CN115533922B - 位姿关系标定方法及装置、计算机设备和可读存储介质 - Google Patents

位姿关系标定方法及装置、计算机设备和可读存储介质 Download PDF

Info

Publication number
CN115533922B
CN115533922B CN202211503550.6A CN202211503550A CN115533922B CN 115533922 B CN115533922 B CN 115533922B CN 202211503550 A CN202211503550 A CN 202211503550A CN 115533922 B CN115533922 B CN 115533922B
Authority
CN
China
Prior art keywords
robot
coordinate system
pose
motion
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211503550.6A
Other languages
English (en)
Other versions
CN115533922A (zh
Inventor
韩冰
于晓龙
郭昱亮
牛建伟
任涛
杨帆
马群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Innovation Research Institute of Beihang University
Original Assignee
Hangzhou Innovation Research Institute of Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Innovation Research Institute of Beihang University filed Critical Hangzhou Innovation Research Institute of Beihang University
Priority to CN202211503550.6A priority Critical patent/CN115533922B/zh
Publication of CN115533922A publication Critical patent/CN115533922A/zh
Application granted granted Critical
Publication of CN115533922B publication Critical patent/CN115533922B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1653Programme controls characterised by the control loop parameters identification, estimation, stiffness, accuracy, error analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1661Programme controls characterised by programming, planning systems for manipulators characterised by task planning, object-oriented languages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

本申请提供一种位姿关系标定方法及装置、计算机设备和可读存储介质,涉及机器人控制技术领域。本申请通过连接装置连接目标机器人的机器人末端和附加轴系统的输出末端,并控制附加轴系统通过连接装置牵引目标机器人进行多次位姿变化运动,以获取附加轴系统与目标机器人各自在每次位姿变化运动前后的实际关节位置数据,而后直接基于获取到的附加轴系统与目标机器人各自的实际关节位置数据,调用与连接装置对应的位姿关系标定模型进行参数优化求解,得到目标机器人与附加轴系统之间的位姿关系变换矩阵,从而有效避免现有位姿关系标定过程中的繁琐示教操作,并提升位姿关系的标定精准度及标定效率。

Description

位姿关系标定方法及装置、计算机设备和可读存储介质
技术领域
本申请涉及机器人控制技术领域,具体而言,涉及一种位姿关系标定方法及装置、计算机设备和可读存储介质。
背景技术
随着科学技术的不断发展,机器人技术因具有极大的研究价值及应用价值受到了各行各业的广泛重视,其中工业机器人控制便是机器人控制技术领域中的一项重要研究方向。而在对工业机器人进行作业控制时,往往需要利用附加轴系统作为机器人外设来扩展工业机器人工作空间,通过使附加轴系统与工业机器人同步协同运动,确保工业机器人能够对安装在附加轴系统上的工件进行相关作业(例如,焊接作业、切割作业、涂胶作业等)。在此过程中,值得注意的是,有效标定附加轴系统与工业机器人之间的位姿关系,是实现附加轴系统与工业机器人同步协同运动的前提条件。
目前,现有针对附加轴系统与工业机器人的位姿关系标定方案需要针对附加轴系统中每个附加轴单独根据对应附加轴类型进行位姿关系标定示教,而后对附加轴系统中所有附加轴各自对应的已标定位姿关系进行整合,才能得到附加轴系统与工业机器人之间的位姿关系。因此,这种位姿关系标定方案实质存在示教繁琐问题,同时极易在示教过程中引入示教误差,导致最终确定出的附加轴系统与工业机器人之间的位姿关系精准度不高。
发明内容
有鉴于此,本申请的目的在于提供一种位姿关系标定方法及装置、计算机设备和可读存储介质,能够有效避免现有位姿关系标定过程中的繁琐示教操作,并提升位姿关系的标定精准度及标定效率。
为了实现上述目的,本申请实施例采用的技术方案如下:
第一方面,本申请提供一种位姿关系标定方法,所述标定方法包括:
控制附加轴系统通过连接装置牵引目标机器人进行多次位姿变化运动,其中所述连接装置用于连接所述目标机器人的机器人末端和所述附加轴系统的输出末端;
获取所述附加轴系统与所述目标机器人各自在每次位姿变化运动前后的实际关节位置数据;
基于获取到的所述附加轴系统与所述目标机器人各自的实际关节位置数据,调用与所述连接装置对应的位姿关系标定模型进行参数优化求解,得到所述目标机器人与所述附加轴系统之间的位姿关系变换矩阵。
在可选的实施方式中,针对每次位姿变化运动,控制所述附加轴系统通过所述连接装置牵引所述目标机器人实现该位姿变化运动的步骤,包括:
控制所述附加轴系统执行与该位姿变化运动对应的附加轴运动操作;
获取所述连接装置检测到的与所述附加轴运动操作对应的牵引力数据;
根据所述牵引力数据计算所述目标机器人的机器人末端在机器人基座坐标系下的期望速度数据;
根据所述机器人末端在机器人基座坐标系下的当前位姿数据及期望速度数据,计算所述机器人末端在机器人基座坐标系下的与所述附加轴运动操作匹配的期望位姿数据;
按照所述机器人末端在机器人基座坐标系下的期望位姿数据,基于机器人逆运动学原理控制所述目标机器人的各机器人关节进行运动,以完成该位姿变化运动。
在可选的实施方式中,所述根据所述牵引力数据计算所述目标机器人的机器人末端在机器人基座坐标系下的期望速度数据的步骤,包括:
调用所述机器人末端在机器人末端坐标系下的末端作用力参数与末端速度参数之间的关联关系,计算所述机器人末端在机器人末端坐标系下的与所述牵引力数据对应的目标速度数据;
根据所述目标机器人的机器人末端坐标系与机器人基座坐标系之间的当前齐次变换矩阵,对所述机器人末端在机器人末端坐标系下的目标速度数据进行数据变换处理,得到所述机器人末端在机器人基座坐标系下的期望速度数据。
在可选的实施方式中,所述按照所述机器人末端在机器人基座坐标系下的期望位姿数据,基于机器人逆运动学原理控制所述目标机器人的各机器人关节进行运动的步骤,包括:
基于机器人逆运动学原理对所述机器人末端在机器人基座坐标系下的期望位姿数据进行逆运动学求解,得到所述目标机器人的各机器人关节的期望关节位置;
针对所述目标机器人的每个机器人关节,按照该机器人关节的期望关节位置调整该机器人关节的当前关节位置。
在可选的实施方式中,所述基于获取到的所述附加轴系统与所述目标机器人各自的实际关节位置数据,调用与所述连接装置对应的位姿关系标定模型进行参数优化求解,得到所述目标机器人与所述附加轴系统之间的位姿关系变换矩阵的步骤,包括:
针对每次位姿变化运动,根据所述目标机器人在该位姿变化运动前后的实际关节位置数据,基于机器人正向运动学原理计算得到所述目标机器人的机器人末端坐标系与机器人基座坐标系之间的第一运动前齐次变换矩阵及第一运动后齐次变换矩阵;
针对每次位姿变化运动,根据所述附加轴系统在该位姿变化运动前后的实际关节位置数据,基于改进型D-H参数法计算得到所述附加轴系统的输出末端坐标系与附加轴基座坐标系之间的第二运动前齐次变换矩阵及第二运动后齐次变换矩阵;
针对每次位姿变化运动,将与该位姿变化运动对应的所述第一运动前齐次变换矩阵、所述第二运动前齐次变换矩阵、所述第一运动后齐次变换矩阵及所述第二运动后齐次变换矩阵代入到所述位姿关系标定模型中,构建形成关于所述附加轴基座坐标系与所述机器人基座坐标系之间的目标齐次变换矩阵的待求解方程;
将所有位姿变化运动各自对应的待求解方程集成为目标方程组进行非线性优化求解,并将求解得到的目标齐次变换矩阵作为所述位姿关系变换矩阵。
在可选的实施方式中,所述位姿关系标定模型采用如下式子进行表达:
Figure F_220930112833771_771248001
其中,
Figure F_220930112833917_917672002
用于表示与第i次位姿变化运动对应的机器人末端坐标系T和机器人基座坐标系B之间的第一运动前齐次变换矩阵,
Figure F_220930112834042_042707003
用于表示与第i次位姿变化运动对应的机器人末端坐标系T和机器人基座坐标系B之间的第一运动后齐次变换矩阵,
Figure F_220930112834124_124279004
用于表示与第i次位姿变化运动对应的输出末端坐标系C与附加轴基座坐标系D之间的第二运动前齐次变换矩阵,
Figure F_220930112834299_299034005
用于表示与第i次位姿变化运动对应的输出末端坐标系C与附加轴基座坐标系D之间的第二运动后齐次变换矩阵,
Figure F_220930112834392_392797006
用于表示附加轴基座坐标系D与机器人基座坐标系B之间的目标齐次变换矩阵,其中所述目标齐次变换矩阵为所述目标机器人与所述附加轴系统之间的位姿关系变换矩阵。
第二方面,本申请提供一种位姿关系标定装置,所述标定装置包括:
运动控制模块,用于控制附加轴系统通过连接装置牵引目标机器人进行多次位姿变化运动,其中所述连接装置用于连接所述目标机器人的机器人末端和所述附加轴系统的输出末端;
数据获取模块,用于获取所述附加轴系统与所述目标机器人各自在每次位姿变化运动前后的实际关节位置数据;
关系标定模块,用于基于获取到的所述附加轴系统与所述目标机器人各自的实际关节位置数据,调用与所述连接装置对应的位姿关系标定模型进行参数优化求解,得到所述目标机器人与所述附加轴系统之间的位姿关系变换矩阵。
在可选的实施方式中,所述位姿关系标定模型采用如下式子进行表达:
Figure F_220930112834487_487966007
其中,
Figure F_220930112834613_613521008
用于表示与第i次位姿变化运动对应的机器人末端坐标系T和机器人基座坐标系B之间的第一运动前齐次变换矩阵,
Figure F_220930112834709_709697009
用于表示与第i次位姿变化运动对应的机器人末端坐标系T和机器人基座坐标系B之间的第一运动后齐次变换矩阵,
Figure F_220930112834834_834732010
用于表示与第i次位姿变化运动对应的输出末端坐标系C与附加轴基座坐标系D之间的第二运动前齐次变换矩阵,
Figure F_220930112834970_970454011
用于表示与第i次位姿变化运动对应的输出末端坐标系C与附加轴基座坐标系D之间的第二运动后齐次变换矩阵,
Figure F_220930112835064_064196012
用于表示附加轴基座坐标系D与机器人基座坐标系B之间的目标齐次变换矩阵,其中所述目标齐次变换矩阵为所述目标机器人与所述附加轴系统之间的位姿关系变换矩阵。
第三方面,本申请提供一种计算机设备,包括处理器和存储器,所述存储器存储有能够被所述处理器执行的计算机程序,所述处理器可执行所述计算机程序,以实现前述实施方式中任意一项所述的位姿关系标定方法。
第四方面,本申请提供一种可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,实现前述实施方式中任意一项所述的位姿关系标定方法。
在此情况下,本申请实施例的有益效果可以包括以下内容:
本申请通过连接装置连接目标机器人的机器人末端和附加轴系统的输出末端,并控制附加轴系统通过连接装置牵引目标机器人进行多次位姿变化运动,以获取附加轴系统与目标机器人各自在每次位姿变化运动前后的实际关节位置数据,而后直接基于获取到的附加轴系统与目标机器人各自的实际关节位置数据,调用与连接装置对应的位姿关系标定模型进行参数优化求解,得到目标机器人与附加轴系统之间的位姿关系变换矩阵,从而有效避免现有位姿关系标定过程中的繁琐示教操作,并提升位姿关系的标定精准度及标定效率。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的计算机设备的组成示意图;
图2为本申请实施例提供的目标机器人与附加轴系统的部署示意图;
图3为本申请实施例提供的位姿关系标定方法的流程示意图;
图4为图3中的步骤S210包括的子步骤的流程示意图;
图5为图3中的步骤S230包括的子步骤的流程示意图;
图6为改进型D-H参数法的连杆坐标系变换示意图;
图7为本申请实施例提供的位姿关系标定装置的组成示意图。
图标:10-计算机设备;11-存储器;12-处理器;13-通信单元;100-位姿关系标定装置;20-目标机器人;30-附加轴系统;40-连接装置;110-运动控制模块;120-数据获取模块;130-关系标定模块。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要理解的是,术语“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互结合。
请结合参照图1及图2,其中图1是本申请实施例提供的计算机设备10的组成示意图,图2是本申请实施例提供的目标机器人20与附加轴系统30的部署示意图。在本申请实施例中,所述目标机器人20为工业机器人,所述计算机设备10能够在所述目标机器人20的机器人末端通过连接装置40与所述附加轴系统30的输出末端连接在一起的情况下,通过控制所述附加轴系统30经所述连接装置40带动所述目标机器人20进行运动,获取所述附加轴系统30与所述目标机器人20各自的运动变化状况,从而直接基于获取到的运动变化状况求解得到所述目标机器人20与所述附加轴系统30之间的位姿关系变换矩阵,以完成位姿关系标定操作,并有效避免现有位姿关系标定过程中的繁琐示教操作,提升位姿关系的标定精准度及标定效率。其中,所述计算机设备10可与所述目标机器人20和所述附加轴系统30分别电性连接,以分别控制所述目标机器人20和所述附加轴系统30各自的运动状况。
在此过程中,所述连接装置40可以包括六维力传感器、附加轴末端固定结构及连接杆;所述连接杆的一端与所述附加轴末端固定结构固定连接,以通过所述附加轴末端固定结构与所述附加轴系统30的输出末端固定连接在一起;所述连接杆的另一端经球关节与所述六维力传感器固定连接,以通过所述六维力传感器与所述目标机器人20的机器人末端固定连接在一起,其中所述六维力传感器可在所述附加轴系统30带动所述目标机器人20进行运动的过程中,针对所述附加轴系统30的输出末端施加在所述目标机器人20的机器人末端上的牵引力数据进行采集,并将采集到的牵引力数据反馈给所述计算机设备10,以便所述计算机设备10基于采集到的牵引力数据控制所述目标机器人20跟随所述附加轴系统30的运动而运动。其中,所述牵引力数据包括相互正交的三种力方向各自对应的牵引力分量大小及牵引力矩大小。
在本申请实施例中,所述计算机设备10可以包括存储器11、处理器12、通信单元13及位姿关系标定装置100。其中,所述存储器11、所述处理器12及所述通信单元13各个元件相互之间直接或间接地电性连接,以实现数据的传输或交互。例如,所述存储器11、所述处理器12及所述通信单元13这些元件相互之间可通过一条或多条通讯总线或信号线实现电性连接。
在本实施例中,所述存储器11可以是,但不限于,随机存取存储器(Random AccessMemory,RAM),只读存储器(Read Only Memory,ROM),可编程只读存储器(ProgrammableRead-Only Memory,PROM),可擦除只读存储器(Erasable Programmable Read-OnlyMemory,EPROM),电可擦除只读存储器(Electric Erasable Programmable Read-OnlyMemory,EEPROM)等。其中,所述存储器11用于存储计算机程序,所述处理器12在接收到执行指令后,可相应地执行所述计算机程序。
其中,所述存储器11还用于存储基于所述连接装置40针对所述目标机器人20与所述附加轴系统30构建出的位姿关系标定模型,所述位姿关系标定模型用于描述所述目标机器人20的机器人末端坐标系T(即x T -y T -z T )和机器人基座坐标系B(即x B -y B -z B )、所述附加轴系统30的输出末端坐标系C(即x C -y C -z C )和附加轴基座坐标系D(即x D -y D -z D )在位姿变换过程中的坐标系变换关系。所述计算机设备10在标定所述目标机器人20与所述附加轴系统30之间的位姿关系时,可通过调用上述位姿关系标定模型计算得到所述目标机器人20与所述附加轴系统30之间的位姿关系变换矩阵。
在本实施例中,所述处理器12可以是一种具有信号的处理能力的集成电路芯片。所述处理器12可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、图形处理器(Graphics Processing Unit,GPU)及网络处理器(Network Processor,NP)、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件中的至少一种。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。
在本实施例中,所述通信单元13用于通过网络建立所述计算机设备10与其他电子设备之间的通信连接,并通过所述网络收发数据,其中所述网络包括有线通信网络及无线通信网络。例如,所述计算机设备10可以通过所述通信单元13分别控制所述目标机器人20和所述附加轴系统30各自的运动状况,并通过所述通信单元13获取所述连接装置40采集到的牵引力数据。
在本实施例中,所述位姿关系标定装置100包括至少一个能够以软件或固件的形式存储于所述存储器11中或者存储在所述计算机设备10的操作系统中的软件功能模块。所述处理器12可用于执行所述存储器11存储的可执行模块,例如所述位姿关系标定装置100所包括的软件功能模块及计算机程序等。所述计算机设备10可通过所述位姿关系标定装置100针对目标机器人20与所述附加轴系统30实现位姿关系标定操作,并有效避免现有位姿关系标定过程中的繁琐示教操作,提升位姿关系的标定精准度及标定效率。
可以理解的是,图1所示的框图仅为所述计算机设备10的一种组成示意图,所述计算机设备10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。图1中所示的各组件可以采用硬件、软件或其组合实现。
在本申请中,为确保所述计算机设备10能够针对目标机器人20与所述附加轴系统30实现位姿关系标定操作,并有效避免现有位姿关系标定过程中的繁琐示教操作,提升位姿关系的标定精准度及标定效率,本申请实施例提供一种位姿关系标定方法实现前述目的。下面对本申请提供的位姿关系标定方法进行详细描述。
请参照图3,图3是本申请实施例提供的位姿关系标定方法的流程示意图。在本申请实施例中,所述位姿关系标定方法可以包括步骤S210~步骤S230。
步骤S210,控制附加轴系统通过连接装置牵引目标机器人进行多次位姿变化运动。
在本实施例中,所述计算机设备10可通过多次控制所述附加轴系统30执行附加轴运动操作,使所述连接装置40对应检测所述附加轴系统30在对应附加轴运动操作下向所述目标机器人20的机器人末端施加的牵引力数据,由所述计算机设备10根据所述连接装置40检测到的牵引力数据控制所述目标机器人20进行应激式运动,从而确保所述目标机器人20能够跟随所述附加轴系统30执行的附加轴运动操作进行位姿变化运动。
可选地,请参照图4,图4是图3中的步骤S210包括的子步骤的流程示意图。在本实施例中,所述步骤S210可以包括子步骤S211~子步骤S215,以确保所述目标机器人20能够有效跟随所述附加轴系统30的运动而运动。
子步骤S211,控制所述附加轴系统执行与该位姿变化运动对应的附加轴运动操作。
在本实施例中,当所述计算机设备10需要控制所述附加轴系统30带动所述目标机器人20进行位姿变化运动时,会控制所述附加轴系统30执行与该位姿变化运动对应的附加轴运动操作。
子步骤S212,获取连接装置检测到的与附加轴运动操作对应的牵引力数据。
在本实施例中,因所述连接装置40包括的六维力传感器与所述目标机器人20的机器人末端固定连接,所述连接装置40检测到的牵引力数据可以直接以所述目标机器人20的机器人末端坐标系T为基准进行表示。
子步骤S213,根据牵引力数据计算目标机器人的机器人末端在机器人基座坐标系下的期望速度数据。
在本实施例中,所述根据牵引力数据计算目标机器人20的机器人末端在机器人基座坐标系下的期望速度数据的步骤,可以包括:
调用所述机器人末端在机器人末端坐标系下的末端作用力参数与末端速度参数之间的关联关系,计算所述机器人末端在机器人末端坐标系下的与所述牵引力数据对应的目标速度数据;
根据所述目标机器人20的机器人末端坐标系与机器人基座坐标系之间的当前齐次变换矩阵,对所述机器人末端在机器人末端坐标系下的目标速度数据进行数据变换处理,得到所述机器人末端在机器人基座坐标系下的期望速度数据。
其中,所述末端作用力参数与末端速度参数之间的关联关系可表示为:末端作用力参数=K*末端速度参数,其中K用于表示力速转换系数;所述目标速度数据包括机器人末端在机器人末端坐标系下的目标移动速度及目标姿态角速度,其中所述牵引力数据可由所述目标速度数据与所述力速转换系数K进行矩阵乘法运算得到;所述期望速度数据包括机器人末端在机器人基座坐标系下的期望移动速度及期望姿态角速度。其中,所述计算机设备10可基于所述目标机器人20的机器人末端坐标系与机器人基座坐标系之间的当前齐次变换矩阵,构建形成一个以对角矩阵形式进行表达的分块矩阵,使该分块矩阵的对角线上的矩阵块即为所述当前齐次变换矩阵,此时所述计算机设备10即可通过将该分块矩阵与所述目标速度数据进行矩阵乘法运算,得到所述机器人末端在机器人基座坐标系下的期望速度数据。
子步骤S214,根据机器人末端在机器人基座坐标系下的当前位姿数据及期望速度数据,计算机器人末端在机器人基座坐标系下的与附加轴运动操作匹配的期望位姿数据。
在本实施例中,所述期望位姿数据包括机器人末端在机器人基座坐标系下的期望位置数据及期望姿态角数据,所述当前位姿数据包括机器人末端在机器人基座坐标系下的当前位置数据及当前姿态角数据,此时所述计算机设备10可通过将所述期望速度数据包括的期望移动速度与采样周期进行相乘后和所述当前位置数据进行向量求和运算,得到所述期望位置数据;所述计算机设备10可通过将所述期望速度数据包括的期望姿态角速度与采样周期进行相乘后和所述当前姿态角数据进行矩阵乘法运算,得到所述期望姿态角数据。
子步骤S215,按照机器人末端在机器人基座坐标系下的期望位姿数据,基于机器人逆运动学原理控制目标机器人的各机器人关节进行运动,以完成该位姿变化运动。
在本实施例中,所述按照所述机器人末端在机器人基座坐标系下的期望位姿数据,基于机器人逆运动学原理控制所述目标机器人20的各机器人关节进行运动的步骤,包括:
基于机器人逆运动学原理对所述机器人末端在机器人基座坐标系下的期望位姿数据进行逆运动学求解,得到所述目标机器人20的各机器人关节的期望关节位置;
针对所述目标机器人20的每个机器人关节,按照该机器人关节的期望关节位置调整该机器人关节的当前关节位置。
其中,每个机器人关节的期望关节位置为该机器人关节在对应关节坐标系下期望到达的关节位置,每个机器人关节的当前关节位置为该机器人关节当前在对应关节坐标系下实际表现出的关节位置。
由此,本申请可通过执行上述子步骤S211~子步骤S215,确保所述目标机器人20能够有效跟随所述附加轴系统30的运动而运动。
步骤S220,获取附加轴系统与目标机器人各自在每次位姿变化运动前后的实际关节位置数据。
在本实施例中,所述附加轴系统30在每次位姿变化运动前后的实际关节位置数据包括该附加轴系统30的各附加轴关节分别在对应关节坐标系下下于对应位姿变化运动前后的实际关节位置,所述目标机器人20在每次位姿变化运动前后的实际关节位置数据包括该目标机器人20的各机器人关节分别在对应关节坐标系下于对应位姿变化运动前后的实际关节位置。
步骤S230,基于获取到的附加轴系统与目标机器人各自的实际关节位置数据,调用与连接装置对应的位姿关系标定模型进行参数优化求解,得到目标机器人与附加轴系统之间的位姿关系变换矩阵。
在本实施例中,对于由附加轴系统30、目标机器人20及连接装置40构建形成的运动关联系统来说,所述目标机器人20的机器人末端坐标系T和机器人基座坐标系B、所述附加轴系统30的输出末端坐标系C和附加轴基座坐标系D之间的变换关联关系采用如下式子进行表达:
Figure F_220930112835253_253622013
其中,
Figure F_220930112835357_357163014
用于表示机器人末端坐标系T和机器人基座坐标系B之间的齐次变换矩阵,
Figure F_220930112835515_515399015
用于表示附加轴基座坐标系D与机器人基座坐标系B之间的齐次变换矩阵,
Figure F_220930112835671_671630016
用于表示输出末端坐标系C与附加轴基座坐标系D之间的齐次变换矩阵,
Figure F_220930112835988_988497017
用于表示机器人末端坐标系T与输出末端坐标系C之间的齐次变换矩阵;其中
Figure F_220930112836150_150093018
与上述连接装置40实质匹配,其实质为一个常数量,上述变换关联关系中的
Figure F_220930112836371_371781019
在不同运动时刻下的具体内容保持一致。
由此,所述计算机设备10可通过对上述变换关联关系表达式进行变形,以消去机器人末端坐标系T与输出末端坐标系C之间的齐次变换矩阵,使变形后的关系表达式能够与附加轴系统30和目标机器人20各自的位姿变化状况相互匹配,此时变形后的关系表达式即为与所述连接装置40对应的位姿关系标定模型。在此情况下,所述位姿关系标定模型可采用如下式子进行表达:
Figure F_220930112836483_483576020
其中,
Figure F_220930112836624_624716021
用于表示与第i次位姿变化运动对应的机器人末端坐标系T和机器人基座坐标系B之间的第一运动前齐次变换矩阵,
Figure F_220930112836723_723352022
用于表示与第i次位姿变化运动对应的机器人末端坐标系T和机器人基座坐标系B之间的第一运动后齐次变换矩阵,
Figure F_220930112836832_832724023
用于表示与第i次位姿变化运动对应的输出末端坐标系C与附加轴基座坐标系D之间的第二运动前齐次变换矩阵,
Figure F_220930112837244_244839024
用于表示与第i次位姿变化运动对应的输出末端坐标系C与附加轴基座坐标系D之间的第二运动后齐次变换矩阵,
Figure F_220930112837396_396191025
用于表示附加轴基座坐标系D与机器人基座坐标系B之间的目标齐次变换矩阵,其中所述目标齐次变换矩阵为所述目标机器人与所述附加轴系统之间的位姿关系变换矩阵。
由此,所述计算机设备10可基于获取到的附加轴系统30与目标机器人20各自的实际关节位置数据,调用上述位姿关系标定模型针对附加轴基座坐标系D与机器人基座坐标系B之间的目标齐次变换矩阵进行参数优化求解,以有效标定目标机器人20与附加轴系统30之间的位姿关系变换矩阵,避免现有位姿关系标定过程中的繁琐示教操作,并提升位姿关系的标定精准度及标定效率。
可选地,请参照图5,图5是图3中的步骤S230包括的子步骤的流程示意图。在本实施例中,所述步骤S230可以包括子步骤S231~子步骤S234,以有效调用位姿关系标定模型求解得到目标机器人20与附加轴系统30之间的位姿关系变换矩阵。
子步骤S231,针对每次位姿变化运动,根据目标机器人在该位姿变化运动前后的实际关节位置数据,基于机器人正向运动学原理计算得到目标机器人的机器人末端坐标系与机器人基座坐标系之间的第一运动前齐次变换矩阵及第一运动后齐次变换矩阵。
在本实施例中,针对每次位姿变化运动,所述计算机设备10可基于所述目标机器人20的各机器人关节在该位姿变化运动前的实际关节位置数据,利用机器人正向运动学原理计算得到所述目标机器人20的机器人末端在机器人末端坐标系下于该位姿变化运动前的实际末端位姿,以及所述机器人末端在机器人基座坐标系下于该位姿变化运动前的实际末端位姿,而后计算该位姿变化运动前的所述机器人末端坐标系所对应的实际末端位姿与所述机器人基座坐标系所对应的实际末端位姿之间的位姿变换关系矩阵,得到与该位姿变化运动相关的机器人末端坐标系和机器人基座坐标系之间的第一运动前齐次变换矩阵。
针对每次位姿变化运动,所述计算机设备10可基于所述目标机器人20的各机器人关节在该位姿变化运动后的实际关节位置数据,利用机器人正向运动学原理计算得到所述目标机器人20的机器人末端在机器人末端坐标系下于该位姿变化运动后的实际末端位姿,以及所述机器人末端在机器人基座坐标系下于该位姿变化运动后的实际末端位姿,而后计算该位姿变化运动后的所述机器人末端坐标系所对应的实际末端位姿与所述机器人基座坐标系所对应的实际末端位姿之间的位姿变换关系矩阵,得到与该位姿变化运动相关的机器人末端坐标系和机器人基座坐标系之间的第一运动后齐次变换矩阵。
子步骤S232,针对每次位姿变化运动,根据附加轴系统在该位姿变化运动前后的实际关节位置数据,基于改进型D-H参数法计算得到附加轴系统的输出末端坐标系与附加轴基座坐标系之间的第二运动前齐次变换矩阵及第二运动后齐次变换矩阵。
在本实施例中,请参照图6所示的改进型D-H参数法的连杆坐标系变换示意图,所述改进型D-H参数法在应用到所述附加轴系统30时,可通过查找该附加轴系统30下各个关节轴,并标出各个关节轴的轴延长线,确定出相邻两个关节轴的表征连杆的公垂线(例如,关节轴i-1和关节轴i之间的公垂线a i-1),以及相邻两个关节轴的交点,此时可采用这两个关节轴的公垂线与前一个关节轴之间的交点作为前一个关节轴的连杆坐标系的原点(例如,关节轴i-1和关节轴i之间的公垂线a i-1与关节轴i-1之间的交点,即为关节轴i-1的连杆坐标系的原点),此时前一个关节轴的连杆坐标系的Z轴方向(即Z i-1)与前一个关节轴(即轴i-1)的轴线延伸方向保持一致,前一个关节轴的连杆坐标系的X轴方向(即X i-1)与前述公垂线指向保持一致,基于右手原则确定出前一个关节轴的连杆坐标系的Y轴方向(即Y i-1)。
此时,公垂线a i-1的具体数值即为沿X i-1方向将Z i-1移动到Z i 的距离,旋转角α i-1的具体角度值为绕X i-1Z i-1旋转到Z i 的角度,距离d i 的具体数值即为沿Z i 方向将X i-1移动到X i 的距离,旋转角θ i 的具体角度值为绕Z i X i-1旋转到X i 的角度。
由此,所述改进型D-H参数法可基于上述两组距离及两组角度表征相邻两个关节轴的连杆坐标系之间的坐标系变换关系,进而所述计算机设备10可利用所述改进型D-H参数法有效求解出所述附加轴系统30的输出末端坐标系与附加轴基座坐标系之间的齐次变换矩阵。
进一步地,针对每次位姿变化运动,所述计算机设备10可基于所述附加轴系统30的各附加轴关节在该位姿变化运动前的实际关节位置数据,利用改进型D-H参数法计算得到所述附加轴系统30的相邻两个附加轴关节之间的连杆坐标系变换矩阵,而后利用运动传递特性对求解得到的所有连杆坐标系变换矩阵进行矩阵乘法运算,得到所述附加轴系统30的输出末端坐标系与附加轴基座坐标系之间的第二运动前齐次变换矩阵。
针对每次位姿变化运动,所述计算机设备10可基于所述附加轴系统30的各附加轴关节在该位姿变化运动后的实际关节位置数据,利用改进型D-H参数法计算得到所述附加轴系统30的相邻两个附加轴关节之间的连杆坐标系变换矩阵,而后利用运动传递特性对求解得到的所有连杆坐标系变换矩阵进行矩阵乘法运算,得到所述附加轴系统30的输出末端坐标系与附加轴基座坐标系之间的第二运动后齐次变换矩阵。
子步骤S233,针对每次位姿变化运动,将与该位姿变化运动对应的第一运动前齐次变换矩阵、第二运动前齐次变换矩阵、第一运动后齐次变换矩阵及第二运动后齐次变换矩阵代入到位姿关系标定模型中,构建形成关于附加轴基座坐标系与机器人基座坐标系之间的目标齐次变换矩阵的待求解方程。
子步骤S234,将所有位姿变化运动各自对应的待求解方程集成为目标方程组进行非线性优化求解,并将求解得到的目标齐次变换矩阵作为所述位姿关系变换矩阵。
在本实施例中,所述附加轴基座坐标系与机器人基座坐标系之间的目标齐次变换矩阵
Figure F_220930112837539_539767026
可采用如下表达式进行表达:
Figure F_220930112837633_633508027
其中,α、β、γ、x、y、z分别为用于描述目标齐次变换矩阵的矩阵参数分量。
所述计算机设备10在针对每次位姿变化运动构建出关于目标齐次变换矩阵的待求解方程后,可从每次位姿变化运动所对应的待求解方程中抽取出与上述六个矩阵参数分量α、β、γ、x、y、z相关的部分矩阵元素的方程分量,再将抽取出的所有方程分量集合形成一个非线性方程组,而后通过非线性优化方法求解出该非线性方程组所对应的六个矩阵参数分量α、β、γ、x、y、z,进而直接得到具体的位姿关系变换矩阵。
以位姿变化运动的运动总次数为3为例,所述计算机设备10可从第一次位姿变化运动所对应的待求解方程中抽取与上述目标齐次变换矩阵表达式的矩阵元素(1,1)、(1,2)、(1,3)、(1,4)、(2,4)及(3,4)分别对应的方程分量,从第二次位姿变化运动所对应的待求解方程中抽取与上述目标齐次变换矩阵表达式的矩阵元素(2,1)、(2,2)、(2,3)、(1,4)、(2,4)及(3,4)分别对应的方程分量,然后从第三次位姿变化运动所对应的待求解方程中抽取与上述目标齐次变换矩阵表达式的矩阵元素(1,1)、(2,2)、(3,3)、(1,4)、(2,4)及(3,4)分别对应的方程分量,而后将抽取出的所有方程分量组合形成一个非线性方程组进行参数优化求解,得到最终的六个矩阵参数分量α、β、γ、x、y、z,进而直接得到具体的位姿关系变换矩阵。
由此,本申请可通过执行上述子步骤S231~子步骤S234,有效调用位姿关系标定模型求解得到目标机器人20与附加轴系统30之间的位姿关系变换矩阵。
本申请可通过执行上述步骤S210~步骤S230,针对目标机器人20与所述附加轴系统30实现位姿关系标定操作,并有效避免现有位姿关系标定过程中的繁琐示教操作,提升位姿关系的标定精准度及标定效率。
在本申请中,为确保所述计算机设备10能够通过所述位姿关系标定装置100执行上述位姿关系标定方法,本申请通过对所述位姿关系标定装置100进行功能模块划分的方式实现前述功能。下面对本申请提供的位姿关系标定装置100的具体组成进行相应描述。
请参照图7,图7是本申请实施例提供的位姿关系标定装置100的组成示意图。在本申请实施例中,所述位姿关系标定装置100可以包括运动控制模块110、数据获取模块120及关系标定模块130。
运动控制模块110,用于控制附加轴系统通过连接装置牵引目标机器人进行多次位姿变化运动,其中连接装置用于连接目标机器人的机器人末端和附加轴系统的输出末端。
数据获取模块120,用于获取附加轴系统与目标机器人各自在每次位姿变化运动前后的实际关节位置数据。
关系标定模块130,用于基于获取到的附加轴系统与目标机器人各自的实际关节位置数据,调用与连接装置对应的位姿关系标定模型进行参数优化求解,得到目标机器人与附加轴系统之间的位姿关系变换矩阵。
其中,所述位姿关系标定模型采用如下式子进行表达:
Figure F_220930112837729_729726028
其中,
Figure F_220930112837807_807816029
用于表示与第i次位姿变化运动对应的机器人末端坐标系T和机器人基座坐标系B之间的第一运动前齐次变换矩阵,
Figure F_220930112837905_905017030
用于表示与第i次位姿变化运动对应的机器人末端坐标系T和机器人基座坐标系B之间的第一运动后齐次变换矩阵,
Figure F_220930112837998_998727031
用于表示与第i次位姿变化运动对应的输出末端坐标系C与附加轴基座坐标系D之间的第二运动前齐次变换矩阵,
Figure F_220930112838097_097821032
用于表示与第i次位姿变化运动对应的输出末端坐标系C与附加轴基座坐标系D之间的第二运动后齐次变换矩阵,
Figure F_220930112838192_192113033
用于表示附加轴基座坐标系D与机器人基座坐标系B之间的目标齐次变换矩阵,其中所述目标齐次变换矩阵为所述目标机器人20与所述附加轴系统30之间的位姿关系变换矩阵。
需要说明的是,本申请实施例所提供的位姿关系标定装置100,其基本原理及产生的技术效果与前述的位姿关系标定方法相同。为简要描述,本实施例部分未提及之处,可参考上述的针对位姿关系标定方法的描述内容。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本申请的实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
综上所述,在本申请提供的位姿关系标定方法及装置、计算机设备和可读存储介质中,本申请通过连接装置连接目标机器人的机器人末端和附加轴系统的输出末端,并控制附加轴系统通过连接装置牵引目标机器人进行多次位姿变化运动,以获取附加轴系统与目标机器人各自在每次位姿变化运动前后的实际关节位置数据,而后直接基于获取到的附加轴系统与目标机器人各自的实际关节位置数据,调用与连接装置对应的位姿关系标定模型进行参数优化求解,得到目标机器人与附加轴系统之间的位姿关系变换矩阵,从而有效避免现有位姿关系标定过程中的繁琐示教操作,并提升位姿关系的标定精准度及标定效率。
以上所述,仅为本申请的各种实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应当以权利要求的保护范围为准。

Claims (7)

1.一种位姿关系标定方法,其特征在于,所述标定方法包括:
控制附加轴系统通过连接装置牵引目标机器人进行多次位姿变化运动,其中所述连接装置用于连接所述目标机器人的机器人末端和所述附加轴系统的输出末端;
获取所述附加轴系统与所述目标机器人各自在每次位姿变化运动前后的实际关节位置数据;
基于获取到的所述附加轴系统与所述目标机器人各自的实际关节位置数据,调用与所述连接装置对应的位姿关系标定模型进行参数优化求解,得到所述目标机器人与所述附加轴系统之间的位姿关系变换矩阵;
其中,所述基于获取到的所述附加轴系统与所述目标机器人各自的实际关节位置数据,调用与所述连接装置对应的位姿关系标定模型进行参数优化求解,得到所述目标机器人与所述附加轴系统之间的位姿关系变换矩阵的步骤,包括:
针对每次位姿变化运动,根据所述目标机器人在该位姿变化运动前后的实际关节位置数据,基于机器人正向运动学原理计算得到所述目标机器人的机器人末端坐标系与机器人基座坐标系之间的第一运动前齐次变换矩阵及第一运动后齐次变换矩阵;
针对每次位姿变化运动,根据所述附加轴系统在该位姿变化运动前后的实际关节位置数据,基于改进型D-H参数法计算得到所述附加轴系统的输出末端坐标系与附加轴基座坐标系之间的第二运动前齐次变换矩阵及第二运动后齐次变换矩阵;
针对每次位姿变化运动,将与该位姿变化运动对应的所述第一运动前齐次变换矩阵、所述第二运动前齐次变换矩阵、所述第一运动后齐次变换矩阵及所述第二运动后齐次变换矩阵代入到所述位姿关系标定模型中,构建形成关于所述附加轴基座坐标系与所述机器人基座坐标系之间的目标齐次变换矩阵的待求解方程;
将所有位姿变化运动各自对应的待求解方程集成为目标方程组进行非线性优化求解,并将求解得到的目标齐次变换矩阵作为所述位姿关系变换矩阵;
其中,所述位姿关系标定模型采用如下式子进行表达:
Figure QLYQS_1
其中,
Figure QLYQS_16
用于表示与第
Figure QLYQS_6
次位姿变化运动对应的机器人末端坐标系
Figure QLYQS_8
和机器人基座坐标系
Figure QLYQS_3
之间的第一运动前齐次变换矩阵,
Figure QLYQS_11
用于表示与第
Figure QLYQS_7
次位姿变化运动对应的机器人末端坐标系
Figure QLYQS_12
和机器人基座坐标系
Figure QLYQS_13
之间的第一运动后齐次变换矩阵,
Figure QLYQS_20
用于表示与第
Figure QLYQS_2
次位姿变化运动对应的输出末端坐标系
Figure QLYQS_10
与附加轴基座坐标系
Figure QLYQS_4
之间的第二运动前齐次变换矩阵,
Figure QLYQS_17
用于表示与第
Figure QLYQS_14
次位姿变化运动对应的输出末端坐标系
Figure QLYQS_19
与附加轴基座坐标系
Figure QLYQS_5
之间的第二运动后齐次变换矩阵,
Figure QLYQS_9
用于表示附加轴基座坐标系
Figure QLYQS_15
与机器人基座坐标系
Figure QLYQS_18
之间的目标齐次变换矩阵,其中所述目标齐次变换矩阵为所述目标机器人与所述附加轴系统之间的位姿关系变换矩阵。
2.根据权利要求1所述的标定方法,其特征在于,针对每次位姿变化运动,控制所述附加轴系统通过所述连接装置牵引所述目标机器人实现该位姿变化运动的步骤,包括:
控制所述附加轴系统执行与该位姿变化运动对应的附加轴运动操作;
获取所述连接装置检测到的与所述附加轴运动操作对应的牵引力数据;
根据所述牵引力数据计算所述目标机器人的机器人末端在机器人基座坐标系下的期望速度数据;
根据所述机器人末端在机器人基座坐标系下的当前位姿数据及期望速度数据,计算所述机器人末端在机器人基座坐标系下的与所述附加轴运动操作匹配的期望位姿数据;
按照所述机器人末端在机器人基座坐标系下的期望位姿数据,基于机器人逆运动学原理控制所述目标机器人的各机器人关节进行运动,以完成该位姿变化运动。
3.根据权利要求2所述的标定方法,其特征在于,所述根据所述牵引力数据计算所述目标机器人的机器人末端在机器人基座坐标系下的期望速度数据的步骤,包括:
调用所述机器人末端在机器人末端坐标系下的末端作用力参数与末端速度参数之间的关联关系,计算所述机器人末端在机器人末端坐标系下的与所述牵引力数据对应的目标速度数据;
根据所述目标机器人的机器人末端坐标系与机器人基座坐标系之间的当前齐次变换矩阵,对所述机器人末端在机器人末端坐标系下的目标速度数据进行数据变换处理,得到所述机器人末端在机器人基座坐标系下的期望速度数据。
4.根据权利要求2所述的标定方法,其特征在于,所述按照所述机器人末端在机器人基座坐标系下的期望位姿数据,基于机器人逆运动学原理控制所述目标机器人的各机器人关节进行运动的步骤,包括:
基于机器人逆运动学原理对所述机器人末端在机器人基座坐标系下的期望位姿数据进行逆运动学求解,得到所述目标机器人的各机器人关节的期望关节位置;
针对所述目标机器人的每个机器人关节,按照该机器人关节的期望关节位置调整该机器人关节的当前关节位置。
5.一种位姿关系标定装置,其特征在于,所述标定装置包括:
运动控制模块,用于控制附加轴系统通过连接装置牵引目标机器人进行多次位姿变化运动,其中所述连接装置用于连接所述目标机器人的机器人末端和所述附加轴系统的输出末端;
数据获取模块,用于获取所述附加轴系统与所述目标机器人各自在每次位姿变化运动前后的实际关节位置数据;
关系标定模块,用于基于获取到的所述附加轴系统与所述目标机器人各自的实际关节位置数据,调用与所述连接装置对应的位姿关系标定模型进行参数优化求解,得到所述目标机器人与所述附加轴系统之间的位姿关系变换矩阵;
其中,所述位姿关系标定模型采用如下式子进行表达:
Figure QLYQS_21
其中,
Figure QLYQS_35
用于表示与第
Figure QLYQS_23
次位姿变化运动对应的机器人末端坐标系
Figure QLYQS_30
和机器人基座坐标系
Figure QLYQS_26
之间的第一运动前齐次变换矩阵,
Figure QLYQS_29
用于表示与第
Figure QLYQS_34
次位姿变化运动对应的机器人末端坐标系
Figure QLYQS_40
和机器人基座坐标系
Figure QLYQS_36
之间的第一运动后齐次变换矩阵,
Figure QLYQS_38
用于表示与第
Figure QLYQS_22
次位姿变化运动对应的输出末端坐标系
Figure QLYQS_32
与附加轴基座坐标系
Figure QLYQS_24
之间的第二运动前齐次变换矩阵,
Figure QLYQS_31
用于表示与第
Figure QLYQS_37
次位姿变化运动对应的输出末端坐标系
Figure QLYQS_39
与附加轴基座坐标系
Figure QLYQS_25
之间的第二运动后齐次变换矩阵,
Figure QLYQS_28
用于表示附加轴基座坐标系
Figure QLYQS_27
与机器人基座坐标系
Figure QLYQS_33
之间的目标齐次变换矩阵,其中所述目标齐次变换矩阵为所述目标机器人与所述附加轴系统之间的位姿关系变换矩阵。
6.一种计算机设备,其特征在于,包括处理器和存储器,所述存储器存储有能够被所述处理器执行的计算机程序,所述处理器可执行所述计算机程序,以实现权利要求1-4中任意一项所述的位姿关系标定方法。
7.一种可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现权利要求1-4中任意一项所述的位姿关系标定方法。
CN202211503550.6A 2022-11-29 2022-11-29 位姿关系标定方法及装置、计算机设备和可读存储介质 Active CN115533922B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211503550.6A CN115533922B (zh) 2022-11-29 2022-11-29 位姿关系标定方法及装置、计算机设备和可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211503550.6A CN115533922B (zh) 2022-11-29 2022-11-29 位姿关系标定方法及装置、计算机设备和可读存储介质

Publications (2)

Publication Number Publication Date
CN115533922A CN115533922A (zh) 2022-12-30
CN115533922B true CN115533922B (zh) 2023-03-17

Family

ID=84722442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211503550.6A Active CN115533922B (zh) 2022-11-29 2022-11-29 位姿关系标定方法及装置、计算机设备和可读存储介质

Country Status (1)

Country Link
CN (1) CN115533922B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106671079A (zh) * 2015-11-06 2017-05-17 中国科学院沈阳计算技术研究所有限公司 一种实现变位机协同的焊接机器人运动控制方法
WO2018090323A1 (zh) * 2016-11-18 2018-05-24 深圳配天智能技术研究院有限公司 一种坐标系标定方法、系统及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE537534C2 (sv) * 2013-08-27 2015-06-02 Cognibotics Ab Metod och system för bestämning av åtminstone en egenskap hos en manipulator
CN106406277B (zh) * 2016-09-23 2019-01-25 贵州珞石三盛科技有限公司 机器人运动学参数误差优化补偿方法及装置
CN111319041B (zh) * 2020-01-17 2021-04-16 深圳市优必选科技股份有限公司 一种机器人位姿确定方法、装置、可读存储介质及机器人
CN111216138A (zh) * 2020-04-09 2020-06-02 季华实验室 机器人标定方法、机器人标定系统及可读存储介质
CN112936301B (zh) * 2021-01-26 2023-03-03 深圳市优必选科技股份有限公司 一种机器人手眼标定方法、装置、可读存储介质及机器人
CN112775976B (zh) * 2021-02-05 2022-05-10 深圳市优必选科技股份有限公司 任务执行控制方法、装置、控制设备及可读存储介质
CN113510698B (zh) * 2021-04-26 2022-07-29 深圳市优必选科技股份有限公司 一种机械臂控制方法、装置、机械臂和可读存储介质
CN114770516A (zh) * 2022-05-19 2022-07-22 梅卡曼德(北京)机器人科技有限公司 通过点云获取装置对机器人进行标定的方法以及标定系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106671079A (zh) * 2015-11-06 2017-05-17 中国科学院沈阳计算技术研究所有限公司 一种实现变位机协同的焊接机器人运动控制方法
WO2018090323A1 (zh) * 2016-11-18 2018-05-24 深圳配天智能技术研究院有限公司 一种坐标系标定方法、系统及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邓茜 ; 邓三鹏 ; 石秀敏 ; .工业机器人标定系统的自适应对准控制方法研究.(第06期),第27-30页. *

Also Published As

Publication number Publication date
CN115533922A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
US11780085B2 (en) Robot posture control method and robot and computer readable storage medium using the same
US8560122B2 (en) Teaching and playback method based on control of redundancy resolution for robot and computer-readable medium controlling the same
Sauvée et al. Image based visual servoing through nonlinear model predictive control
CN109676606B (zh) 一种计算机械臂臂角范围的方法、机械臂及机器人
CN110954134B (zh) 陀螺仪偏差校正方法、校正系统、电子设备及存储介质
Danaei et al. Dynamic modeling and base inertial parameters determination of a 2-DOF spherical parallel mechanism
CN109079787B (zh) 基于神经网络的非刚性机器人自动手眼标定方法
Izaguirre-Espinosa et al. Fractional attitude-reactive control for robust quadrotor position stabilization without resolving underactuation
Sharifi et al. Nonlinear robust adaptive Cartesian impedance control of UAVs equipped with a robot manipulator
CN113070880B (zh) 运动控制方法、装置、机器人控制设备及可读存储介质
US20240025038A1 (en) Robot control method, legged robot using the same, and computer-readable storage medium
CN109800514B (zh) 并联机构的精度分析方法、装置以及电子设备
Copot et al. A fractional order control strategy for visual servoing systems
CN115351780A (zh) 用于控制机器人设备的方法
Al Mashhadany Virtual reality trajectory of modified PUMA 560 by hybrid intelligent controller
Latella et al. Towards real-time whole-body human dynamics estimation through probabilistic sensor fusion algorithms: A physical human–robot interaction case study
Torres-Moreno et al. Online kinematic and dynamic-state estimation for constrained multibody systems based on IMUs
CN115533922B (zh) 位姿关系标定方法及装置、计算机设备和可读存储介质
CN112965372B (zh) 基于强化学习的微零件精密装配方法、装置和系统
Zaidi et al. Grasp planning pipeline for robust manipulation of 3d deformable objects with industrial robotic hand+ arm systems
JP3331100B2 (ja) マニピュレータシミュレート装置
CN109591023B (zh) 串联机器人的迭代计算方法及串联机器人
CN112045687B (zh) 用于操作机械臂的动力学计算方法及机械臂的中央控制方法和系统
CN110543919B (zh) 一种机器人定位控制方法、终端设备及存储介质
CN114764830A (zh) 一种基于四元数ekf和未标定手眼系统的物体位姿估算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant