CN115572878A - Hard alloy material and preparation method and application thereof - Google Patents
Hard alloy material and preparation method and application thereof Download PDFInfo
- Publication number
- CN115572878A CN115572878A CN202211208106.1A CN202211208106A CN115572878A CN 115572878 A CN115572878 A CN 115572878A CN 202211208106 A CN202211208106 A CN 202211208106A CN 115572878 A CN115572878 A CN 115572878A
- Authority
- CN
- China
- Prior art keywords
- carbide
- cemented
- material according
- cemented carbide
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 50
- 238000002360 preparation method Methods 0.000 title abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 29
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000002994 raw material Substances 0.000 claims abstract description 19
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 18
- 229910052755 nonmetal Inorganic materials 0.000 claims abstract description 12
- 150000003624 transition metals Chemical class 0.000 claims abstract description 7
- 238000005520 cutting process Methods 0.000 claims abstract description 6
- 150000001247 metal acetylides Chemical class 0.000 claims description 15
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 claims description 13
- 229910052580 B4C Inorganic materials 0.000 claims description 12
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical group B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims description 12
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 12
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 12
- -1 transition metal carbides Chemical class 0.000 claims description 12
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 claims description 10
- 229910003470 tongbaite Inorganic materials 0.000 claims description 10
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims description 10
- 238000003825 pressing Methods 0.000 claims description 9
- 229910026551 ZrC Inorganic materials 0.000 claims description 8
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 claims description 8
- 238000005485 electric heating Methods 0.000 claims description 4
- 238000001125 extrusion Methods 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 2
- 239000013078 crystal Substances 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 4
- 238000005728 strengthening Methods 0.000 abstract description 3
- 230000002195 synergetic effect Effects 0.000 abstract description 3
- 238000005242 forging Methods 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 238000005452 bending Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910000521 B alloy Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- FZQBLSFKFKIKJI-UHFFFAOYSA-N boron copper Chemical compound [B].[Cu] FZQBLSFKFKIKJI-UHFFFAOYSA-N 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- JPNWDVUTVSTKMV-UHFFFAOYSA-N cobalt tungsten Chemical compound [Co].[W] JPNWDVUTVSTKMV-UHFFFAOYSA-N 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- UPKIHOQVIBBESY-UHFFFAOYSA-N magnesium;carbanide Chemical compound [CH3-].[CH3-].[Mg+2] UPKIHOQVIBBESY-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 1
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种合金材料,具体涉及一种硬质合金材料及其制备方法和应用,属于合金材料技术领域。The invention relates to an alloy material, in particular to a cemented carbide material and its preparation method and application, and belongs to the technical field of alloy materials.
背景技术Background technique
在我国的硬质合金制造业中,常见的方式有两种,一种是采用2种以上同一属性的金属混合压制烧结而成,例如有钨钴合金、铁镍合金、铜锌合金等;另一种则是采用用2种以上不同属性的材料,例如将非金属和金属混合压制烧结而成,代表性合金有硅铁合金、硅铝合金、钯硼合金、铜硼合金、铁碳合金等。然而,无论是何等材料,何等制备技术,何等烧结工艺,都采用混合—压制—烧结三步走的制备方法,这一工艺流程已经是行业中成熟而实际运行的制备方法。该工艺首先将原材料按一定比例配混,压制成型,置于带有保护气氛的炉内进行高温烧结,烧结时炉内附带有6MPa以下的保护气体压强。而最近几年兴起的热等静压高温烧结合金、热等静压所给予合金烧结时的压强也小于等于20MPa。In my country's cemented carbide manufacturing industry, there are two common methods. One is to use more than two kinds of metals with the same properties to mix, press and sinter, such as tungsten-cobalt alloy, iron-nickel alloy, copper-zinc alloy, etc.; One is to use two or more materials with different properties, such as non-metal and metal mixed by pressing and sintering. Representative alloys include ferrosilicon alloy, silicon-aluminum alloy, palladium-boron alloy, copper-boron alloy, iron-carbon alloy, etc. However, no matter what kind of material, what kind of preparation technology, and what kind of sintering process, the three-step preparation method of mixing-pressing-sintering is adopted. This process is already a mature and practical preparation method in the industry. The process first mixes the raw materials in a certain proportion, presses them into shape, and puts them in a furnace with a protective atmosphere for high-temperature sintering. During sintering, the furnace is accompanied by a protective gas pressure below 6MPa. In recent years, hot isostatic pressing of high-temperature sintered alloys and hot isostatic pressing of high-temperature sintered alloys are also less than or equal to 20 MPa during sintering.
通过上述描述可知,硬质合金的性能与原料组分配比和制备工艺有着紧密的关联,硬质合金不仅要求硬度高、耐磨性好,还要求合金具有一定的冲击韧性和抗弯韧性,然而在合金领域,硬度与强度,硬度与韧性,是相互矛盾的两种特征属性,一般而言,硬度越高的合金,其强度与韧性是降低的,这一特征,显然无法满足现有工业对于合金性能的要求。From the above description, it can be seen that the performance of cemented carbide is closely related to the ratio of raw material components and the preparation process. The cemented carbide not only requires high hardness and good wear resistance, but also requires the alloy to have certain impact toughness and flexural toughness. However, In the field of alloys, hardness and strength, hardness and toughness are two contradictory characteristic attributes. Generally speaking, the higher the hardness of the alloy, the lower its strength and toughness. This feature obviously cannot meet the requirements of the existing industry. Alloy performance requirements.
中国专利(CN104831144)提供了一种复合硬质合金材料,其以纳米碳化钛、纳米氮化钛、碳化钨、碳化铌、碳化硅、氧化钇、碳化铝、钛粉、碳化钽、碳化锆、钴粉、硅粉、镍粉和碳化硼为主要原料,通过添加稀土元素,与合金中的氧、硫等杂质结合,从而达到净化晶界,消除缺陷,使制备出来的合金具有强度高、韧性好、耐磨、热冲击性能好的特点。然而该硬质合金原料种类繁杂,且对于原料的要求较高,存在纳米级原料,且仍存在强度与韧性不足等缺点。Chinese patent (CN104831144) provides a composite cemented carbide material, which is made of nano-titanium carbide, nano-titanium nitride, tungsten carbide, niobium carbide, silicon carbide, yttrium oxide, aluminum carbide, titanium powder, tantalum carbide, zirconium carbide, Cobalt powder, silicon powder, nickel powder and boron carbide are the main raw materials. By adding rare earth elements, they combine with impurities such as oxygen and sulfur in the alloy to purify the grain boundaries and eliminate defects, so that the prepared alloy has high strength and toughness. Excellent wear resistance and thermal shock performance. However, the cemented carbide has a variety of raw materials, and has high requirements for raw materials. There are nano-scale raw materials, and there are still shortcomings such as insufficient strength and toughness.
综上所述,现有技术当中仍无法实现硬质合金在保证高硬度的同时大幅提升材料的强度与韧性,各工业生产领域对于高质量硬质合金的需求亟需得到满足。To sum up, in the existing technology, it is still impossible to achieve high hardness of cemented carbide while greatly improving the strength and toughness of the material. The demand for high-quality cemented carbide in various industrial production fields needs to be met urgently.
发明内容Contents of the invention
针对现有技术存在的问题,本发明的第一个目的在于提供一种硬质合金材料。该合金材料以过渡金属碳化物和非金属碳化物为原料,基于原料间各组分的协同作用,充分发挥碳化物晶体强化作用,在大幅提升合金材料的硬度的同时还显著增加了合金材料的强度与韧性。Aiming at the problems existing in the prior art, the first object of the present invention is to provide a cemented carbide material. The alloy material uses transition metal carbides and non-metallic carbides as raw materials. Based on the synergistic effect of each component of the raw materials, the carbide crystal strengthening effect is fully exerted, and the hardness of the alloy material is also significantly increased. Strength and toughness.
本发明的第二个目的在于提供一种硬质合金材料的制备方法,该方法通过电加热与压机加压方式,获得制备所需要超高压有效工作压强,同时对材料进行高温加压,改变原有碳化物的晶格取向,使合金材料呈现细密的晶相。该方法通过调节电流强度与压强,可以实现对合金材料硬度与强度与韧性的可控调节。The second object of the present invention is to provide a method for preparing cemented carbide materials. The method obtains the effective working pressure of ultra-high pressure required for the preparation by means of electric heating and pressurization, and at the same time pressurizes the material at a high temperature to change the The lattice orientation of the original carbide makes the alloy material present a fine crystal phase. By adjusting the current intensity and pressure, the method can realize the controllable adjustment of the hardness, strength and toughness of the alloy material.
本发明的第三个目的在于提供一种硬质合金材料的应用,本发明所提供的硬质合金材料基于原料组分与制备方法的协同性,赋予该合金材料有益的力学性能,尤其是大幅提升该合金材料的硬度、红硬性、耐磨性、抗冲击性和抗弯性,满足各类切削刀具及高温环境中零部件的材料要求。The third object of the present invention is to provide a kind of application of cemented carbide material, the cemented carbide material provided by the present invention is based on the synergy of raw material component and preparation method, endows this alloy material with beneficial mechanical property, especially substantially Improve the hardness, red hardness, wear resistance, impact resistance and bending resistance of the alloy material to meet the material requirements of various cutting tools and parts in high temperature environments.
为了实现上述技术目的,本发明提供了一种硬质合金材料,包括过渡金属碳化物和非金属碳化物;所述过渡金属碳化物与非金属碳化物的质量比为1:4~9。In order to achieve the above technical purpose, the present invention provides a cemented carbide material, including transition metal carbides and non-metal carbides; the mass ratio of the transition metal carbides to non-metal carbides is 1:4-9.
本发明采用过渡金属碳化物和非金属碳化物,其中,非金属碳化物的含量远远高于过渡金属碳化物,这样做的目的在于提高合金的硬度的同时降低合金的密度,从而大幅提升合金材料的硬度和强度与韧性。进一步的,该硬质合金材料不含氧化物、氮化物,氧化物在高温高压合成后的坯体中容易造成微裂纹,导致强度与韧性降低;而氮化物的含氮量难以控制,含氮过高可使硬质合金的相变超出可控范围,从而降低了硬质合金的硬度。The present invention uses transition metal carbides and non-metal carbides, wherein the content of non-metal carbides is much higher than that of transition metal carbides. The purpose of doing this is to increase the hardness of the alloy while reducing the density of the alloy, thereby greatly improving the hardness of the alloy. The hardness and strength and toughness of the material. Further, the cemented carbide material does not contain oxides and nitrides. The oxides are easy to cause microcracks in the green body after high temperature and high pressure synthesis, resulting in a decrease in strength and toughness; while the nitrogen content of the nitrides is difficult to control, the nitrogen content Too high can make the phase transformation of cemented carbide beyond the controllable range, thereby reducing the hardness of cemented carbide.
作为一项优选的方案,所述过渡金属碳化物为碳化锆、碳化铬、碳化钛和碳化钒中的至少一种。As a preferred solution, the transition metal carbide is at least one of zirconium carbide, chromium carbide, titanium carbide and vanadium carbide.
作为一项优选的方案,所述碳化锆为立方多晶体,化合碳含量为5%~10%之间,粒径小于5μm。As a preferred solution, the zirconium carbide is cubic polycrystal, the combined carbon content is between 5% and 10%, and the particle size is less than 5 μm.
作为一项优选的方案,所述碳化铬为面心立方晶格,化合碳含量4%~7%之间,粒径小于5μm。As a preferred solution, the chromium carbide is a face-centered cubic lattice, the combined carbon content is between 4% and 7%, and the particle size is less than 5 μm.
作为一项优选的方案,所述碳化钒为立方晶体,化合碳含量5%~8%之间,粒径小于5μm。As a preferred solution, the vanadium carbide is a cubic crystal, the combined carbon content is between 5% and 8%, and the particle size is less than 5 μm.
作为一项优选的方案,所述碳化钒为面心立方晶格,化合碳含量5%~8%之间,粒径小于5μm。As a preferred solution, the vanadium carbide is a face-centered cubic lattice, the combined carbon content is between 5% and 8%, and the particle size is less than 5 μm.
作为一项优选的方案,所述非金属碳化物为碳化硼和/或碳化硅。As a preferred solution, the non-metallic carbide is boron carbide and/or silicon carbide.
作为一项优选的方案,所述碳化硅的晶体结构为立方晶体,可以为α相αsic或β相βsic,游离碳含量5%~10%之间,粒径小于5μm。As a preferred solution, the silicon carbide has a cubic crystal structure, which can be α-phase αsic or β-phase βsic, with a free carbon content between 5% and 10%, and a particle size of less than 5 μm.
作为一项优选的方案,所述碳化硼的晶体结构为斜方六面体结构,游离碳含量为10%~20%之间,粒径小于5μm。As a preferred solution, the crystal structure of the boron carbide is a rhombohedral structure, the content of free carbon is between 10% and 20%, and the particle size is less than 5 μm.
为了保证非金属碳化物与过渡金属碳化物的晶格配位,二者所选用的晶体应相近或相同,在非金属碳化物中,立方结构的碳化硅和斜方六面体结构的碳化硼是硬度最高的晶体结构,因此,本发明选用的过渡金属碳化物均采用立方晶体。若不按上述要求进行晶体选择,会导致在高温高压的合成工艺中,非金属材料和过渡金属材料之间的原子结合产生缺陷,导致合金材料的硬度、强度和韧性均出现下降。In order to ensure the lattice coordination of non-metallic carbides and transition metal carbides, the crystals selected by the two should be similar or the same. In non-metallic carbides, the cubic silicon carbide and rhombohedral boron carbide are the hardness The highest crystal structure, therefore, the transition metal carbides used in the present invention all adopt cubic crystals. If the crystal selection is not performed according to the above requirements, it will lead to defects in the atomic bonding between non-metallic materials and transition metal materials in the synthesis process of high temperature and high pressure, resulting in a decrease in the hardness, strength and toughness of alloy materials.
作为一项优选的方案,所述硬质合金包括以下质量百分比组分:碳化硼5~85%,碳化硅5~85%,碳化铬2~13%,碳化钒1~5%,碳化钛1~5%。As a preferred solution, the hard alloy includes the following components in mass percentage: 5-85% of boron carbide, 5-85% of silicon carbide, 2-13% of chromium carbide, 1-5% of vanadium carbide, 1% of titanium carbide ~5%.
作为一项优选的方案,所述硬质合金由以下质量百分比组分组成:碳化硼6~80%,碳化硅6~80%,碳化铬2~11%,碳化钒1~3%,碳化钛1~3%。硬质合金的组分配比要严格按照上述比例执行,若过渡金属碳化物的总含量≧30%时,会导致合金材料的硬度大幅下降,降至HRC60左右,若过渡金属的总含量≦5%时,合金材料的脆性变大,抗弯强度和冲击韧性大幅下降。As a preferred solution, the cemented carbide is composed of the following components in mass percentage: boron carbide 6-80%, silicon carbide 6-80%, chromium carbide 2-11%, vanadium carbide 1-3%, titanium carbide 1 to 3%. The composition ratio of cemented carbide should be strictly in accordance with the above ratio. If the total content of transition metal carbides is ≧30%, the hardness of the alloy material will drop significantly, down to about HRC60. If the total content of transition metals is ≦5%. At the same time, the brittleness of the alloy material becomes larger, and the bending strength and impact toughness decrease greatly.
本发明还提供了一种硬质合金的制备方法,包括以下步骤:将包括过渡金属碳化物和非金属碳化物的原料混合均匀后压制,得合金胚体;将合金胚体高温挤压后冷却,即得。The present invention also provides a method for preparing cemented carbide, comprising the following steps: uniformly mixing raw materials including transition metal carbides and non-metal carbides and then pressing to obtain an alloy embryo; extruding the alloy embryo at high temperature and then cooling , that is.
作为一项优选的方案,所述原料的纯度为不低于99.5%的粉末和/或料块。As a preferred solution, the purity of the raw material is not less than 99.5% powder and/or block.
作为一项优选的方案,所述压制的方式为压机压制,条件为:压力为15~20MPa,时间为2~10min。As a preferred solution, the pressing method is press pressing, and the conditions are: the pressure is 15-20 MPa, and the time is 2-10 minutes.
作为一项优选的方案,所述高温挤压的方式为两面顶压机或六面顶压机,条件为:压力6~10GPa,温度1400~1600℃,时间为10~60min。为保证合金胚体的有效工作压力在6~10GPa之间,压机的系统工作压强要在10~16GPa之间。As a preferred solution, the high-temperature extrusion method is a double-sided pressing machine or a six-sided pressing machine, and the conditions are: pressure 6-10 GPa, temperature 1400-1600 ° C, and time 10-60 minutes. In order to ensure that the effective working pressure of the alloy body is between 6 and 10 GPa, the system working pressure of the press should be between 10 and 16 GPa.
作为一项优选的方案,所述高温挤压的加热方式为电加热,电流强度为1500~2500A。As a preferred solution, the heating method of the high-temperature extrusion is electric heating, and the current intensity is 1500-2500A.
本发明还提供了一种硬质合金材料的应用,用于制备特种切削刀具。The invention also provides an application of hard alloy material for preparing special cutting tools.
本发明所提供的合金材料的原料全部以碳化物的物质性质出现,不含氧化物、氮化物等物质,采用多种复合碳化物相互协同,并通过高温高压合成制得。经测试,该合金材料的熔点>1600℃,硬度达到9级以上,仅次于金刚石,洛氏硬度≥80HRC,密度在3.3~3.9g/cm3,抗弯强度≧1400N/c㎡,基于上述优异的力学性能,该合金材料可满足多种切削工具钢的工况需求和高温环境中零部件的需求。The raw materials of the alloy material provided by the present invention all appear in the physical properties of carbides, without oxides, nitrides and other substances, and are produced by synergizing with multiple composite carbides through high temperature and high pressure synthesis. After testing, the melting point of the alloy material is >1600°C, the hardness reaches above grade 9, second only to diamond, the Rockwell hardness is ≥80HRC, the density is 3.3~3.9g/cm 3 , and the bending strength is ≥1400N/c㎡, based on the above With excellent mechanical properties, this alloy material can meet the requirements of various cutting tool steels and components in high temperature environments.
相对于现有技术,本发明的优异效果如下:Compared with the prior art, the excellent effects of the present invention are as follows:
1)本发明所提供的硬质合金材料以过渡金属碳化物和非金属碳化物为原料,基于原料间各组分的协同作用,充分发挥碳化物晶体强化作用,在大幅提升合金材料的硬度的同时还显著增加了合金材料的强度与韧性。1) The cemented carbide materials provided by the present invention use transition metal carbides and non-metallic carbides as raw materials. Based on the synergistic effect of each component between the raw materials, the carbide crystal strengthening effect is fully exerted, and the hardness of the alloy material is greatly improved. At the same time, the strength and toughness of the alloy material are significantly increased.
2)本发明所提供的技术方案中,通过电加热与六面顶压机加压方式,同时对材料进行高温加压,改变原有碳化物的晶格取向,是合金材料呈现细密的晶相。该方法通过调节电流强度大小来控制温度高低,达到控制硬质合金材质的目的,可以实现对合金材料硬度与强韧性进行可控调节。2) In the technical solution provided by the present invention, the material is subjected to high-temperature pressure at the same time through electric heating and six-sided top press to change the lattice orientation of the original carbide, so that the alloy material presents a fine crystal phase . The method controls the temperature by adjusting the magnitude of the current intensity to achieve the purpose of controlling the material of the cemented carbide, and can realize the controllable adjustment of the hardness, strength and toughness of the alloy material.
3)本发明所提供的技术方案中,基于原料组分与制备方法的协同性,赋予该合金材料有益的力学性能,不仅大幅提升该合金材料的硬度、红硬性、耐磨性、抗冲击性和抗弯性,还具备不含磁,不导电、耐高温、耐腐蚀和密度低等独特物理化学性能,可以满足各类切削刀具的材料要求和高温环境中零部件的需求。3) In the technical solution provided by the present invention, based on the synergy between the raw material components and the preparation method, the alloy material is endowed with beneficial mechanical properties, which not only greatly improves the hardness, red hardness, wear resistance, and impact resistance of the alloy material It also has unique physical and chemical properties such as non-magnetic, non-conductive, high temperature resistance, corrosion resistance and low density, which can meet the material requirements of various cutting tools and the needs of parts in high temperature environments.
具体实施方式detailed description
下面结合实施例对本发明作进一步的说明,本发明所述原料均通过商业途径获得,本发明所述制备方法如无特殊说明均为本领域常规制备方法,以下实施例旨在说明本发明而不是对本发明的进一步限定。The present invention will be further described below in conjunction with the examples. The raw materials of the present invention are all obtained through commercial channels. The preparation methods of the present invention are conventional preparation methods in the field if there is no special instructions. The following examples are intended to illustrate the present invention rather than Further definition of the present invention.
实施例1Example 1
碳化硼68%,碳化硅7%,碳化铬15%,碳化钛8%,碳化钒2%。以上五种碳化物按比例混合压制成圆柱形坯体,组装成形置于压机上高温高压合成,合成时有效工作温度1600℃,系统工作压强11GPa,工作时压力传递损失后确保坯体有效工作压强≧7GPa。获得硬质合金密度3.66g/cm3,硬度HRC86,抗弯强度1860N/c㎡。Boron carbide 68%, silicon carbide 7%, chromium carbide 15%, titanium carbide 8%, vanadium carbide 2%. The above five kinds of carbides are mixed and pressed into a cylindrical green body in proportion, assembled and formed on a press for high temperature and high pressure synthesis, the effective working temperature is 1600°C during synthesis, and the working pressure of the system is 11GPa. The effective work of the green body is ensured after the loss of pressure transmission during operation. Pressure≧7GPa. The cemented carbide has a density of 3.66g/cm 3 , a hardness of HRC86, and a bending strength of 1860N/c㎡.
实施例2Example 2
碳化硅78%,碳化锆6%,碳化铬13%,碳化钛2%,碳化钒1%。以上五种碳化物按比例混合压制成圆柱形坯体,组装成形,置于压机上高温高压合成,合成时有效工作温度1900℃,压机系统工作压强10GPa,工作时压力传递损失后确保坯体有效工作压强≧6GPa。获得硬质合金密度3.84g/cm3,硬度HRC84,抗弯强度2010N/c㎡。Silicon carbide 78%, zirconium carbide 6%, chromium carbide 13%, titanium carbide 2%, vanadium carbide 1%. The above five kinds of carbides are mixed and pressed into a cylindrical green body in proportion, assembled and formed, placed on a press for high temperature and high pressure synthesis, the effective working temperature is 1900°C during synthesis, and the working pressure of the press system is 10GPa. Body effective working pressure ≧ 6GPa. The cemented carbide has a density of 3.84g/cm 3 , a hardness of HRC84, and a bending strength of 2010N/c㎡.
实施例3Example 3
碳化硼83%,碳化钛12%,碳化锆2%,碳化钒3%,以上四种碳化物按比例混合压制成圆柱形坯体,组装成形,置于压机上高温高压合成,合成时有效工作温度2100℃,压机系统工作压强13GPa,工作室压力传递损失后确保坯体有效工作压强≧7GPa,可获得硬质合金密度3.41g/cm3,硬度HRC89,抗弯强度1600N/c㎡。Boron carbide 83%, titanium carbide 12%, zirconium carbide 2%, vanadium carbide 3%, the above four kinds of carbides are mixed in proportion and pressed into a cylindrical green body, assembled and formed, placed on a press for high temperature and high pressure synthesis, effective during synthesis The working temperature is 2100°C, the working pressure of the press system is 13GPa, and the effective working pressure of the green body is guaranteed to be ≧7GPa after the pressure transmission loss of the studio. The cemented carbide density is 3.41g/cm 3 , the hardness is HRC89, and the bending strength is 1600N/c㎡.
对比例1Comparative example 1
碳化硅62%,碳化锆6%,碳化铬26%,镁化钛4%,碳化钒2%,以上五种碳化物物质与实施2中的五种碳化物物质完全相同,只是比例不同,采用与实施案例2中完全相同的合成工艺要求,有效工作温度1900℃,系统工作压强10GPa,工作室压力传递损失后有效工作压强≧6GPa,获得的硬质合金密度3.30g/cm3,硬度HRC56,硬度下降了34%,抗弯强度2100N/c㎡,抗弯强度仅仅提高了4.3%,得不偿失。Silicon carbide 62%, zirconium carbide 6%, chromium carbide 26%, magnesium carbide 4%, vanadium carbide 2%, the above five carbide substances are exactly the same as the five carbide substances in Implementation 2, but the proportions are different. The synthesis process requirements are exactly the same as in the implementation case 2, the effective working temperature is 1900°C, the system working pressure is 10GPa, the effective working pressure after the pressure transmission loss of the studio is ≧6GPa, and the obtained cemented carbide has a density of 3.30g/cm 3 and a hardness of HRC56. The hardness has dropped by 34%, the flexural strength is 2100N/c㎡, and the flexural strength has only increased by 4.3%, which is not worth the candle.
对比例2Comparative example 2
碳化硼91.5%,碳化钛6%,碳化锆1%,碳化钒1.5%,以上四种碳化物物质与实施案例3中四种碳化物物质完全相同,只是比例不同。采用实施案例3中完全相同的合成工艺要求,有效工作温度2100℃,压机系统工作压强13GPa,工作时压力传递损失后有效工作压强≧7GPa,获得的硬质合金密度3.28g/cm3,硬度HRC96,抗弯强度800N/c㎡。因抗弯强度不达标,成为废品。Boron carbide is 91.5%, titanium carbide is 6%, zirconium carbide is 1%, and vanadium carbide is 1.5%. The above four carbide substances are exactly the same as the four carbide substances in Example 3, but the proportions are different. Using the same synthesis process requirements as in Example 3, the effective working temperature is 2100°C, the working pressure of the press system is 13GPa, and the effective working pressure after pressure transmission loss during work is ≧7GPa. The obtained cemented carbide has a density of 3.28g/cm 3 and a hardness of HRC96, bending strength 800N/c㎡. Because the bending strength does not meet the standard, it becomes a waste product.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211208106.1A CN115572878A (en) | 2022-09-30 | 2022-09-30 | Hard alloy material and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211208106.1A CN115572878A (en) | 2022-09-30 | 2022-09-30 | Hard alloy material and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115572878A true CN115572878A (en) | 2023-01-06 |
Family
ID=84583901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211208106.1A Pending CN115572878A (en) | 2022-09-30 | 2022-09-30 | Hard alloy material and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115572878A (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH092875A (en) * | 1995-06-23 | 1997-01-07 | Chubu Electric Power Co Inc | Silicon carbide based ceramics sintered body |
US5939185A (en) * | 1996-12-23 | 1999-08-17 | Elektroschmelzwerk Kempten Gmbh | Bearing material of silicon carbide |
CN102219518A (en) * | 2011-03-31 | 2011-10-19 | 浙江立泰复合材料有限公司 | Boron carbide-silicon carbide complex ceramic and preparation method thereof |
CN103388097A (en) * | 2013-06-29 | 2013-11-13 | 蚌埠市鸿安精密机械有限公司 | Carbide tool |
CN103627918A (en) * | 2013-12-13 | 2014-03-12 | 宁波东联密封件有限公司 | High-density boron carbide composite material and preparation method thereof |
CN106761429A (en) * | 2016-12-07 | 2017-05-31 | 四川大学 | A kind of diamond drill machine tooth |
DE102015016129A1 (en) * | 2015-12-14 | 2017-06-14 | Fct Ingenieurkeramik Gmbh | Process for producing a ceramic composite material, ceramic composite material and ceramic sintered body consisting thereof |
CN108640687A (en) * | 2018-05-29 | 2018-10-12 | 北京理工大学 | A kind of boron carbide/carborundum composite-phase ceramic and preparation method thereof |
CN110699564A (en) * | 2019-09-26 | 2020-01-17 | 宁波东联密封件有限公司 | Preparation method of boron carbide-based metal ceramic composite material |
-
2022
- 2022-09-30 CN CN202211208106.1A patent/CN115572878A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH092875A (en) * | 1995-06-23 | 1997-01-07 | Chubu Electric Power Co Inc | Silicon carbide based ceramics sintered body |
US5939185A (en) * | 1996-12-23 | 1999-08-17 | Elektroschmelzwerk Kempten Gmbh | Bearing material of silicon carbide |
CN102219518A (en) * | 2011-03-31 | 2011-10-19 | 浙江立泰复合材料有限公司 | Boron carbide-silicon carbide complex ceramic and preparation method thereof |
CN103388097A (en) * | 2013-06-29 | 2013-11-13 | 蚌埠市鸿安精密机械有限公司 | Carbide tool |
CN103627918A (en) * | 2013-12-13 | 2014-03-12 | 宁波东联密封件有限公司 | High-density boron carbide composite material and preparation method thereof |
DE102015016129A1 (en) * | 2015-12-14 | 2017-06-14 | Fct Ingenieurkeramik Gmbh | Process for producing a ceramic composite material, ceramic composite material and ceramic sintered body consisting thereof |
CN106761429A (en) * | 2016-12-07 | 2017-05-31 | 四川大学 | A kind of diamond drill machine tooth |
CN108640687A (en) * | 2018-05-29 | 2018-10-12 | 北京理工大学 | A kind of boron carbide/carborundum composite-phase ceramic and preparation method thereof |
CN110699564A (en) * | 2019-09-26 | 2020-01-17 | 宁波东联密封件有限公司 | Preparation method of boron carbide-based metal ceramic composite material |
Non-Patent Citations (3)
Title |
---|
国家市场监督管理总局,中国国家标准化管理委员会: "《金属材料 洛氏硬度试验 第1部分:试验方法(GB/T 230.1-2018》", 中国标准出版社, pages: 2 * |
孟凡然等: "TiC对B4C-SiC复合陶瓷材料性能的影响", 《佛山陶瓷》, vol. 23, no. 03, pages 16 - 19 * |
王继凯等: "碳化硼基复合陶瓷制备工艺与研究进展", 《陶瓷》, no. 12, pages 21 - 25 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107475548B (en) | A kind of preparation method of nanometer of toughening superfine WC-Co cemented carbide | |
CN105734382B (en) | Ultrafine cermet material and preparation method thereof | |
JP5427380B2 (en) | Carbide composite material and manufacturing method thereof | |
CN104372230B (en) | High-strength high-toughness ultrafine-grained high-entropy alloy and preparation method thereof | |
CN101560623B (en) | A kind of WC-toughened reinforced Ni3Al cemented carbide and its preparation method | |
CN103537699B (en) | A kind of preparation method of polycrystalline cubic boron nitride compound sheets | |
CN101397614B (en) | Method for preparing Ni cementing WC base cemented carbide | |
CN105734390B (en) | A kind of preparation method for the polycrystalline cubic boron nitride compound material that high-entropy alloy combines | |
CN114318039B (en) | Element alloying preparation method of metal matrix composite material with three-peak grain structure | |
CN110438384B (en) | Iron-nickel-based ultrafine-grained hard alloy and preparation method thereof | |
CN106756599A (en) | The preparation method of cBN High Speed Steel Composites and cBN High Speed Steel Composites | |
CN116815031A (en) | Fine-grain metal ceramic with multi-principal element alloy as bonding metal and preparation method thereof | |
CN106699190A (en) | Method for preparing polycrystalline sintered body by using cubic boron nitride single crystal bioblast as initial raw material | |
CN102732766B (en) | Coarse grain hard alloy material and preparation method thereof | |
CN109852862A (en) | A kind of high rigidity composite hard alloy and the preparation method and application thereof | |
CN112899510A (en) | In-situ reaction synthesis method of TiC/Ni composite material | |
CN109518057A (en) | Tungsten carbide material bonded by high-entropy alloy cobalt-nickel-iron-aluminum-copper and preparation method and application thereof | |
CN102191420B (en) | Tungsten-free and cobalt-free Ti (C, N)-based metal ceramic and preparation method thereof | |
CN115572878A (en) | Hard alloy material and preparation method and application thereof | |
CN116574954A (en) | A high-efficiency grinding boron-containing high-entropy alloy combined with diamond superhard composite material and its preparation method and application | |
CN115305403A (en) | A kind of super-strength super-hard high fracture toughness cemented carbide and preparation method thereof | |
CN113174522A (en) | Ti (C, N) -based metal ceramic with titanium-containing nickel-cobalt as binder phase and preparation method thereof | |
CN113462944A (en) | Boron-doped (Ti, W, Mo, Nb, Ta) (C, N) -Co-Ni powder, cermet and preparation method | |
CN113173789A (en) | Non-binding phase corrosion-resistant hard alloy and production process and application thereof | |
CN118880144B (en) | A high-strength and toughness metal ceramic and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240205 Address after: 412500 Yanling High tech Industrial Development Zone (Xiyuan District), Xiayang Town, Yanling County, Zhuzhou City, Hunan Province Applicant after: Hunan Ruibo New Materials Co.,Ltd. Country or region after: China Address before: 410011 Room 102, building 15, No. 256, Shaoshan Middle Road, Yuhua District, Changsha City, Hunan Province Applicant before: Jiang Mengyao Country or region before: China |
|
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230106 |