electrode and the distance between each pair of electrodes should not be too small. In addition, in order to reduce the difficulty of wire connection and ensure the insulation between each pair of pads, the single square pad The side length dimension and the distance between each pair of pads should also not be too small.
2)采用直径4”、厚度800μm金属铜片作为传感器沉积的衬底基片,铜的熔点约为1083℃、沸点约为2567℃、维氏硬度约为350MPa,具有良好的延展性和导热导电性能,且为不太活泼的重金属,从导热性和材料强度两方面综合考虑,选择其作为保护层是比较合适的。铜片经过抛光打磨处理后,应确保表面粗糙度低、表面平整光滑、无明显划痕凹坑等缺陷,进行基片清洗、沉积过渡层等前处理。2) Use a metal copper sheet with a diameter of 4” and a thickness of 800 μm as the substrate for sensor deposition. The melting point of copper is about 1083°C, the boiling point is about 2567°C, and the Vickers hardness is about 350MPa. It has good ductility and thermal conductivity. performance, and it is a heavy metal that is not very active. Considering the thermal conductivity and material strength, it is more appropriate to choose it as a protective layer. After the copper sheet is polished and polished, it should ensure that the surface roughness is low, the surface is smooth, There are no obvious defects such as scratches and pits, and pretreatments such as substrate cleaning and deposition of transition layers are carried out.
为增强金属衬底基片与后续绝缘层间的结合性,需要在过渡层表面上通过磁控溅射工艺沉积一层厚度10nm~100nm的金属钛作为粘结层,如图3所示,若基片表面较为粗糙,沉积厚度可适当增大。所谓溅射,即采用带有数十电子伏特以上动能的等离子体轰击固体靶材表面,表面附近的原子获得入射粒子所带的部分能量,当足以克服束缚能时,这些原子就会脱离固体而进入真空室,随后沉积到基底上。具体的溅射工艺参数为:溅射功率200W~600W、溅射速率10nm/min~20nm/min、溅射时间2min~6min,当然对于不同的设备平台,参数可能会有所调整。In order to enhance the bonding between the metal substrate substrate and the subsequent insulating layer, it is necessary to deposit a layer of titanium metal with a thickness of 10nm to 100nm on the surface of the transition layer by magnetron sputtering as a bonding layer, as shown in Figure 3, if The surface of the substrate is relatively rough, and the deposition thickness can be appropriately increased. The so-called sputtering is the use of plasma with kinetic energy above tens of electron volts to bombard the surface of a solid target, and the atoms near the surface obtain part of the energy carried by the incident particles. When it is enough to overcome the binding energy, these atoms will break away from the solid and become into a vacuum chamber and subsequently deposited onto a substrate. The specific sputtering process parameters are: sputtering power 200W~600W, sputtering rate 10nm/min~20nm/min, sputtering time 2min~6min, of course, the parameters may be adjusted for different equipment platforms.
3)接下来需要制作绝缘层,即通过匀胶旋涂工艺在钛层表面上涂上一层聚酰亚胺,其热学和力学综合性能良好,热分解温度高达500℃~600℃,长期使用温度范围-200℃~300℃,无明显熔点,可谓热稳定性最好的聚合物之一,同时具有优良的力学性能和耐热老化性能,其拉伸强度约为170MPa~400MPa,弹性模量约为3GPa~4GPa,经200℃、1500小时老化处理后的拉伸强度降低很少,其具有高绝缘性能,介电常数通常在3.4左右,介电损耗仅0.004~0.007,属于F至H级绝缘材料。首先,采用匀胶机在基片上进行旋涂。然后,在热板上进行软烘。接着,在烘箱中进行烘烤固化。基于良好导热和绝缘保护的综合考虑,该绝缘层厚度控制在烘烤固化后0.5μm~5μm比较合适。3) Next, it is necessary to make an insulating layer, that is, to coat a layer of polyimide on the surface of the titanium layer through a uniform coating process. Temperature range -200℃~300℃, no obvious melting point, it can be said to be one of the polymers with the best thermal stability, and has excellent mechanical properties and heat aging resistance, its tensile strength is about 170MPa~400MPa, elastic modulus It is about 3GPa~4GPa, and after 200℃ and 1500 hours of aging treatment, the tensile strength decreases very little. It has high insulation performance, the dielectric constant is usually around 3.4, and the dielectric loss is only 0.004~0.007. It belongs to F to H grade. Insulation Materials. First, spin coating is performed on the substrate using a coater. Then, soft bake on a hot plate. Next, it is baked and cured in an oven. Based on the comprehensive consideration of good thermal conductivity and insulation protection, it is more appropriate to control the thickness of the insulating layer at 0.5 μm to 5 μm after baking and curing.
4)为了将所设计的传感器图版制作出来以开展下一步金属传感层的溅射沉积,接下来需要通过匀胶旋涂工艺在绝缘层表面上涂上一层厚度1μm~5μm的光刻胶。然后,在热板上进行前烘,以除去光刻胶中的溶剂而增强粘附性。接着,将前烘好的基片放在光刻机上进行曝光。曝光完毕后,将基片放置于热板上进行后烘,以激发化学增强光刻胶的PAG光敏产酸剂产生的酸与光刻胶上的保护基团发生反应并移除基团使之能溶解于显影液,同时减少驻波效应。随后,将后烘完的基片放置到显影液中进行显影,待显影完毕后,采用去离子水进行清洗,并用氮气吹干,最终形成传感器形状及尺寸的图版,如图5所示。4) In order to make the designed sensor plate to carry out the sputtering deposition of the metal sensing layer in the next step, it is necessary to coat a layer of photoresist with a thickness of 1 μm to 5 μm on the surface of the insulating layer through a spin-coating process. . Then, a pre-bake is performed on a hot plate to remove solvent from the photoresist and enhance adhesion. Next, the pre-baked substrate is placed on a photolithography machine for exposure. After the exposure, the substrate is placed on a hot plate for post-baking to stimulate the acid produced by the PAG photosensitive acid generator of the chemically amplified photoresist to react with the protective group on the photoresist and remove the group to make it Can be dissolved in the developer solution, while reducing the standing wave effect. Subsequently, the post-baked substrate was placed in a developer for development. After the development was completed, it was cleaned with deionized water and dried with nitrogen to finally form a plate of the shape and size of the sensor, as shown in Figure 5.
5)接下来,开始制作最核心的金属传感层。首先,按第3步所述工艺方法溅射一层10nm~100nm厚的金属钛。再通过磁控溅射沉积一层厚度300~900nm的镍基合金,具体的溅射工艺参数为:溅射功率200W~600W、溅射速率10nm/min~20nm/min、溅射时间30min~80min,当然对于不同的设备平台,参数可能会有所调整。然后,再按第3步所述工艺方法溅射一层10~100nm厚的金属钛。待沉积完毕后,完成第一极传感回路的沉积,如图6所示。5) Next, start to make the core metal sensing layer. First, sputter a layer of metal titanium with a thickness of 10nm-100nm according to the process method described in
6)重复上述工艺步骤,再溅射沉积一层10nm~100nm厚的金属钛。接着溅射沉积一层厚度300nm~900nm的另一极镍基合金,具体的溅射工艺参数为:溅射功率200W~600W、溅射速率10nm/min~20nm/min、溅射时间30min~80min,当然对于不同的设备平台,参数可能会有所调整。然后再溅射沉积一层10nm~100nm厚的金属钛。沉积完毕后完成第二极传感回路的沉积,经浸泡剥离光刻胶后清洗吹干,如图7所示。至此,即已完成最核心的传感层制作。6) Repeat the above process steps, and then sputter deposit a layer of titanium metal with a thickness of 10nm-100nm. Then sputter deposit another layer of nickel-based alloy with a thickness of 300nm~900nm. The specific sputtering process parameters are: sputtering power 200W~600W, sputtering rate 10nm/min~20nm/min, sputtering time 30min~80min , of course, the parameters may be adjusted for different device platforms. Then a layer of metal titanium with a thickness of 10nm-100nm is deposited by sputtering. After the deposition is completed, the deposition of the second electrode sensing circuit is completed, the photoresist is peeled off after soaking, and then cleaned and dried, as shown in FIG. 7 . So far, the production of the core sensing layer has been completed.
7)为防止薄膜传感器在恶劣环境中受到磨损和侵蚀以强化其耐用性,需要对其进行封装保护。首先按照传感器尺寸特点切割好呈圆冠形的铜片,然后同样采用电镀工艺和磁控溅射工艺在铜片表面上依次分别沉积一层厚度5μm~30μm的过渡层金属和一层厚度10nm~100nm的粘结层金属钛,为下一步的封装做好准备,如图10所示。7) In order to prevent the thin-film sensor from being worn and eroded in harsh environments to enhance its durability, it needs to be packaged for protection. First, cut the copper sheet in the shape of a round crown according to the size characteristics of the sensor, and then use the electroplating process and magnetron sputtering process to deposit a layer of transition layer metal with a thickness of 5 μm to 30 μm and a layer of transition layer metal with a thickness of 10nm. The 100nm bonding layer metal titanium is ready for the next step of packaging, as shown in Figure 10.
8)接下来,首先通过匀胶旋涂工艺在已制作完成的传感层上再涂上一层厚度1~5μm的聚酰亚胺,利用其粘接性将上一步准备好的铜片贴合到基片上,恰好裸露出焊盘部位,然后在烘箱中进行烘烤固化,以形成三明治层状封装结构,最后再通过等离子刻蚀工艺去除掉焊盘表面的绝缘层,露出引线用的焊盘。8) Next, first coat the finished sensing layer with a layer of polyimide with a thickness of 1-5 μm through the spin-coating process, and use its adhesiveness to paste the copper sheet prepared in the previous step. bonded to the substrate, just to expose the pads, and then bake and solidify in an oven to form a sandwich layer package structure, and finally remove the insulating layer on the surface of the pads by plasma etching to expose the solder for the leads. plate.
9)下一步进行最后的连线步骤。首先采用导电银胶对传感层上所有焊盘连接直径0.2mm~0.5mm的补偿导线,然后经热板烘烤后,涂抹上一层环氧树脂进行覆盖,以减少外力对连线与焊盘结合部位的影响,防止连线断开,再经10小时~36小时的时效固化后,即完成整个传感器的制作,其通过采集电势信号来检测热流,传感层为其核心工作层,见图9所示。9) The next step is the final connection step. First, use conductive silver glue to connect compensation wires with a diameter of 0.2mm to 0.5mm to all pads on the sensing layer, and then after baking on a hot plate, apply a layer of epoxy resin to cover it to reduce the external force on the connection wires and soldering wires. Influenced by the bonding part of the disk to prevent the disconnection of the connection, after 10 hours to 36 hours of aging curing, the production of the entire sensor is completed. It detects the heat flow by collecting potential signals, and the sensing layer is its core working layer. See Figure 9 shows.
本发明提出的基于金属衬底的微纳米薄膜传感器尺寸小、响应快,对原始热场的干扰较小,可以及时准确地捕捉到热场的瞬时动态变化,获取瞬态热流,可以灵活方便地安装在狭小空间中以及更接近待测点进行检测,可以根据需求在一个检测区域同时布置多组热电堆回路以实现局部多点检测;基于熔点硬度相对较高以及导热导电性能良好的金属铜衬底的三明治层状封装结构方式,使得传感器具有良好的耐高温高压性能和抗干扰性能,可有效避免磨损和侵蚀,能有效保障薄膜传感器在恶劣工业环境中的使用效果,并有助于大幅提升其耐用性及使用寿命。本发明可显着改进传统热流检测组件在空间尺寸、动态响应以及封装保护等方面的技术限制和弊端,为传统热流检测方式的优化创新提供了重要的硬件基础和技术手段,值得在各种热流检测领域中加以推广应用。The metal substrate-based micro-nano film sensor proposed by the present invention has small size, fast response, and less interference to the original thermal field. Installed in a narrow space and closer to the point to be tested for detection, multiple sets of thermopile circuits can be arranged in one detection area at the same time according to requirements to achieve local multi-point detection; based on metal copper lining with relatively high melting point hardness and good thermal and electrical conductivity The sandwich layer packaging structure at the bottom makes the sensor have good high temperature and high pressure resistance and anti-interference performance, which can effectively avoid wear and erosion, can effectively guarantee the use effect of thin film sensors in harsh industrial environments, and help to greatly improve Its durability and service life. The invention can significantly improve the technical limitations and drawbacks of traditional heat flow detection components in terms of space size, dynamic response and packaging protection, etc., and provides an important hardware foundation and technical means for the optimization and innovation of traditional heat flow detection methods. application in the detection field.
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it is noted that the above embodiments are only used to illustrate the technical solutions of the present invention without limitation. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be carried out Modifications or equivalent replacements, without departing from the spirit and scope of the technical solution, should be included in the scope of the claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211247445.0A CN115589760A (en) | 2022-10-12 | 2022-10-12 | A metal substrate-based micro-nano film heat flow sensor and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211247445.0A CN115589760A (en) | 2022-10-12 | 2022-10-12 | A metal substrate-based micro-nano film heat flow sensor and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115589760A true CN115589760A (en) | 2023-01-10 |
Family
ID=84779229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211247445.0A Pending CN115589760A (en) | 2022-10-12 | 2022-10-12 | A metal substrate-based micro-nano film heat flow sensor and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115589760A (en) |
-
2022
- 2022-10-12 CN CN202211247445.0A patent/CN115589760A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105755438B (en) | A kind of high-temperature self-compensating multi-layer compound film strain gauge and preparation method thereof | |
CN106403804B (en) | A kind of high temperature synchronous compensation film strain gauge and its preparation method | |
CN109338290B (en) | Film temperature sensor for turbine blade of aircraft engine | |
CN110487166A (en) | Thin film strain sensors preparation method | |
CN113097590B (en) | A lithium battery current collector with temperature sensing function and preparation method thereof | |
US2885524A (en) | Electric resistance devices | |
CN103604521B (en) | Temperature-sensitivprobe probe and preparation method thereof | |
CN108088610B (en) | High temperature film strain gauge with composite protective layer and preparation method thereof | |
CN106225959A (en) | A kind of fexible film heat flow transducer and preparation method thereof | |
US10680155B2 (en) | Methods of fabrication of flexible micro-thermoelectric generators | |
CN104655306A (en) | Micro temperature sensor chip provided with tungsten-rhenium film thermocouple and manufacturing method of chip | |
CN107164788A (en) | Mask plate and preparation method thereof | |
CN103900727A (en) | Thin film sensor for transient temperature measurement and manufacturing method thereof | |
CN115589760A (en) | A metal substrate-based micro-nano film heat flow sensor and its manufacturing method | |
JPH06338636A (en) | Manufacture of thermoelectric generating element | |
CN115605067A (en) | High temperature resistant micro-nano film temperature sensor based on metal substrate and manufacturing method | |
CN115615569A (en) | A metal substrate-based micro-nano film temperature sensor and its manufacturing method | |
CN115597735B (en) | A method for manufacturing a metal embedded micro-nano film temperature sensor | |
CN115615568A (en) | Micro-nano film heat flow sensor based on metal substrate and manufacturing method thereof | |
CN115512875B (en) | A metal embedded micro-nano film thermal flow sensor | |
CN115597735A (en) | Manufacturing method of metal embedded micro-nano film temperature sensor | |
CN113241399B (en) | High-density thermoelectric thick film device based on pulse laser direct writing technology and manufacturing method thereof | |
CN113432742A (en) | Resistance type temperature sensor and preparation method and application thereof | |
CN106356169A (en) | Resistor manufacturing method | |
CN209342746U (en) | A wind speed sensor with double heating electrodes and wide range |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |