CN115583672A - 一种四元钠离子电池正极材料及包括该正极材料的钠离子电池 - Google Patents

一种四元钠离子电池正极材料及包括该正极材料的钠离子电池 Download PDF

Info

Publication number
CN115583672A
CN115583672A CN202211264534.6A CN202211264534A CN115583672A CN 115583672 A CN115583672 A CN 115583672A CN 202211264534 A CN202211264534 A CN 202211264534A CN 115583672 A CN115583672 A CN 115583672A
Authority
CN
China
Prior art keywords
ion battery
sodium
positive electrode
quaternary
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211264534.6A
Other languages
English (en)
Other versions
CN115583672B (zh
Inventor
冷明哲
周战荣
沈晓芳
占雪峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rocket Force University of Engineering of PLA
Original Assignee
Rocket Force University of Engineering of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rocket Force University of Engineering of PLA filed Critical Rocket Force University of Engineering of PLA
Priority to CN202211264534.6A priority Critical patent/CN115583672B/zh
Publication of CN115583672A publication Critical patent/CN115583672A/zh
Application granted granted Critical
Publication of CN115583672B publication Critical patent/CN115583672B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种四元钠离子电池正极材料及包括该正极材料的钠离子电池。该四元钠离子电池正极材料,具有如下通式:NaNi0.5– xMn0.3Ti0.2SbxO2,所述正极材料为O3相,x为0.01‑0.05。其制备方法,包括步骤:按照正极材料中Na、Ni、Mn、Ti、Sb元素的摩尔比为1.05:0.5‑x:0.3:0.2:x的比例,将Na2CO3、NiO、MnO2、TiO2和Sb2O5混合,经过研磨、压片,然后经两次热处理,即得到四元钠离子电池正极材料。本发明所得正极材料具有利于长循环充放电的稳定结构,将其应用于钠离子电池,所得电池具有较高的放电容量、倍率性能以及较高的循环稳定性等电化学性能。

Description

一种四元钠离子电池正极材料及包括该正极材料的钠离子 电池
技术领域
本发明涉及一种四元钠离子电池正极材料及包括该正极材料的钠离子电池,属于钠离子电池技术领域。
背景技术
自锂离子电池成功商业化以来,锂离子电池已广泛应用于便携式电子设备、电动汽车和电化学储能等领域。但锂资源有限,在少数国家分布不均匀,而钠是地球上第六大最丰富的元素,分布广泛。更重要的是,由于锂和钠的化学性质相似,钠离子电池表现出与锂离子电池相似的工作原理。因此,钠离子电池在大规模电能存储领域的应用受到了广泛关注。
正极材料在实现钠离子电池的高能量密度和低成本生产方面发挥着重要作用,所以研究具有良好存储性能的钠离子电池正极材料充满挑战性和紧迫性。正极材料主要包括过渡金属层状氧化物、聚阴离子化合物、普鲁士蓝类似物等。其中层状氧化物NaxTMO2(TM指过渡金属,0<x≤1)因其能量密度高、种类丰富、合成工艺简单,是最具竞争力的正极材料之一。根据Delmas等提出的分类,NaxTMO2可分为P2型(ABBA叠加模式,Na+占据三角棱柱位)和O3型(ABCABC叠加模式,Na+占据八面体位)。然而,P2型和O3型层状氧化物在充放电过程中都存在相变问题,这是导致电池容量衰减的重要元凶。
在已报道的各种O3型NaxTMO2材料中,含Ni和Mn的NaxTMO2因Ni/Mn资源的丰富度和较高的存储容量而备受关注。例如O3型NaNi0.5Mn0.5O2具有高可逆容量(133mAh g-1),良好的倍率性能(30C,40mAh g-1)和长循环寿命(3.75C下500循环后容量保持达70%)。但仍存在一些制约其发展的问题,如倍率性能还有待提高,充放电过程中相变复杂,特别是在4.1-4.5V的高压下,容量发生迅速衰减。近年来的研究表明,采用部分元素掺杂能有效地提高相变的可逆性。例如Ti掺杂的Na0.9Ni0.4Mn0.4Ti0.2O2在2.5-4.2V间具有更可逆的O3-P3相变,与无Ti掺杂的正极材料相比,它具有更高的容量(197mAhg-1)和稳定的循环性能。通过Fe掺杂的NaFe0.2Mn0.4Ni0.4O2在4.0-4.3V范围内具有较高的可逆容量(165mAh g-1)和稳定的相变(200次循环后容量保持率达87%)。但是上述正极材料的循环稳定性和倍率性能有待提高。
因此,开发在较宽的电压范围稳定的材料结构和优越的倍率性能的O3型层状氧化物正极材料对于钠离子电池具有重要意义。
发明内容
针对现有技术的不足,本发明提供了一种四元钠离子电池正极材料及包括该正极材料的钠离子电池。本发明采用简单固相法制备得到了钠离子电池层状氧化物正极材料,所得正极材料具有利于长循环充放电的稳定结构,将其应用于钠离子电池,具有较高的放电容量、倍率性能以及较高的循环稳定性等电化学性能。
本发明的技术方案如下:
一种四元钠离子电池正极材料,具有如下通式:NaNi0.5–xMn0.3Ti0.2SbxO2,所述正极材料为O3相,x为0.01-0.05。
根据本发明优选的,所述四元钠离子电池正极材料的微观形貌为微纳米片,尺寸为0.2-5μm。
根据本发明优选的,所述x为0.04。
本发明还提供了上述四元钠离子电池正极材料的制备方法,包括步骤如下:
按照NaNi0.5–xMn0.3Ti0.2SbxO2中Na、Ni、Mn、Ti、Sb元素的摩尔比为1.05:0.5-x:0.3:0.2:x的比例,将Na2CO3、NiO、MnO2、TiO2和Sb2O5混合,经过研磨、压片,然后经两次热处理,即得到四元钠离子电池正极材料。
根据本发明优选的,所述两次热处理的温度均为900-1000℃,进一步优选为950℃;两次热处理的时间均为10-15h,进一步优选为12h;热处理过程的升温速率均为2-5℃/min。
根据本发明优选的,所述两次热处理均在空气气氛下进行。
本发明还提供了一种钠离子电池,所述钠离子电池包括上述四元钠离子电池正极材料。
根据本发明,上述钠离子电池的制备方法为现有技术;优选的,钠离子电池的制备包括步骤:
按质量比7:2:1的比例将四元钠离子电池正极材料、乙炔黑和聚偏氟乙烯(PVDF)混合后搅拌均匀,加入N-甲基吡咯烷酮(NMP)继续搅拌后得到混合均匀的浆料;将浆料均匀地涂覆在铝箔表面;在80℃真空干燥12h,然后用切片机裁成直径为12mm的小圆片作为正极片;在充满Ar气的手套箱内组装CR2032型扣式电池,其中对电极为金属钠片,隔膜为玻璃纤维,电解液为含有1mol/LNaClO4的DEC+FEC溶液,其中DEC、FEC的体积比为1:1。
根据本发明优选的,N-甲基吡咯烷酮的加入量按现有技术即可。
本发明的技术特点及有益效果如下:
本发明采用简单固相法所制备的钠离子电池层状氧化物正极材料NaNi0.5– xMn0.3Ti0.2SbxO2(NMTSbx),其颗粒都是由厚度均匀、边缘清晰的微纳米级薄片组成,当Sb取代Ni之后的晶粒尺寸有所降低,同时掺杂Sb所造成的强电子离域导致整个系统的能量降低,获得了更有利于长循环充放电的稳定结构。在2-4.2V条件下进行电化学测试发现,掺杂后的正极材料的不可逆相变得到了抑制,工作电压平台得到了提高,在1C倍率下充放电,NMTSb0.04的初始放电比容量有139.7mAhg–1,经过200圈的循环后容量保持率为70%,在5C倍率下还能提供高达89.6%(125.3mAhg-1)。本申请发明人考虑掺杂元素对正极材料氧化还原电压的影响,对结构稳定性的影响等,经过大量实验,确定了掺杂元素Sb,相比于其他元素(如Ru、Zr等)具有更优异的性能,并且经过大量实验确定了Sb的掺杂量,从而得到本发明的具有利于长循环充放电的稳定结构的正极材料,将所得正极材料应用于钠离子电池,具有较高的放电容量、倍率性能以及较高的循环稳定性等电化学性能。
附图说明
图1为实施例1-2以及对比例1-2制备的正极材料的X射线衍射(XRD)图谱(a)以及局部放大图(b),其中横坐标为衍射角度,纵坐标为强度。
图2为对比例1和实施例1制备的正极材料的XRD Rietveld精修图,其中(a)为NMT的XRD Rietveld精修图,(b)为NMTSb0.04的XRD Rietveld精修图,其中横坐标为衍射角度,纵坐标为强度。
图3为对比例1和实施例1制备的正极材料的SEM照片,其中(a)-(b)为NMT的SEM照片,(c)-(d)为NMTSb0.04的SEM照片,(e)为NMTSb0.04的EDS图。
图4为对比例1和实施例1制备的正极材料的HRTEM照片,其中(a)-(b)为NMT的HRTEM照片,(c)-(d)为NMTSb0.04的HRTEM照片,(d)中插图为NMTSb0.03的SEAD图。
图5为对比例1和实施例1制备的正极材料的X射线光电子能谱(XPS),其中(a)为NMT和NMTSb0.04的Ni XPS,(b)为NMT和NMTSb0.04的Mn XPS,(c)为NMT和NMTSb0.04的Ti XPS,(d)为NMTSb0.04的Sb XPS,其中横坐标为结合能,纵坐标为强度。
图6为实施例1-2以及对比例1-2制备的正极材料的电化学阻抗奈奎斯特图,其中横坐标为实部阻抗,纵坐标为虚部阻抗。
图7为使用实施例1-2以及对比例1-2制备的正极材料制备的钠离子电池的首圈充放电曲线,其中横坐标为比容量,纵坐标为电压。
图8为使用实施例1-2以及对比例1-2制备的正极材料制备的钠离子电池在1C下200次的循环曲线,其中横坐标为循环圈数,纵坐标为比容量。
图9为使用实施例1以及对比例1制备的正极材料制备的钠离子电池在5C下前三圈的充放电曲线,其中横坐标为比容量,纵坐标为电压。
图10是使用实施例1-2以及对比例1-2制备的正极材料制备的钠离子电池在1C下经过200次循环过程中的库伦效率,其中横坐标为循环圈数,纵坐标为库伦效率。
具体实施方式
下面结合具体实施例对本发明做进一步的说明,但不限于此。
同时下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂、材料和设备,如无特殊说明,均可从商业途径获得。
X射线衍射(XRD)的参数信息是由MiniFlex 600(Rigaku,Japan)用Cu Kα辐射收集的,进一步利用结构分析系统(GSAS+EXPGUI)对晶体结构进行Rietveld精修。采用JSM-7610F(JEOL,Japan)扫描电镜(SEM)和JEOL JEM-2100F高分辨率透射电镜(HRTEM)观察样品的微观形貌、颗粒尺寸。采用Al Kα消色差X射线源,在escalab250xi光谱仪上完成元素价态的X射线光电子能谱(XPS)研究。采用电感耦合等离子体发射光谱仪(iCAP 6300)分析样品中各元素的摩尔比(ICP-AES)。室温下使用Land CT2001A电池测试系统在2-4.2V间进行充放电测量,在CHI660E电化学站(上海辰华仪器有限公司)上对电极进行电化学阻抗谱(EIS)测量。
实施例1
一种四元钠离子电池正极材料NaNi0.46Mn0.3Ti0.2Sb0.04O2的制备方法,包括步骤:
按照NaNi0.46Mn0.3Ti0.2Sb0.04O2中Na、Ni、Mn、Ti、Sb摩尔比为1.05:0.46:0.3:0.2:0.04的比例将Na2CO3、NiO、MnO2、TiO2和Sb2O5混合,用玛瑙研钵研磨均匀并利用压片机将其制成直径为16mm的薄圆片,之后以2℃/min的升温速率升温至950℃,在950℃空气气氛下热处理12h,之后冷却至室温,再重复一遍上述热处理步骤,冷却至室温,得到四元钠离子电池正极材料NaNi0.46Mn0.3Ti0.2Sb0.04O2,记为NMTSb0.04,随后储存到手套箱中备用。
实施例2
一种四元钠离子电池正极材料NaNi0.48Mn0.3Ti0.2Sb0.02O2的制备方法如实施例1所述,所不同的是:按照NaNi0.48Mn0.3Ti0.2Sb0.02O2中Na、Ni、Mn、Ti、Sb摩尔比为1.05:0.48:0.3:0.2:0.02的比例将Na2CO3、NiO、MnO2、TiO2和Sb2O5混合,得到四元钠离子电池正极材料NaNi0.48Mn0.3Ti0.2Sb0.02O2,记为NMTSb0.02,随后储存到手套箱中备用。
对比例1
一种三元钠离子电池正极材料NaNi0.5Mn0.3Ti0.2O2的制备方法如实施例1所述,所不同的是:按照NaNi0.5Mn0.3Ti0.2O2中Na、Ni、Mn、Ti摩尔比为1.05:0.5:0.3:0.2的比例将Na2CO3、NiO、MnO2和TiO2混合,得到三元钠离子电池正极材料NaNi0.5Mn0.3Ti0.2O2,记为NMT,随后储存到手套箱中备用。
对比例2
一种四元钠离子电池正极材料NaNi0.44Mn0.3Ti0.2Sb0.06O2的制备方法如实施例1所述,所不同的是:按照NaNi0.44Mn0.3Ti0.2Sb0.06O2中Na、Ni、Mn、Ti、Sb摩尔比为1.05:0.44:0.3:0.2:0.06的比例将Na2CO3、NiO、MnO2、TiO2和Sb2O5混合,得到四元钠离子电池正极材料NaNi0.44Mn0.3Ti0.2Sb0.06O2,记为NMTSb0.06,随后储存到手套箱中备用。
综合分析如下:
1、元素组成测试
用ICP-AES测定实施例1-2以及对比例1-2制备的正极材料的元素组成,其结果如表1所示,由表1可以看出,在测定误差范围内,各金属离子的实际含量比值与设计组分基本一致。
表1实施例1-3以及对比例1制备的正极材料的ICP-AES结果
Figure BDA0003892490260000051
2、X射线衍射测试
实施例1-2以及对比例1-2制备的正极材料的X射线衍射(XRD)图谱如图1所示,图1(a)的XRD谱图显示,所有样品都具有O3型六方α-NaFeO2结构(空间群R-3m)。与NaNi0.5Mn0.5O2(JCPDS no.54-0887)一致,表明Sb均匀引入NMT晶格的同时没有引起本征结构的改变。图1(b)所示,NMTSb0.02/0.04/0.06的峰向较高角度发生偏移,在NMTSb0.06中开始出现杂峰,根据布拉格方程(nλ=2dsinθ)定性分析粉末的平均晶粒尺寸变化,其中d为样品的晶粒垂直于晶面方向的平均厚度(nm),θ为最强衍射峰对应的衍射角,λ为X-射线波长,晶面计算结果表明,Sb掺杂后样品的晶粒尺寸有所降低,这与Sb的离子半径
Figure BDA0003892490260000061
和Ni的离子半径
Figure BDA0003892490260000062
差异有关,根据Vegard’s定理,这也意味着形成NMTSbx过程中固溶反应的发生。
图2(a)和(b)给出了NMT和NMTSb0.04的XRD Rietveld精修图,详细的晶格参数如表2所示。可以看出,与初始的
Figure BDA0003892490260000063
相比,
Figure BDA0003892490260000064
的晶格参数略有降低。这也是由于Sb的离子半径
Figure BDA0003892490260000065
小于Ni的离子半径
Figure BDA0003892490260000066
与XRD部分的分析相一致。与
Figure BDA0003892490260000067
相比,NMTSb0.04的c值
Figure BDA0003892490260000068
Figure BDA0003892490260000069
有所增加,主要原因是晶格参数a/b对层状结构基面(Ni/Mn/Ti/Sb)-O键长变化敏感,掺入Sb使得键长减少,因此连续过渡金属层(Ni/Mn/Ti/Sb)中的氧原子之间的静电斥力就会变大,使得c变大。而且经过计算NMT和NMTSb0.04的c/a值变化不大,分别为5.36,5.39,研究表明c/a比值均大于4.99,这说明掺杂后的样品也具有良好的层状结构。
表2NMT和NMTSb0.04的晶胞参数
Figure BDA00038924902600000610
3、形貌测试
图3给出了NMT和NMTSb0.04的SEM照片。可以看出,两种产物均由许多微纳米级的薄圆片组成,厚度均匀,边缘清晰。尤其Sb掺杂之后,薄片表面变得更加光滑,且不缺乏棱角分明的六边形片状结构出现。对NMTSb0.04的样品进行了选区EDS元素分析,可知Na、O、Ni、Ti、Mn、Sb元素分布均匀,这也从另一方面证明Sb元素成功掺杂到NMT的本征结构中。
用HRTEM进一步观察了NMT和NMTSb0.04的显微结构,结果如图4所示。从图4(a)和(c)中可见,Sb掺杂前后的颗粒相互连接或者叠加,宏观上表现出片状或者近似圆形、多边形的结构。图4(b)和(d)中的高倍透射电镜的照片清楚地显示出晶格条纹,对于NMT样品来说晶格间距为
Figure BDA0003892490260000071
对于NMTSb样品来说晶格间距为
Figure BDA0003892490260000072
都对应(101)晶面。这说明Sb的掺杂对晶格间距的影响与XRD表征中的分析结果相一致。图4(d)中的插图为选区电子衍射的斑点,证明所获得的NMTSb0.04具有良好的结晶度。
4、X射线光电子能谱测试
NMT和NMTSb0.04的X射线光电子能谱(XPS)如图5所示,X射线光电子能谱(XPS)展示了Mn,Ni,Ti,Sb元素的氧化态结果。从图5(a)中可以看出,位于~875eV和~850eV的两个主峰分别代表了NMT的Ni 2p1/2峰和Ni 2p3/2峰,都归因于Ni2+的存在。位于~858.2eV处的峰为Ni元素中常见的卫星峰。同样条件下测得在NMTSb0.04中Ni 2p1/2峰劈裂成两个峰,这种现象意味着在NMT晶格中引入Sb可以减少Ni周围的外层电子数,造成强电子离域的效果,过渡金属具有已经更多离域的d轨道,从而可以增强层状结构中MO6共边八面体的金属—金属相互作用,最终,强电子离域导致整个系统的能量降低,有利于NMTSb0.04的结构稳定性。对于图5(b)中的在~642.3eV/~642.4eV处的Mn 2p3/2和~652.4eV/~656eV处的Mn 2p1/2峰表明NMT和NMTSb0.04中都存在+4价态的Mn。图5(c)表明Ti 2p1/2和Ti 2p3/2在~452.4eV和~457.5eV处具有典型的结合能峰。它意味着处在稳定的+4价态。图5(d)中~181.1eV处的峰值证实了Sb的存在。XPS的分析结果与XRD、SEM等测试分析的结论一致。
试验例
将实施例1-2以及对比例1-2制备的正极材料用于制备钠离子电池,具体步骤如下:
按质量比7:2:1的比例将正极材料、乙炔黑和聚偏氟乙烯(PVDF)混合后搅拌均匀,加入N-甲基吡咯烷酮(NMP)继续搅拌后得到混合均匀的浆料;将浆料均匀地涂覆在铝箔表面;在80℃真空干燥12h,然后用切片机裁成直径为12mm的小圆片作为正极片;在充满Ar气的手套箱内组装CR2032型扣式电池,其中对电极为金属钠片,隔膜为玻璃纤维,电解液为含有1mol·L–1NaClO4的DEC+FEC溶液,其中DEC、FEC的体积比为1:1。
图6给出了NMT和NMTSb0.02/0.04/0.06的电化学阻抗奈奎斯特图。每个奈奎斯特图都由一个位于中高频区的半圆和一条位于低频区的斜线组成。半圆表示电解质和电极之间的电荷转移电阻(Rct),斜线表示钠离子扩散引起的Warburg电阻。根据拟合过程中对等效电路进行计算,可以得到NMT和NMTSb0.04的Rct分别为1185.4和761Ω。可以看出,随着提高Sb的掺杂含量,系列样品的阻抗也随之降低,然而当Sb的掺杂比例至0.06时,阻抗又变得比初始NMT还高。合适的掺杂含量可以获得最优的层状结构的金属层间间距,保证电子的传输通道顺畅,有助于提高NMTSbx的动力学特性的同时,还能兼顾整体结构的稳定性。
在电流密度为1C(240mA g-1)、电压范围为2.0-4.2V的条件下,在不同Sb掺杂含量的NMTSbx(x=0,0.02,0.04,0.06)电池中,测试了这些化合物的储钠性能。如图7所示,当x=0、0.02、0.04、0.06时,O3-NMTSbx(x=0,0.02,0.04,0.06)样品的可逆容量分别为122.8、128、139.7、103.9mA h g-1。对比充放电曲线可以看出,未掺杂样品NMT的充放电曲线明显包含多个电压平台和台阶,这反映了在层状结构中可能发生O3hex.-O3’mon.-P3hex.-P3’mon.-P3’的不同相变过程。不过在发生在过渡金属层层间滑移的同时,充放电曲线整体还是比较平滑。3V以上的三个电压平台趋于模糊,对于NMT来说,其充电曲线主要分为两个部分:3-3.8V左右的倾斜段和3.8以上的长平台段。而当引入Sb之后,平台段的电压提升到了4V以上。对于放电曲线来说,长平台段通常发生在2.5-2.75V的电压区间。电压平台的出现可以归因于O3相转变为P3相,而电压升高时的倾斜段则是由具有P3结构的固溶反应引起的。图8是电流密度为1C时的O3-NMTSbx(x=0,0.02,0.04,0.06)电极的循环性能比较。值得注意的是,NMTSb0.04正极材料的循环稳定性最佳,经过200次循环后可以保留约70%的可逆容量。相比之下,NMT电极的容量衰减非常快,从第一个循环的122.8mA h g-1下降到200个循环后的51mA h g-1,仅保留41.5%的容量。我们还研究了Sb取代对O3-NMT电极的倍率性能影响,以研究其在高倍率场景下的应用。从图9中可以看出,即使在非常高的倍率5C(1200mAg-1)下,NMTSb0.04电极仍然可以提供89.6%的容量(125.3mA hg-1),而NMT电极容量只有106.7mA hg-1。图10给出了电流密度为1C时连续循环过程中库伦效率的对比,可见NMTSb0.04电极的库伦效率分布非常平稳、趋向直线,基本保持在98%,这也表明其层状结构更加稳定。而NMT电极在140次循环后库伦效率出现明显的浮动,接近200次循环时出现效率值的大幅跳动。因此,综合分析后本研究中NMTSb0.04正极材料具有最佳的储钠性能。

Claims (8)

1.一种四元钠离子电池正极材料,其特征在于,该四元钠离子电池正极材料具有如下通式:NaNi0.5–xMn0.3Ti0.2SbxO2,所述正极材料为O3相,x为0.01-0.05。
2.根据权利要求1所述四元钠离子电池正极材料,其特征在于,所述四元钠离子电池正极材料的微观形貌为微纳米片,尺寸为0.2-5μm。
3.根据权利要求1所述四元钠离子电池正极材料,其特征在于,所述x为0.04。
4.权利要求1-3任一项所述四元钠离子电池正极材料的制备方法,包括步骤如下:
按照NaNi0.5–xMn0.3Ti0.2SbxO2中Na、Ni、Mn、Ti、Sb元素的摩尔比为1.05:0.5-x:0.3:0.2:x的比例,将Na2CO3、NiO、MnO2、TiO2和Sb2O5混合,经过研磨、压片,然后经两次热处理,即得到四元钠离子电池正极材料。
5.根据权利要求4所述所述四元钠离子电池正极材料的制备方法,其特征在于,所述两次热处理的温度均为900-1000℃,优选为950℃;两次热处理的时间均为10-15h,优选为12h;热处理过程的升温速率均为2-5℃/min。
6.根据权利要求4所述所述四元钠离子电池正极材料的制备方法,其特征在于,所述两次热处理均在空气气氛下进行。
7.一种钠离子电池,其特征在于,所述钠离子电池包括权利要求1-3任一项所述的四元钠离子电池正极材料。
8.权利要求7所述钠离子电池的制备方法,包括步骤:
按质量比7:2:1的比例将四元钠离子电池正极材料、乙炔黑和聚偏氟乙烯(PVDF)混合后搅拌均匀,加入N-甲基吡咯烷酮(NMP)继续搅拌后得到混合均匀的浆料;将浆料均匀地涂覆在铝箔表面;在80℃真空干燥12h,然后用切片机裁成直径为12mm的小圆片作为正极片;在充满Ar气的手套箱内组装CR2032型扣式电池,其中对电极为金属钠片,隔膜为玻璃纤维,电解液为含有1mol/LNaClO4的DEC+FEC溶液,其中DEC、FEC的体积比为1:1。
CN202211264534.6A 2022-10-17 2022-10-17 一种四元钠离子电池正极材料及包括该正极材料的钠离子电池 Active CN115583672B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211264534.6A CN115583672B (zh) 2022-10-17 2022-10-17 一种四元钠离子电池正极材料及包括该正极材料的钠离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211264534.6A CN115583672B (zh) 2022-10-17 2022-10-17 一种四元钠离子电池正极材料及包括该正极材料的钠离子电池

Publications (2)

Publication Number Publication Date
CN115583672A true CN115583672A (zh) 2023-01-10
CN115583672B CN115583672B (zh) 2024-02-23

Family

ID=84780118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211264534.6A Active CN115583672B (zh) 2022-10-17 2022-10-17 一种四元钠离子电池正极材料及包括该正极材料的钠离子电池

Country Status (1)

Country Link
CN (1) CN115583672B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117747834A (zh) * 2023-12-22 2024-03-22 湖北万润新能源科技股份有限公司 一种钠离子层状金属氧化物材料、其制备方法、正极材料和钠离子电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328928A (zh) * 2016-11-07 2017-01-11 中国科学院化学研究所 一类钠离子电池正极材料、其制备方法及提高空气稳定性的方法
CN106673075A (zh) * 2017-01-03 2017-05-17 中国科学院化学研究所 一种改性o3型钠离子电池层状正极材料及其制备方法和应用
CN111268746A (zh) * 2020-02-05 2020-06-12 中国科学院化学研究所 一种钠离子电池层状正极材料、制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328928A (zh) * 2016-11-07 2017-01-11 中国科学院化学研究所 一类钠离子电池正极材料、其制备方法及提高空气稳定性的方法
CN106673075A (zh) * 2017-01-03 2017-05-17 中国科学院化学研究所 一种改性o3型钠离子电池层状正极材料及其制备方法和应用
CN111268746A (zh) * 2020-02-05 2020-06-12 中国科学院化学研究所 一种钠离子电池层状正极材料、制备方法及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CUI MA等: "Suppressing O3-O’3 phase transition in NaCrO2 cathode enabling high rate capability for sodium-ion batteries by Sb substitution", CHEMICAL ENGINEERING JOURNAL, vol. 432, pages 1 - 8 *
HONGBO WANG等: "An O3-type NaNi0.5Mn0.3Ti0.2O2 compound as new cathode material for room-temperature sodium-ion batteries", JOURNAL OF POWER SOURCES, vol. 327, pages 653 - 657, XP029694715, DOI: 10.1016/j.jpowsour.2016.07.109 *
JEFFREY MA等: "Ordered and Disordered Polymorphs of Na(Ni2/3Sb1/3)O2: Honeycomb-Ordered Cathodes for Na-Ion Batteries", CHEMISTRY OF MATERIALS, vol. 27, pages 2387 *
NATALIA VORONINA等: "Electronic Structure Engineering of Honeycomb Layered Cathode Material for Sodium-Ion Batteries", ADVANCED ENERGY MATERIALS, vol. 11, no. 4, pages 1 - 12 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117747834A (zh) * 2023-12-22 2024-03-22 湖北万润新能源科技股份有限公司 一种钠离子层状金属氧化物材料、其制备方法、正极材料和钠离子电池

Also Published As

Publication number Publication date
CN115583672B (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
Li et al. A nanorod-like Ni-rich layered cathode with enhanced Li+ diffusion pathways for high-performance lithium-ion batteries
Ji et al. Partially nitrided molybdenum trioxide with promoted performance as an anode material for lithium-ion batteries
Ming et al. Effect of Nb and F co-doping on Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material for high-performance lithium-ion batteries
Zhang et al. Improved electrochemical performance of LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials via incorporation of rubidium cations into the original Li sites
CN112151789B (zh) 一种正极材料及其制备方法和用途
Yi et al. Enhanced electrochemical performance of Li-rich low-Co Li1. 2Mn0. 56Ni0. 16Co0. 08− xAlxO2 (0≤ x≤ 0.08) as cathode materials
Xu et al. Facile synthesis of P2-type Na 0.4 Mn 0.54 Co 0.46 O 2 as a high capacity cathode material for sodium-ion batteries
Cho VOx-coated LiMn 2 O 4 nanorod clusters for lithium battery cathode materials
CA2810191A1 (en) Niobium oxide compositions and methods for using same
JP2005072008A (ja) 非水系電解質二次電池用負極活物質及びその製造方法並びにそれを含む非水系電解質二次電池
Wang et al. A homogeneous intergrown material of LiMn 2 O 4 and LiNi 0.5 Mn 1.5 O 4 as a cathode material for lithium-ion batteries
CN108807928B (zh) 一种金属氧化物及锂离子电池的合成
Guo et al. Effects of sodium substitution on properties of LiMn2O4 cathode for lithium ion batteries
WO2013048597A2 (en) High capacity electrode materials for batteries and process for their manufacture
CN115295789A (zh) 一种正极活性材料及其应用
Xie et al. LaPO 4-coated Li 1.2 Mn 0.56 Ni 0.16 Co 0.08 O 2 as a cathode material with enhanced coulombic efficiency and rate capability for lithium ion batteries
Van Nguyen et al. A study of the electrochemical kinetics of sodium intercalation in P2/O1/O3-NaNi1/3Mn1/3Co1/3O2
Li et al. Facile synthesis of hierarchical CoMn 2 O 4 microspheres with porous and micro-/nanostructural morphology as anode electrodes for lithium-ion batteries
Tang et al. La doping and coating enabled by one-step method for high performance Li1. 2Mn0. 54Ni0. 13Co0. 13O2 Li-rich cathode
WO2022182313A2 (en) Development of new air-stable o3-naxmo2 type layered metal oxides for sodium ion batteries
CN115583672B (zh) 一种四元钠离子电池正极材料及包括该正极材料的钠离子电池
WO2016036091A1 (ko) 이차 전지용 전극 합제 첨가제, 이의 제조 방법, 이를 포함하는 이차 전지용 전극 및 이차 전지
Xu et al. Synthesis of sodium manganese oxides with tailored multi-morphologies and their application in lithium/sodium ion batteries
Feng et al. Uniform gallium oxyhydroxide nanorod anodes with superior lithium-ion storage
Li et al. Improvement in the electrochemical performance of a LiNi 0.5 Mn 0.5 O 2 cathode material at high voltage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant