CN115577597A - Simulation method, device, medium and equipment for solute hyperdiffusion in fracture channel - Google Patents
Simulation method, device, medium and equipment for solute hyperdiffusion in fracture channel Download PDFInfo
- Publication number
- CN115577597A CN115577597A CN202211424429.4A CN202211424429A CN115577597A CN 115577597 A CN115577597 A CN 115577597A CN 202211424429 A CN202211424429 A CN 202211424429A CN 115577597 A CN115577597 A CN 115577597A
- Authority
- CN
- China
- Prior art keywords
- convection
- spatial
- target area
- diffusion model
- solute
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000004088 simulation Methods 0.000 title claims abstract description 27
- 238000009792 diffusion process Methods 0.000 claims abstract description 100
- 238000009826 distribution Methods 0.000 claims abstract description 78
- 238000002474 experimental method Methods 0.000 claims abstract description 40
- 239000000700 radioactive tracer Substances 0.000 claims abstract description 39
- 238000011161 development Methods 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 13
- 206010017076 Fracture Diseases 0.000 claims description 11
- 208000010392 Bone Fractures Diseases 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 20
- 238000004891 communication Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 5
- 238000009827 uniform distribution Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/08—Fluids
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供了一种裂隙通道中溶质超扩散的模拟方法、装置、介质、设备,该方法包括:基于目标区域的示踪剂实验,获取目标区域的对流参数与超扩散系数;根据对流参数、超扩散系数,构建目标区域的对流扩散模型;根据示踪剂实验,确定对流扩散模型的空间尺度;基于空间尺度,目标区域的空间布点数;基于空间布点数与对流扩散模型,分析预测目标区域中溶质浓度。该方法基于目标区域的示踪剂实验,构建目标区域的对流扩散模型,并利用模型本身的特性确定空间尺度,完成空间网格的划分,从而通过空间布点数与对流扩散模型,分析预测目标区域中溶质浓度,实现溶质超扩散过程的模拟。
The invention provides a simulation method, device, medium, and equipment for solute superdiffusion in a crack channel. The method includes: obtaining convection parameters and superdiffusion coefficients of the target area based on a tracer experiment in the target area; according to the convection parameters, Super-diffusion coefficient, construct the convection diffusion model of the target area; according to the tracer experiment, determine the spatial scale of the convection diffusion model; based on the spatial scale, the number of spatial distribution points in the target area; based on the spatial distribution number and the convection diffusion model, analyze and predict the target area Medium solute concentration. Based on the tracer experiment in the target area, the method constructs the convection diffusion model of the target area, and uses the characteristics of the model itself to determine the spatial scale and complete the division of the spatial grid, so as to analyze and predict the target area through the spatial distribution number and the convection diffusion model Medium solute concentration, to realize the simulation of solute superdiffusion process.
Description
技术领域technical field
本发明涉及工程仿真与数值模拟技术领域,具体涉及一种裂隙通道中溶质超扩散的模拟方法、装置、介质、设备。The invention relates to the technical field of engineering simulation and numerical simulation, in particular to a simulation method, device, medium and equipment for solute superdiffusion in a crack channel.
背景技术Background technique
由于自然界的介质结构的非均匀和各向异性的特点,其中往往存在着裂隙通道。溶质在裂隙通道运移过程常常表现为超扩散现象,经典的溶质运移模型难以刻画含裂隙结构介质中的溶质运移的非局域性。分数阶导数是一类卷积微分算子,常用来建立扩散模型,用于刻画溶质粒子的早到达现象。Due to the non-uniform and anisotropic characteristics of the medium structure in nature, there are often crack channels in it. The migration of solutes in fracture channels often manifests as superdiffusion, and the classical solute migration model is difficult to describe the non-locality of solute migration in media with fracture structures. Fractional derivatives are a kind of convolutional differential operators, which are often used to establish diffusion models and describe the phenomenon of early arrival of solute particles.
在相关技术中,刻画全局相关特性的卷积计算,导致了空间离散后的计算量大,增加了该模型的应用难度,并且由于计算量的增加,降低了计算结果的准确性。In the related technology, the convolution calculation describing the global correlation characteristics leads to a large amount of calculation after the space is discretized, which increases the difficulty of the application of the model, and reduces the accuracy of the calculation result due to the increase of the calculation amount.
发明内容Contents of the invention
因此,本发明要解决的技术问题在于克服现有技术中的无法保证溶质超扩散模拟结果准确性的缺陷,从而提供一种裂隙通道中溶质超扩散的模拟方法、装置、介质、设备。Therefore, the technical problem to be solved by the present invention is to overcome the defect in the prior art that the accuracy of simulation results of solute superdiffusion cannot be guaranteed, so as to provide a simulation method, device, medium and equipment for solute superdiffusion in crack channels.
第一方面,本发明实施例提供了一种裂隙通道中溶质超扩散的模拟方法,包括:基于目标区域的示踪剂实验,获取目标区域的对流参数与超扩散系数;根据对流参数、超扩散系数,构建目标区域的对流扩散模型;根据示踪剂实验,确定对流扩散模型的空间尺度;In the first aspect, an embodiment of the present invention provides a method for simulating solute superdiffusion in a crack channel, including: obtaining convection parameters and superdiffusion coefficients in the target region based on tracer experiments in the target region; Coefficient, construct the convection-diffusion model of the target area; according to the tracer experiment, determine the spatial scale of the convection-diffusion model;
基于空间尺度,确定目标区域的空间布点数;基于空间布点数与对流扩散模型,分析预测目标区域中溶质浓度。Based on the spatial scale, determine the number of spatial distribution points in the target area; based on the number of spatial distribution points and the convection-diffusion model, analyze and predict the solute concentration in the target area.
结合第一方面,在第一方面的一种可能的实现方式中,根据示踪剂实验,确定对流扩散模型的空间尺度,包括:根据示踪剂实验,确定对流扩散模型的与空间尺度相关的参数;根据与空间尺度相关的参数,确定对流扩散模型的空间尺度。In combination with the first aspect, in a possible implementation of the first aspect, determining the spatial scale of the convection-diffusion model according to the tracer experiment includes: determining the spatial scale-related value of the convection-diffusion model according to the tracer experiment Parameters; according to the parameters related to the spatial scale, the spatial scale of the convection-diffusion model is determined.
结合第一方面,在第一方面的另一种可能的实现方式中,根据示踪剂实验,确定对流扩散模型的与空间尺度相关的参数,包括:根据示踪剂实验,确定地下含水层的裂隙发育情况;根据裂隙发育情况,确定对流扩散模型的与空间尺度相关的参数。In combination with the first aspect, in another possible implementation of the first aspect, according to the tracer experiment, determining the parameters related to the spatial scale of the convection-diffusion model includes: according to the tracer experiment, determining the The development of cracks; according to the development of cracks, determine the parameters related to the spatial scale of the convection-diffusion model.
结合第一方面,在第一方面的另一种可能的实现方式中,基于空间尺度,确定目标区域的空间布点数,包括:基于预设的第一空间布点数和对流扩散模型,计算第一溶质浓度;基于预设的空间布点系数与第一空间布点数,确定第二空间布点数;基于第二空间布点数和对流扩散模型,计算第二溶质浓度;根据第一溶质浓度与第二溶质浓度,确定计算结果间的第一偏差值;在第一偏差值满足预设偏差阈值时,将第二空间布点数作为目标区域的空间布点数。In combination with the first aspect, in another possible implementation of the first aspect, determining the number of spatial distribution points in the target area based on the spatial scale includes: calculating the first number of spatial distribution points based on the preset first spatial distribution number and the convection diffusion model Solute concentration; based on the preset spatial distribution coefficient and the first spatial distribution number, determine the second spatial distribution number; based on the second spatial distribution number and the convection diffusion model, calculate the second solute concentration; according to the first solute concentration and the second solute concentration Concentration, determine the first deviation value between calculation results; when the first deviation value satisfies the preset deviation threshold, use the second spatial distribution number as the spatial distribution number of the target area.
结合第一方面,在第一方面的另一种可能的实现方式中,裂隙通道中溶质超扩散的模拟方法,还包括:在第一偏差值不满足预设偏差阈值时,基于预设的空间布点系数与第二空间布点数,确定第三空间布点数;基于第三空间布点数和对流扩散模型,计算第三溶质浓度;根据第二溶质浓度与第三溶质浓度,确定计算结果间的第二偏差值;在第二偏差值满足预设偏差阈值时,将第三空间布点数作为目标区域的空间布点数。With reference to the first aspect, in another possible implementation of the first aspect, the method for simulating solute superdiffusion in a crack channel further includes: when the first deviation value does not meet the preset deviation threshold, based on the preset space Determine the number of points in the third space based on the point distribution coefficient and the number of points in the second space; calculate the third solute concentration based on the number of points in the third space and the convection-diffusion model; Two deviation values; when the second deviation value satisfies the preset deviation threshold, the third spatial distribution number is used as the spatial distribution number of the target area.
结合第一方面,在第一方面的另一种可能的实现方式中,目标区域的对流扩散模型通过如下公式表达:In combination with the first aspect, in another possible implementation of the first aspect, the convection-diffusion model of the target area is expressed by the following formula:
其中,c表示溶质浓度,t表示时间,x表示空间位置,l表示空间位置的左端点,A表示对流参数,d表示超扩散系数,α表示空间分数阶阶数,为空间分数阶导数符号。Among them, c represents the solute concentration, t represents time, x represents the spatial position, l represents the left end point of the spatial position, A represents the convection parameter, d represents the superdiffusion coefficient, α represents the spatial fractional order, is the space fractional derivative symbol.
结合第一方面,在第一方面的另一种可能的实现方式中,空间分数阶导数通过如下公式表达:In combination with the first aspect, in another possible implementation of the first aspect, the spatial fractional derivative is expressed by the following formula:
其中,Γ表示伽马函数,ξ表示空间变量,x1表示当前位置。Among them, Γ represents the gamma function, ξ represents the spatial variable, and x1 represents the current position.
第二方面,本发明实施例提供了一种裂隙通道中溶质超扩散的模拟装置,包括:获取单元,用于基于目标区域的示踪剂实验,获取目标区域的对流参数与超扩散系数;对流扩散模型构建单元,用于根据对流参数、超扩散系数,构建目标区域的对流扩散模型;空间尺度确定单元,用于根据示踪剂实验,确定对流扩散模型的空间尺度;空间布点数确定单元,用于基于空间尺度,确定目标区域的空间布点数;分析预测单元,用于基于空间布点数与对流扩散模型,分析预测目标区域中溶质浓度。In the second aspect, an embodiment of the present invention provides a simulation device for solute superdiffusion in a crack channel, including: an acquisition unit, used for a tracer experiment based on a target area, to acquire convection parameters and superdiffusion coefficients of the target area; convection The diffusion model construction unit is used to construct the convection diffusion model of the target area according to the convection parameters and the super-diffusion coefficient; the spatial scale determination unit is used to determine the spatial scale of the convection diffusion model according to the tracer experiment; the spatial distribution number determination unit, It is used to determine the number of spatial distribution points in the target area based on the spatial scale; the analysis and prediction unit is used to analyze and predict the solute concentration in the target area based on the number of spatial distribution points and the convection-diffusion model.
第三方面,本发明实施例提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,计算机指令被处理器执行时,实现如第一方面任一实施方式的裂隙通道中溶质超扩散的模拟方法。In a third aspect, an embodiment of the present invention provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium. When the computer instructions are executed by a processor, the solute in the crack channel according to any implementation manner of the first aspect is realized. Simulation methods for superdiffusion.
第四方面,本发明实施例提供了一种计算机设备,包括至少一个处理器;以及与至少一个处理器通信连接的存储器;存储器中存储有可计算机程序指令,当指令被至少一个处理器执行,实现如第一方面任一实施方式的裂隙通道中溶质超扩散的模拟方法。In a fourth aspect, an embodiment of the present invention provides a computer device, including at least one processor; and a memory connected in communication with the at least one processor; computer program instructions are stored in the memory, and when the instructions are executed by the at least one processor, A method for simulating solute superdiffusion in a crack channel according to any embodiment of the first aspect.
本发明技术方案,具有如下优点:The technical solution of the present invention has the following advantages:
本发明提供的一种裂隙通道中溶质超扩散的模拟方法、装置、介质、设备,该方法基于目标区域的示踪剂实验,构建目标区域的对流扩散模型,并利用模型本身的特性确定空间尺度,完成空间网格的划分,从而通过空间布点数与对流扩散模型,分析预测目标区域中溶质浓度,实现溶质超扩散过程的模拟。The present invention provides a simulation method, device, medium, and equipment for solute superdiffusion in a crack channel. The method is based on the tracer experiment in the target area, constructs the convection diffusion model of the target area, and uses the characteristics of the model itself to determine the spatial scale , to complete the division of the spatial grid, so as to analyze and predict the solute concentration in the target area through the number of spatial distribution points and the convection-diffusion model, and realize the simulation of the solute super-diffusion process.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific implementation of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the specific implementation or description of the prior art. Obviously, the accompanying drawings in the following description The drawings show some implementations of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any creative work.
图1为本发明实施例提供的一种裂隙通道中溶质超扩散的模拟方法的一个具体示例的流程图;FIG. 1 is a flow chart of a specific example of a simulation method for solute superdiffusion in a crack channel provided by an embodiment of the present invention;
图2为本发明实施例提供的一种裂隙通道中溶质超扩散的模拟方法的一个关于空间尺度转换示例图;Fig. 2 is an example diagram of spatial scale transformation of a simulation method of solute superdiffusion in a crack channel provided by an embodiment of the present invention;
图3为本发明实施例提供的一种裂隙通道中溶质超扩散的模拟方法的分析预测结果示例图;Fig. 3 is an example diagram of analysis and prediction results of a simulation method for solute superdiffusion in a crack channel provided by an embodiment of the present invention;
图4为本发明实施例提供的一种裂隙通道中溶质超扩散的模拟装置的一个具体示例的原理框图;Fig. 4 is a functional block diagram of a specific example of a simulation device for solute superdiffusion in a crack channel provided by an embodiment of the present invention;
图5为本发明实施例提供的一种计算机设备的结构示例图。Fig. 5 is a structural example diagram of a computer device provided by an embodiment of the present invention.
具体实施方式detailed description
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the accompanying drawings. Apparently, the described embodiments are some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。In the description of the present invention, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer" etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, or in a specific orientation. construction and operation, therefore, should not be construed as limiting the invention. In addition, the terms "first", "second", and "third" are used for descriptive purposes only, and should not be construed as indicating or implying relative importance.
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。In addition, the technical features involved in the different embodiments of the present invention described below may be combined with each other as long as there is no conflict with each other.
本实施例提供一种裂隙通道中溶质超扩散的模拟方法,如图1所示,包括:This embodiment provides a simulation method for solute superdiffusion in a crack channel, as shown in Figure 1, including:
S101、基于目标区域的示踪剂实验,获取目标区域的对流参数与超扩散系数。S101. Acquiring convection parameters and superdiffusion coefficients of the target area based on a tracer experiment in the target area.
具体地,目标区域的对流参数用于表征目标区域水体的流动速度,超扩散系数用于表征溶质的超扩散速度,其中,对流参数可以通过监测获取,超扩散系数通过参数反推获得,应该理解的是,通过参数反推获得目标区域的超扩散系数数据较为成熟的技术,本发明对此不再赘述。Specifically, the convection parameters in the target area are used to characterize the flow velocity of the water body in the target area, and the superdiffusion coefficient is used to characterize the superdiffusion speed of the solute. Among them, the convection parameters can be obtained through monitoring, and the superdiffusion coefficient can be obtained through parameter inversion. It should be understood that It is worth noting that it is a relatively mature technology to obtain the super-diffusion coefficient data of the target area through parameter inversion, which will not be repeated in the present invention.
在实际应用中,目标区域的示踪剂实验可以是针对目标区域的双井抽注实验或其他示踪剂实验,只要可通过示踪剂实验确定目标区域的裂隙通道发育情况即可,本发明对此不作具体限定。目标区域的裂隙通道发育情况是指溶质随水进入地下含水层,由于通道中存在裂隙,而导致溶质发生滞留现象。在实际应用中,目标区域的裂隙越发达,滞留现象越明显。滞留现象是指在含水层动力厂的过程中,由于产生各种物理、化学及生物作用,使溶质迁移与溶质周围地下水差生差异,出现溶质滞后的现象。In practical applications, the tracer experiment in the target area can be a double well pumping experiment or other tracer experiments for the target area, as long as the development of the fracture channel in the target area can be determined through the tracer experiment, the present invention This is not specifically limited. The development of fracture channels in the target area means that the solute enters the underground aquifer with water, and the solute is retained due to the existence of cracks in the channel. In practical application, the more developed the cracks in the target area, the more obvious the stagnation phenomenon will be. The stagnation phenomenon refers to the phenomenon that the solute lags behind due to various physical, chemical and biological effects during the process of the aquifer power plant, which makes the difference between the solute migration and the groundwater around the solute.
S102、根据对流参数、超扩散系数,构建目标区域的对流扩散模型。S102. Construct a convection diffusion model of the target area according to the convection parameters and the superdiffusion coefficient.
在一种可选实施方式中,目标区域的对流扩散模型通过如下公式表达:In an optional implementation, the convection-diffusion model of the target area is expressed by the following formula:
其中,c表示溶质浓度,t表示时间,x表示空间位置,l表示空间位置的左端点,A表示对流参数,d表示超扩散系数,α表示空间分数阶阶数,为空间分数阶导数符号。Among them, c represents the solute concentration, t represents time, x represents the spatial position, l represents the left end point of the spatial position, A represents the convection parameter, d represents the superdiffusion coefficient, α represents the spatial fractional order, is the space fractional derivative symbol.
在一种可选实施方式中,空间分数阶导数如下公式表达:In an optional implementation, the spatial fractional derivative is expressed by the following formula:
其中,Γ表示伽马函数,ξ表示空间变量,x1表示当前位置。Among them, Γ represents the gamma function, ξ represents the spatial variable, and x1 represents the current position.
在实际应用中,空间位置表示目标区域对应的空间距离,l表示空间位置的左端点,r表示空间位置的右端点,即目标区域的对流扩散模型的模拟区域长度为r-l,且l<x1<r。α的取值范围为1<α≤2。In practical applications, the spatial position represents the spatial distance corresponding to the target area, l represents the left end point of the spatial position, and r represents the right end point of the spatial position, that is, the length of the simulation area of the convection-diffusion model of the target area is rl, and l<x 1 <r. The value range of α is 1<α≤2.
S103、根据示踪剂实验,确定对流扩散模型的空间尺度。S103. Determine the spatial scale of the convection-diffusion model according to the tracer experiment.
具体地,确定对流扩散模型的空间尺度的过程是通过示踪剂实验中的测量数据,率定与空间尺度相关的参数的过程,其中,与空间尺度相关的参数为目标区域的对流扩散模型中的空间分数阶阶数。这一过程是通过示踪剂实验的测量数据,确定目标区域的裂隙发育情况,并根据目标区域的裂隙发育情况与空间分数阶阶数的对应关系,确定空间分数阶阶数,即与空间尺度相关的参数,进而通过空间分数阶阶数,确定对流扩散模型的空间尺度。从而利用模型本身反应物理特性的参数,在不增加参数的前提下确定与目标区域的对流扩散模型相适应的空间尺度,即完成空间网格的划分。Specifically, the process of determining the spatial scale of the convection-diffusion model is the process of calibrating the parameters related to the spatial scale through the measurement data in the tracer experiment, wherein the parameters related to the spatial scale are the parameters in the convection-diffusion model of the target area The spatial fractional order of . This process is to determine the crack development in the target area through the measurement data of the tracer experiment, and determine the spatial fractional order according to the corresponding relationship between the crack development in the target area and the spatial fractional order, that is, the spatial scale Relevant parameters, and then determine the spatial scale of the convection-diffusion model through the spatial fractional order. Therefore, using the parameters of the model itself to reflect the physical characteristics, the spatial scale that is suitable for the convection and diffusion model of the target area is determined without increasing the parameters, that is, the division of the spatial grid is completed.
S104、基于空间尺度,确定目标区域的空间布点数。S104. Based on the spatial scale, determine the number of spatial distribution points in the target area.
具体地,确定目标区域的空间布点数是指在引入新的空间尺度后,通过计算偏差值确定与目标区域的对流扩散模型相适应的空间布点数的过程。Specifically, determining the number of spatial distribution points in the target area refers to the process of determining the number of spatial distribution points that is compatible with the convection-diffusion model of the target area by calculating the deviation value after introducing a new spatial scale.
S105、基于空间布点数与对流扩散模型,分析预测目标区域中溶质浓度。S105. Analyze and predict the solute concentration in the target area based on the number of spatial distribution points and the convection-diffusion model.
具体地,基于空间布点数与对流扩散模型,分析预测目标区域中溶质浓度是指根据确定的空间布点数对目标区域的对流扩散模型进行离散,并通过偏微分方程的有限差分方法求解离散后的对流扩散模型,确定目标区域的溶质浓度。Specifically, based on the number of spatial distribution points and the convection-diffusion model, the analysis and prediction of the solute concentration in the target area refers to discretizing the convection-diffusion model of the target area according to the determined number of spatial distribution points, and solving the discretized A convective-diffusion model to determine the solute concentration in the target region.
通过实施本实施例,基于目标区域的示踪剂实验,构建目标区域的对流扩散模型,并利用模型本身的特性确定空间尺度,完成空间网格的划分,从而通过空间布点数与对流扩散模型,分析预测目标区域中溶质浓度,实现溶质超扩散过程的模拟。Through the implementation of this embodiment, based on the tracer experiment in the target area, the convection diffusion model of the target area is constructed, and the spatial scale is determined by the characteristics of the model itself, and the division of the spatial grid is completed, so that through the number of spatial distribution points and the convection diffusion model, Analyze and predict the solute concentration in the target area, and realize the simulation of the solute super-diffusion process.
在一种可选实施方式中,上述步骤S103的过程,具体包括:In an optional implementation manner, the process of the above step S103 specifically includes:
(1)根据示踪剂实验,确定对流扩散模型的与空间尺度相关的参数。(1) According to the tracer experiment, determine the parameters related to the spatial scale of the convection-diffusion model.
具体地,确定对流扩散模型的与空间尺度相关参数的过程是根据示踪剂实验的测量数据或历史数据,确定对流扩散模型的分数阶阶数的过程。Specifically, the process of determining the parameters related to the spatial scale of the convection-diffusion model is a process of determining the fractional order of the convection-diffusion model based on the measured data or historical data of the tracer experiment.
在一种可选实施方式中,根据示踪剂实验,确定对流扩散模型的与空间尺度相关的参数的过程,具体包括:In an optional embodiment, according to the tracer experiment, the process of determining the parameters related to the spatial scale of the convection-diffusion model specifically includes:
根据示踪剂实验,确定地下含水层的裂隙发育情况。Based on tracer experiments, the development of fractures in underground aquifers was determined.
根据裂隙发育情况,确定对流扩散模型的与空间尺度相关的参数。According to the development of cracks, the parameters related to the spatial scale of the convection-diffusion model are determined.
具体地,根据示踪剂实验,确定地下含水层的裂隙发育情况是指通过示踪剂实验的测量数据或历史数据,确定溶质在进入地下含水层的滞留现象是否明显,滞留现象越明显,即出现溶质滞后的情况越明显,目标区域地下含水层的裂隙越发达。Specifically, according to the tracer experiment, determining the fracture development of the underground aquifer refers to determining whether the retention phenomenon of solutes entering the underground aquifer is obvious through the measurement data or historical data of the tracer experiment, and the retention phenomenon is more obvious, that is, The more obvious the occurrence of solute lag, the more developed the fractures of the underground aquifer in the target area.
具体地,根据裂隙发育情况,确定对流扩散模型的与空间尺度相关的参数是指根据裂隙发育情况、与空间尺度相关的参数的对应关系,即裂隙发育情况与分数阶阶数的对应关系,确定对流扩散模型的分数阶阶数的取值。其中,裂隙越发达,分数阶阶数越小。Specifically, according to the development of cracks, determining the parameters related to the spatial scale of the convection-diffusion model refers to the corresponding relationship between the development of cracks and the parameters related to the spatial scale, that is, the corresponding relationship between the development of cracks and the fractional order. The value of the fractional order for the convection-diffusion model. Among them, the more developed the crack, the smaller the fractional order.
(2)根据与空间尺度相关的参数,确定对流扩散模型的空间尺度。(2) Determine the spatial scale of the convection-diffusion model according to the parameters related to the spatial scale.
具体地,根据与空间尺度相关的参数,确定对流扩散模型的空间尺度包括:根据与空间尺度相关的参数,确定尺度变换参数;根据尺度变换参数,在Hausdroff维度上进行空间均匀布点,并将Hausdroff维度的空间布点映射到欧几里得空间的维度上,即映射到平直空间的维度上。Specifically, determining the spatial scale of the convection-diffusion model according to the parameters related to the spatial scale includes: determining the scale transformation parameters according to the parameters related to the spatial scale; The spatial layout of the dimension is mapped to the dimension of the Euclidean space, that is, mapped to the dimension of the flat space.
具体地,尺度变换参数通过如下公式表达:Specifically, the scaling parameters are expressed by the following formula:
β=α-1β=α-1
其中,β表示尺度变换参数。Among them, β represents the scaling parameter.
具体地,根据尺度变换参数,在Hausdroff维度上进行空间均匀布点是指在空间尺度为β的Hausdroff维度上均匀布点。此时在禀尺度下空间均分,步长为Δx。将Hausdroff维度的空间布点映射到欧几里得空间的维度上,即将欧几里得空间维度的点投影到Hausdroff维度,完成空间尺度的变换,这一过程相当于确定对流扩散模型的空间尺度。在实际应用中,空间网格映射示意图如图2所示,相当于将欧几里得空间的x投影到Hausdroff维度的上,即完成的变换,此时空间度量的关系通过如下公式表示:Specifically, according to the scale transformation parameters, uniform distribution of points on the Hausdroff dimension refers to uniform distribution of points on the Hausdroff dimension with a spatial scale of β. At this time, the space is evenly divided under the intrinsic scale, and the step size is Δx. Map the spatial distribution points of Hausdroff dimension to the dimension of Euclidean space, that is, project the points of Euclidean space dimension to Hausdroff dimension to complete the transformation of spatial scale. This process is equivalent to determining the spatial scale of the convection-diffusion model. In practical applications, the schematic diagram of spatial grid mapping is shown in Figure 2, which is equivalent to projecting x from Euclidean space to Hausdroff dimension up, it's done The transformation of , at this time, the relationship of spatial metrics is expressed by the following formula:
在实际应用中,在确定对流扩散模型的空间尺度后,空间分数阶导数的离散形式可以表现为:In practical applications, after determining the spatial scale of the convection-diffusion model, the discrete form of the spatial fractional derivative can be expressed as:
其中,m表示空间上第m个点,如果空间布点数为M个,0<m<M,j表示空间上第j个点,0<j≤m,xj表示空间上第j个点的位置,τ表示空间步长,τj=xj-xj-1,ξ表示积分内的空间变量,δj=xm-xj。Among them, m represents the mth point in space. If there are M points in space, 0<m<M, j represents the jth point in space, 0<j≤m, and x j represents the value of the jth point in space. position, τ represents the spatial step size, τ j =x j -x j-1 , ξ represents the spatial variable within the integral, δ j =x m -x j .
在实际应用中,将xj投影到外部空间第j个点位置满足:In practical applications, projecting x j to the position of the jth point in the external space satisfies:
xj=(jΔx)1/β x j = (jΔx) 1/β
通过实施本实施例,根据示踪剂实验,确定地下含水层的裂隙发育情况,并根据裂隙发育情况确定对流扩散模型的空间尺度,这一过程是通过示踪剂实验的测量数据,确定目标区域的裂隙发育情况,并根据目标区域的裂隙发育情况与空间分数阶阶数的对应关系,确定空间分数阶阶数,即与空间尺度相关的参数,进而通过空间分数阶阶数,确定对流扩散模型的空间尺度。从而利用模型本身反应物理特性的参数,在不增加参数的前提下确定与目标区域的对流扩散模型相适应的空间尺度,即完成空间网格的划分,为分析预测目标区域中溶质浓度,实现溶质超扩散过程的模拟提供数据基础。Through the implementation of this embodiment, according to the tracer experiment, the fracture development of the underground aquifer is determined, and the spatial scale of the convection diffusion model is determined according to the fracture development. This process is to determine the target area through the measurement data of the tracer experiment According to the corresponding relationship between the development of cracks in the target area and the spatial fractional order, determine the spatial fractional order, that is, the parameters related to the spatial scale, and then determine the convection and diffusion model through the spatial fractional order the spatial scale. In order to use the parameters of the model itself to reflect the physical characteristics, determine the spatial scale suitable for the convection-diffusion model of the target area without increasing the parameters, that is, to complete the division of the spatial grid, to analyze and predict the solute concentration in the target area, and to realize the solute concentration in the target area. The simulation of the superdiffusion process provides the data basis.
在一种可选实施方式中,上述步骤S104的过程,具体包括:In an optional implementation manner, the process of the above step S104 specifically includes:
(1)基于预设的第一空间布点数和对流扩散模型,计算第一溶质浓度。(1) Calculate the first solute concentration based on the preset number of points in the first space and the convection-diffusion model.
在实际应用中,预设的第一空间布点数可以是20,30,40或其他数值,可根据实际工况进行选择,本发明对此不作具体限定。In practical applications, the preset number of first spatial distribution points may be 20, 30, 40 or other values, which may be selected according to actual working conditions, which is not specifically limited in the present invention.
在实际应用中,基于预设的第一空间布点数和对流扩散模型,计算第一溶质浓度是指根据预设的第一空间布点数对目标区域的对流扩散模型进行离散,并通过偏微分方程的有限差分方法求解离散后的对流扩散模型,得到第一溶质浓度。应该理解的是,通过偏微分方程的有限差分方法求解离散后模型属于较为成熟的技术,本申请对此不再进行赘述。In practical applications, based on the preset number of points in the first space and the convection-diffusion model, the calculation of the first solute concentration refers to the discretization of the convection-diffusion model in the target area according to the preset number of points in the first space, and through the partial differential equation The finite difference method is used to solve the discretized convection-diffusion model to obtain the first solute concentration. It should be understood that solving the discretized model through the finite difference method of partial differential equations is a relatively mature technology, and this application will not repeat it here.
(2)基于预设的空间布点系数与第一空间布点数,确定第二空间布点数。(2) Based on the preset spatial distribution coefficient and the first spatial distribution number, determine the second spatial distribution number.
在实际应用中,预设的空间布点系数可以是2,3或其他数值,可根据实际工况进行选择,本发明对此不作具体限定。In practical applications, the preset spatial distribution coefficient can be 2, 3 or other values, which can be selected according to actual working conditions, which is not specifically limited in the present invention.
(3)基于第二空间布点数和对流扩散模型,计算第二溶质浓度。(3) Calculate the second solute concentration based on the number of distribution points in the second space and the convection-diffusion model.
在实际应用中,基于第二空间布点数和对流扩散模型,计算第二溶质浓度是指根据第二空间布点数对目标区域的对流扩散模型进行离散,并通过偏微分方程的有限差分方法求解离散后的对流扩散模型,得到第二溶质浓度。In practical applications, based on the number of distribution points in the second space and the convection-diffusion model, calculating the second solute concentration refers to discretizing the convection-diffusion model in the target area according to the number of distribution points in the second space, and solving the discrete After the convection-diffusion model, the second solute concentration is obtained.
(4)根据第一溶质浓度与第二溶质浓度,确定计算结果间的第一偏差值。(4) Determine a first deviation value between calculation results according to the first solute concentration and the second solute concentration.
具体地,第一偏差值表示为:Specifically, the first deviation value is expressed as:
其中,derror1表示为第一偏差值,result1表示第一溶质浓度,result2表示第二溶质浓度。Wherein, derror1 represents the first deviation value, result1 represents the first solute concentration, and result2 represents the second solute concentration.
(5)在第一偏差值满足预设偏差阈值时,将第二空间布点数作为目标区域的空间布点数。(5) When the first deviation value satisfies the preset deviation threshold, the second number of spatial distribution points is used as the number of spatial distribution points of the target area.
在实际应用中,预设偏差阈值可以是0.1,0.2或其他数值,可根据实际工况进行选择,本发明对此不作具体限定。In practical applications, the preset deviation threshold may be 0.1, 0.2 or other values, which may be selected according to actual working conditions, which is not specifically limited in the present invention.
在实际应用中,第一偏差值满足预设偏差阈值是指第一偏差值小于第一偏差阈值。In practical applications, the first deviation value meeting the preset deviation threshold means that the first deviation value is smaller than the first deviation threshold.
在一种可选实施方式中,裂隙通道中溶质超扩散的模拟方法,还包括:In an optional embodiment, the method for simulating solute superdiffusion in a crack channel further includes:
(1)在第一偏差值不满足预设偏差阈值时,基于预设的空间布点系数与第二空间布点数,确定第三空间布点数。(1) When the first deviation value does not meet the preset deviation threshold, determine the third number of spatial distribution points based on the preset spatial distribution coefficient and the second number of spatial distribution points.
(2)基于第三空间布点数和对流扩散模型,计算第三溶质浓度。(2) Calculate the concentration of the third solute based on the number of distribution points in the third space and the convection-diffusion model.
在实际应用中,基于第三空间布点数和对流扩散模型,计算第三溶质浓度是指根据第三空间布点数对目标区域的对流扩散模型进行离散,并通过偏微分方程的有限差分方法求解离散后的对流扩散模型,得到第三溶质浓度。In practical applications, based on the number of distribution points in the third space and the convection-diffusion model, the calculation of the third solute concentration refers to discretizing the convection-diffusion model in the target area according to the number of distribution points in the third space, and solving the discretization by the finite difference method of the partial differential equation After the convection-diffusion model, a third solute concentration is obtained.
(3)根据第二溶质浓度与第三溶质浓度,确定计算结果间的第二偏差值。(3) Determine a second deviation value between calculation results according to the second solute concentration and the third solute concentration.
具体地,第二偏差值表示为:Specifically, the second deviation value is expressed as:
其中,derror2表示为第一偏差值,result3表示第三溶质浓度。Wherein, derror2 represents the first deviation value, and result3 represents the third solute concentration.
(4)在第二偏差值满足预设偏差阈值时,将第三空间布点数作为目标区域的空间布点数。(4) When the second deviation value satisfies the preset deviation threshold, the third spatial distribution number is used as the spatial distribution number of the target area.
在实际应用中,若第二偏差值扔不满足预设偏差阈值时,再次基于第三空间布点数与预设的空间布点系数,确定第四空间布点数,并计算第四溶质浓度及比较第三偏差值以此类推,本发明不再进行赘述。In practical applications, if the second deviation value does not meet the preset deviation threshold, the number of distribution points in the fourth space is determined again based on the number of distribution points in the third space and the preset coefficient of distribution points in the space, and the concentration of the fourth solute is calculated and compared with that in the first space. The three deviation values can be deduced by analogy, and the present invention will not repeat them here.
在实际应用中,假设河流中溶质的对流参数与超扩散系数均为1,采用Hausdroff维度为0.4的空间尺度上均匀布点100和正常欧几里得空间维度上均匀布点100、400和2000的结果做对比,其中正常欧几里得空间维度2000作为近似精确解,其他布点方式的解越接近近似精确解则表示精度越高。图3为四种布点方式的解,结果表明,Hausdroff维度的空间尺度上均匀布点显著提高了计算精度,100点的计算精度比正常欧几里得空间维度上均匀布点400的精度还高。In practical application, assuming that the convection parameter and superdiffusion coefficient of the solute in the river are both 1, the results of uniform distribution of 100 points on the spatial scale of Hausdroff dimension 0.4 and uniform distribution of points 100, 400 and 2000 on the normal Euclidean spatial dimension are used For comparison, the normal Euclidean space dimension of 2000 is used as an approximate exact solution, and the closer the solutions of other point layout methods are to the approximate exact solution, the higher the accuracy is. Figure 3 shows the solutions of the four point distribution methods. The results show that the uniform distribution of points on the Hausdroff dimension significantly improves the calculation accuracy, and the calculation accuracy of 100 points is higher than that of 400 points evenly distributed on the normal Euclidean space dimension.
通过实施本实施例,布点数作为空间离散的依据,通过预设的空间布点系数与预设的第一空间布点数,以计算偏差值的方式,确定在引入新的空间尺度后,与目标区域的对流扩散模型相适配的空间布点数,从而为分析预测目标区域中溶质浓度,实现溶质超扩散过程的模拟提供数据基础。Through the implementation of this embodiment, the number of distribution points is used as the basis for spatial discretization. Through the preset spatial distribution coefficient and the preset first spatial distribution number, the deviation value is determined to determine the distance from the target area after the introduction of a new spatial scale. The number of spatial distribution points that are compatible with the convection-diffusion model can provide a data basis for analyzing and predicting the solute concentration in the target area and realizing the simulation of the solute super-diffusion process.
本实施例提供一种基于目标河流的溶质输移过程的装置,如图4所示,包括:获取单元21、对流扩散模型构建单元22、空间尺度确定单元23、空间布点确定单元24、分析预测单元25。This embodiment provides a device based on the solute transport process of the target river, as shown in FIG.
获取单元21,用于基于目标区域的示踪剂实验,获取目标区域的对流参数与超扩散系数。具体过程可参见上述实施例中关于步骤S101的相关描述,在此不再赘述。The
对流扩散模型构建单元22,用于根据对流参数、超扩散系数,构建目标区域的对流扩散模型。具体过程可参见上述实施例中关于步骤S102的相关描述,在此不再赘述。The convection-diffusion
空间尺度确定单元23,用于根据示踪剂实验,确定对流扩散模型的空间尺度。具体过程可参见上述实施例中关于步骤S103的相关描述,在此不再赘述。The spatial
空间布点确定单元24,用于基于空间尺度,确定目标区域的空间布点数。具体过程可参见上述实施例中关于步骤S104的相关描述,在此不再赘述。The spatial
分析预测单元25,用于基于空间布点数与对流扩散模型,分析预测目标区域中溶质浓度。具体过程可参见上述实施例中关于步骤S105的相关描述,在此不再赘述。The analysis and
通过实施本实施例,通过获取单元与对流扩散模型构建单元基于目标区域的示踪剂实验,构建目标区域的对流扩散模型,并通过空间尺度确定单员与空间布点数确定单元利用模型本身的特性确定空间尺度,完成空间网格的划分,从而通过分析预测单元基于空间布点数与对流扩散模型,分析预测目标区域中溶质浓度,实现溶质超扩散过程的模拟。Through the implementation of this embodiment, the acquisition unit and the convection-diffusion model construction unit are based on the tracer experiment of the target area, and the convection-diffusion model of the target area is constructed, and the single member and the number of spatial distribution are determined by the spatial scale. The unit uses the characteristics of the model itself Determine the spatial scale and complete the division of the spatial grid, so that the solute concentration in the target area can be analyzed and predicted through the analysis and prediction unit based on the number of spatial distribution points and the convection diffusion model, and the simulation of the solute super-diffusion process can be realized.
本发明一个实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述任意方法实施例中的基于裂隙通道中溶质超扩散的模拟方法。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(FlashMemory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。An embodiment of the present invention also provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and the computer-executable instructions can execute the method based on solute superdiffusion in the crack channel in any of the above method embodiments. mock method. Wherein, the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a flash memory (FlashMemory), a hard disk (Hard Disk Drive, HDD) or solid-state hard drive (Solid-State Drive, SSD), etc.; the storage medium may also include a combination of the above-mentioned types of memory.
本发明一个实施例还提供一种计算机设备,如图5所示,图5是本发明一个可选实施例提供的一种计算机设备的结构示意图,该计算机设备可以包括至少一个处理器31、至少一个通信接口32、至少一个通信总线33和至少一个存储器34,其中,通信接口32可以包括显示屏(Display)、键盘(Keyboard),可选通信接口32还可以包括标准的有线接口、无线接口。存储器34可以是高速RAM存储器(Random Access Memory,易挥发性随机存取存储器),也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器34可选的还可以是至少一个位于远离前述处理器31的存储装置。其中处理器31可以结合图4所描述的装置,存储器34中存储应用程序,且处理器31调用存储器34中存储的程序代码,以用于执行上述任意方法实施例所述的裂隙通道中溶质超扩散的模拟方法的步骤。An embodiment of the present invention also provides a computer device, as shown in FIG. 5 , which is a schematic structural diagram of a computer device provided in an optional embodiment of the present invention. The computer device may include at least one
其中,通信总线33可以是外设部件互连标准(peripheral componentinterconnect,PCI)总线或扩展工业标准结构(extended industry standardarchitecture,EISA)总线等。通信总线33可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。Wherein, the
其中,存储器34可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatilememory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器34还可以包括上述种类的存储器的组合。Wherein, the
其中,处理器31可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。Wherein, the
其中,处理器31还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmablelogic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complexprogrammable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gatearray,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。Wherein, the
可选地,存储器34还用于存储程序指令。处理器31可以调用程序指令,实现本发明任一实施例中所述的裂隙通道中溶质超扩散的模拟方法。Optionally, the
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Apparently, the above-mentioned embodiments are only examples for clear description, rather than limiting the implementation. For those of ordinary skill in the art, on the basis of the above description, other changes or changes in different forms can also be made. It is not necessary and impossible to exhaustively list all the implementation manners here. And the obvious changes or changes derived therefrom are still within the scope of protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211424429.4A CN115577597B (en) | 2022-11-15 | 2022-11-15 | Simulation method, device, medium and equipment for solute superdiffusion in fracture channel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211424429.4A CN115577597B (en) | 2022-11-15 | 2022-11-15 | Simulation method, device, medium and equipment for solute superdiffusion in fracture channel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115577597A true CN115577597A (en) | 2023-01-06 |
CN115577597B CN115577597B (en) | 2025-01-17 |
Family
ID=84588306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211424429.4A Active CN115577597B (en) | 2022-11-15 | 2022-11-15 | Simulation method, device, medium and equipment for solute superdiffusion in fracture channel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115577597B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116559058A (en) * | 2023-05-12 | 2023-08-08 | 中国长江三峡集团有限公司 | Breakwater sulfate erosion detection method, device, electronic equipment and storage medium |
CN116911072A (en) * | 2023-09-07 | 2023-10-20 | 长江三峡集团实业发展(北京)有限公司 | Method, device, computer equipment and medium for determining distribution duty ratio of lens body |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101493969B1 (en) * | 2013-08-23 | 2015-02-17 | 대한민국 | Methods for Analysis of Lagrangian Particle Tracking Experiments using GPS Floater |
CN106201997A (en) * | 2016-06-28 | 2016-12-07 | 河海大学 | A kind of dynamic data reconstitution time alternative approach of unusual diffusion problem |
CN111914447A (en) * | 2020-07-13 | 2020-11-10 | 河海大学 | A Novel Finite Volume Multiscale Finite Element Method for Modeling Solute Transport in Groundwater |
CN114997524A (en) * | 2022-07-07 | 2022-09-02 | 中国长江三峡集团有限公司 | Underground water solute distribution prediction method, device, equipment and storage medium |
CN115048883A (en) * | 2022-07-27 | 2022-09-13 | 中国长江三峡集团有限公司 | Dynamic simulation method and device for soil-vegetation soluble colloid migration process |
CN115081725A (en) * | 2022-07-07 | 2022-09-20 | 中国长江三峡集团有限公司 | Method and device for predicting pollutant solute distribution under karst landform |
-
2022
- 2022-11-15 CN CN202211424429.4A patent/CN115577597B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101493969B1 (en) * | 2013-08-23 | 2015-02-17 | 대한민국 | Methods for Analysis of Lagrangian Particle Tracking Experiments using GPS Floater |
CN106201997A (en) * | 2016-06-28 | 2016-12-07 | 河海大学 | A kind of dynamic data reconstitution time alternative approach of unusual diffusion problem |
CN111914447A (en) * | 2020-07-13 | 2020-11-10 | 河海大学 | A Novel Finite Volume Multiscale Finite Element Method for Modeling Solute Transport in Groundwater |
CN114997524A (en) * | 2022-07-07 | 2022-09-02 | 中国长江三峡集团有限公司 | Underground water solute distribution prediction method, device, equipment and storage medium |
CN115081725A (en) * | 2022-07-07 | 2022-09-20 | 中国长江三峡集团有限公司 | Method and device for predicting pollutant solute distribution under karst landform |
CN115048883A (en) * | 2022-07-27 | 2022-09-13 | 中国长江三峡集团有限公司 | Dynamic simulation method and device for soil-vegetation soluble colloid migration process |
Non-Patent Citations (3)
Title |
---|
SUN H G 等: "A variable-order fractal derivative model for anomalous diffusion", 《THERMAL SCIENCE》, 31 December 2017 (2017-12-31), pages 51 - 59 * |
韦慧;孙洪广;危嵩;: "河道溶质输运过程的截断型分数阶导数建模研究", 环境工程, no. 05, 22 May 2018 (2018-05-22), pages 1 - 7 * |
鲁程鹏 等: "基于时空分数阶导数模型的潜流带溶质运移模拟", 《南水北调与水利科技》, 16 December 2021 (2021-12-16), pages 506 - 515 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116559058A (en) * | 2023-05-12 | 2023-08-08 | 中国长江三峡集团有限公司 | Breakwater sulfate erosion detection method, device, electronic equipment and storage medium |
CN116911072A (en) * | 2023-09-07 | 2023-10-20 | 长江三峡集团实业发展(北京)有限公司 | Method, device, computer equipment and medium for determining distribution duty ratio of lens body |
CN116911072B (en) * | 2023-09-07 | 2024-01-26 | 长江三峡集团实业发展(北京)有限公司 | Method, device, computer equipment and medium for determining distribution duty ratio of lens body |
Also Published As
Publication number | Publication date |
---|---|
CN115577597B (en) | 2025-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111624147B (en) | Relative permeability measuring method and device for rock core | |
CN115577597A (en) | Simulation method, device, medium and equipment for solute hyperdiffusion in fracture channel | |
CN111852463B (en) | Gas well productivity evaluation method and equipment | |
CN106014399B (en) | Method for establishing high-precision three-dimensional ground stress model of heterogeneous stratum | |
CN118013703B (en) | Permeability analysis method, computer equipment and storage medium for rock shear process | |
CN111399042B (en) | A kind of prediction method and electronic device of reservoir physical property parameters | |
Shi et al. | Effect of discrete fractures with or without roughness on seepage characteristics of fractured rocks | |
CN106709219A (en) | Area initial stress field inversion method and device under complicated geological conditions | |
CN106546525A (en) | The method and apparatus for setting up three-dimensional penetration rate model | |
CN105223616A (en) | A kind of pore components inversion method of shale reservoir | |
CN113255092B (en) | Characteristic point fitting inversion method, electronic equipment and medium for volume fracturing horizontal well | |
CN104990853B (en) | The Forecasting Methodology of the full rank permeability tensor of porous media | |
CN113836617B (en) | Method and system for analogically predicting front fissure of tunneling surface based on time sequence model | |
RU2717601C1 (en) | Determination of estimates reliability of discrete fracture network permeability | |
CN107780926B (en) | Wellbore section shape measuring method, device and terminal | |
Zhang et al. | Modeling free-surface seepage flow in complicated fractured rock mass using a coupled RPIM-FEM method | |
CN112836860B (en) | Method and system for determining dynamic yield of fractured well in whole period of yield decreasing stage | |
CN108664678B (en) | Yield prediction method | |
CN116992689B (en) | A method for inversion of heat transfer parameters in fractured aquifers considering wellbore thermal mixing process | |
CN111027892B (en) | Method and device for determining reservoir permeability of gas well and server | |
US20180196897A1 (en) | Method And Apparatus For Production Logging Tool (PLT) Results Interpretation | |
US20190235128A1 (en) | Determination of virtual process parameters | |
CN117407953A (en) | Method, terminal and storage medium for calculating shear strength of anisotropic structural surface | |
CN116975987A (en) | Prediction method and device for deep water and shallow geotechnical engineering parameters based on acoustic characteristics | |
WO2024207639A1 (en) | Resistivity logging-based oil-gas well skin factor calculation method and related apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |