CN115520863B - 水热或溶剂热法制备的煤基活性炭及其制法和应用 - Google Patents

水热或溶剂热法制备的煤基活性炭及其制法和应用 Download PDF

Info

Publication number
CN115520863B
CN115520863B CN202211377402.4A CN202211377402A CN115520863B CN 115520863 B CN115520863 B CN 115520863B CN 202211377402 A CN202211377402 A CN 202211377402A CN 115520863 B CN115520863 B CN 115520863B
Authority
CN
China
Prior art keywords
activated carbon
coal
hydrothermal
carbonization
based activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211377402.4A
Other languages
English (en)
Other versions
CN115520863A (zh
Inventor
姚鑫
庄林生
刘娟
叶同奇
张思乐
时义宽
袁红杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia Xiangtai New Material Technology Co ltd
Hefei University of Technology
Original Assignee
Ningxia Xiangtai New Material Technology Co ltd
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningxia Xiangtai New Material Technology Co ltd, Hefei University of Technology filed Critical Ningxia Xiangtai New Material Technology Co ltd
Priority to CN202211377402.4A priority Critical patent/CN115520863B/zh
Publication of CN115520863A publication Critical patent/CN115520863A/zh
Application granted granted Critical
Publication of CN115520863B publication Critical patent/CN115520863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及活性炭制备技术领域,具体公开了一种水热或溶剂热法制备的煤基活性炭及其制法和应用,煤基活性炭由包含下述组分的原料制备得到:煤粉、金属盐和溶剂;其中,金属盐选自铁盐、钴盐或镍盐的一种或两种以上,溶剂选自水或无水乙醇;优选的,活性炭由包含下述步骤的方法制备得到:(1)将包含煤粉、金属盐和溶剂的原料混合后,于160‑180℃进行水热或溶剂热反应,得到炭化前驱体;(2)将所得炭化前驱体成型后,经炭化和活化过程,得到煤基活性炭。本发明用水热或溶剂热法,有效促进了煤基活性炭微中孔的发育,扩展了煤基活性炭在水处理领域的应用。

Description

水热或溶剂热法制备的煤基活性炭及其制法和应用
技术领域
本发明涉及活性炭制备技术领域,尤其涉及煤基活性炭的制备技术领域,具体涉及一种水热或溶剂热法制备的煤基活性炭及其制法和应用。
背景技术
天然水体中含有大量的天然有机物,主要来源于动植物在自然循环过程中腐败分解后产生的有机物,其中以腐植质为主。腐植质主要包括腐植酸(Humicacid,HA)、富里酸(Fulvic acid,FA)等。此外,几乎所有天然有机物(NOM)都可能在消毒过程中与卤素元素进行反应生成消毒副产物(DBPs),其中占溶解性有机质一半左右的腐殖酸是产生三卤甲烷(THMs)最重要的前驱质,而在所有能监测到的DBP中THMs约占64%,卤代乙酸(HHAs)占30%。虽然这些化合物在水中含量仅为ug/L量级,但它们对人类健康具有较大的潜在危害性,有的具有致癌或致突变作用。
活性炭孔隙发达、比表面积大、表面上含有多种官能团、性能稳定,可在不同温度、酸碱度条件下使用。活性炭的吸附性能与其孔结构有密切的联系,因此在活性炭制备过程中调控孔隙结构就显得十分重要。一般微孔结构发达的活性炭常用于小分子气体、液体的吸附,中孔发达的活性炭适合于吸附大分子物质。常用原煤破碎炭在水处理中有堆积重轻、漂浮率高、强度低等缺点,废水中成分复杂,分子量各异,活性炭对以腐殖酸为代表的天然有机物的吸附效果还有待提高。催化活化法常被应用于煤基中孔活性炭的制备,催化活化法指的是利用过渡金属或稀土金属及其化合物作为催化剂制备活性炭,活化时,包含有金属的纳米颗粒在炭基体中发生迁移,使微孔扩充为中孔,或者金属材料周围的炭原子优先发生氧化反应而形成中孔。申请号为202110452662.2的发明专利公开了一种椰壳基中孔活性炭及其制备方法,将铁盐溶解后加入椰壳炭化料,经催化活化、酸洗后得到椰壳基中孔活性炭。申请号为20210774544.3的发明专利公开了一种中孔发达的活性炭及其制备方法,以石油焦、沥青焦、油系针状焦和煤系针状焦为原料,加入硝酸铁或硝酸镍溶液,催化活化后,浸入活化剂进行活化反应后,得到中孔发达活性炭。
发明内容
本发明人认为,现有煤基活性炭仍存在以下技术问题:
(1)目前催化法的催化效果受煤种制约,所制备的的活性炭微中孔发育能力有待提高,二元或多元催化剂具有更优的催化性能,但相互之间的协同效应还有待研究,催化效果还有待改善。
(2)目前煤基活性炭对腐殖酸等天然有机物的吸附能力有限,使其在水处理领域的应用受限。
即,本发明解决的技术问题是:如何制备得到适用于水处理领域,具备一定的微孔孔容、中孔孔容的煤基压块活性炭,提高其微中孔发育能力和腐殖酸吸附量。
本发明的目的是:通过水热法或溶剂热法,以低阶烟煤为原料,调节掺杂金属元素的类型和比例,实现掺杂金属在煤体相中的均匀分散,制备得到微中孔发达、腐殖酸吸附量大,适用于水处理的煤基活性炭。
为解决上述技术问题,本发明在煤基活性炭制备过程中引入金属元素,用水热或溶剂热法制备得到微中孔发达的煤基活性炭。
具体来说,针对现有技术的不足,本发明提供了如下技术方案:
一种水热或溶剂热法制备的煤基活性炭,其特征在于,由包含下述组分的原料制备得到:
煤粉、金属盐和溶剂;其中,所述金属盐选自铁盐、钴盐或镍盐的一种或两种以上,所述溶剂选自水或乙醇。
优选的,上述煤基活性炭中,所述金属盐占煤粉的比例为0.01-0.05mmol/g,优选为0.02-0.05mmol/g,优选为0.03-0.04mmol/g。
优选的,上述煤基活性炭中,金属元素占活性炭的比例为0.10-0.20mmol/g。
优选的,上述煤基活性炭中,所述煤粉与溶剂的比例为0.20-0.40g/ml。
优选的,上述煤基活性炭中,所述金属盐中的金属元素包括铁元素和掺杂元素,所述掺杂元素选自钴元素或镍元素的一种或两种,优选为镍元素。
优选的,上述煤基活性炭中,所述掺杂元素和铁元素的摩尔比为(0.3-3):1,优选为(1-3):1。
优选的,上述煤基活性炭中,所述煤粉的粘结指数为10-30。
优选的,上述煤基活性炭中,所述煤粉的干燥无灰基为40-45%。
优选的,上述煤基活性炭中,所述煤粉的固定碳含量为55-60%。
优选的,上述煤基活性炭中,所述煤粉的干基水分为8-12%。
优选的,上述煤基活性炭中,所述煤粉的灰分为1.5-2.0%。
优选的,上述煤基活性炭中,所述活性炭的微孔孔容为0.20-0.45cm3/g,优选为0.28-0.40cm3/g,更优选为0.36-0.40cm3/g;所述活性炭的中孔孔容为0.10-0.55cm3/g,优选为0.34-0.51cm3/g,更优选为0.35-0.43cm3/g。
优选的,上述煤基活性炭中,所述活性炭的中孔率为25%-65%,优选为45%-65%,更优选为47%-55%。
优选的,上述煤基活性炭中,所述活性炭的微孔率为35%-75%,优选为35%-55%,更优选为45%-54%。
优选的,上述煤基活性炭中,所述活性炭的比表面积为850-1400m2/g,优选为1200-1400m2/g。
优选的,上述煤基活性炭中,所述活性炭的平均孔径为2.0-3.5nm,优选为2.4-3.5nm,更优选为2.4-2.5nm;
优选的,上述煤基活性炭中,所述活性炭的总孔容为0.50-0.82cm3/g,优选为0.65-0.82cm3/g,更优选为0.74-0.80cm3/g。
优选的,上述煤基活性炭中,所述活性炭的亚甲蓝吸附值为205-320mg/g,优选为215-320mg/g,更优选为270-320mg/g。
优选的,上述煤基活性炭中,所述活性炭的腐殖酸吸附量为330-870mg/g,优选为550-870mg/g,更优选为700-870mg/g。
优选的,上述煤基活性炭中,所述活性炭由包含下述步骤的方法制备得到:
(1)将包含煤粉、金属盐和溶剂的原料混合后,于160-180℃进行水热或溶剂热反应,得到炭化前驱体;
(2)将所得炭化前驱体成型后,经炭化和活化过程,得到所述煤基活性炭。
优选的,上述煤基活性炭中,所述炭化温度为600-700℃,活化温度为900-960℃。
优选的,上述煤基活性炭中,水热或溶剂热反应时间为20-24h,炭化时间为2-4h,活化时间为2-4h。
优选的,上述煤基活性炭中,炭化升温速率为5-15℃/min,活化过程的活化剂为CO2,活化剂流速为150-250mL/min,升温速率为5-15℃/min。
本发明还提供一种水热或溶剂热制备煤基活性炭的方法,其特征在于,包括下述步骤:
(1)将包含煤粉、金属盐和溶剂的原料混合后,于160-180℃进行水热或溶剂热反应,得到炭化前驱体;
(2)将所得炭化前驱体成型后,经炭化和活化过程,得到所述煤基活性炭。
优选的,上述方法中,步骤(2)包含下述步骤:
将所得炭化前驱体压块成型、经炭化过程后得到炭化料,将炭化料破碎至8-30目筛,经过活化过程,得到所述煤基活性炭。
优选的,上述方法中,所述成型过程包括下述步骤:
将炭化前驱体在25-50MPa的压力下挤压0.5-3min,形成饼状煤块。
优选的,上述方法中,所述炭化过程的炭化得率为58%-65%,优选为59%-62%。
优选的,上述方法中,活化过程的活化得率为30%-50%,优选为34%-48%,更优选为42%-46%。
本发明还提供上述煤基活性炭在气体分离、水污染处理或化工催化领域的应用。
本发明的优点是:提高了以低阶烟煤为原料的活性炭的孔结构发育能力,拓宽了低阶烟煤的应用范围;本发明有效促进了活性炭的微中孔发育,亚甲蓝值可达250mg/g以上,甚至达到290mg/g以上;本发明所得活性炭的腐殖酸吸附量大大提高,扩展了煤质压块活性炭在水处理领域的应用范围。
附图说明
图1为实施例3、实施例5、实施例9和实施例10的XRD图谱。
具体实施方式
鉴于目前金属添加剂对煤基活性炭的催化效果还有待提高,本发明以低阶烟煤为原料,用水热或溶解热法制备金属掺杂的煤基活性炭,以提高其中孔发育能力,扩展其在水处理领域的应用。
下面通过具体实施例来进一步说明本发明所述水热或溶剂热法制备的煤基活性炭及其制备方法和应用。
在下面的实施例中,选取新疆哈密弱粘煤(简称新疆煤,XJ)作为原料煤,粘结指数为16,工业分析和元素分析结果如下表所示:
表1原料煤的工业分析
样品编号 Mad/% Ad/% Vdaf/% FCdaf/%
XJ 9.4 1.90 42.06 57.94
表2原料煤的元素分析
样品编号 C/% H/% N/% S/%
XJ 82.90 9.04 0.72 2.31
所用的各试剂和仪器的信息如下表所示:
表3实施例中仪器信息表
试剂/仪器 规格/型号 厂家/来源
行星式球磨机 QM-3SP2 南京南大仪器有限公司
微型助力管式炉 KMTF-1100-S-50-220 合肥科幂仪器有限公司
固定靶X射线衍射仪 X-PertPROMPD PANalytical
孔径及比表面积分析仪 Autosorb-iQ QuantachromeInstruments
透射电子显微镜 JEM-2100F JEOL
可见光分光光度计 722G 上海仪电分析仪器有限公司
元素分析仪 varioELcube Elementar
实施例1
(1)炭化前驱体的制备:将原料煤磨过200目筛,得到粉煤。在水热反应釜内衬中加入12g新疆煤粉、0.4mmol FeCl3·6H2O、40ml去离子水,混合后于180℃水热反应24小时,得到炭化前驱体。
(2)成型:将所得炭化前驱体离心干燥后,在28MPa压力下挤压30s,形成直径为25mm,厚度为10mm的饼状煤块。
(3)炭化:将制得的煤块放入管式炉中,通入流量为200mL/min的氮气,将管式炉按10℃/min的速率升温至600℃,炭化2h后,自然冷却至室温,得到炭化料。
(4)活化:将所得炭化料破碎至8-30目,放入管式炉中,通入流量为200mL/min的CO2,将管式炉按10℃/min的速率升温至950℃,活化3h后,立即移除CO2通入氮气,自然冷却至室温,得到压块活性炭。
计算实施例制备过程中的炭化得率和活化得率,计算公式如下:
炭化得率=炭化料质量*100%/煤块质量
活化得率=活性炭质量*100%/炭化料质量
将制备过程中的各产物进行下述表征:
(1)X射线衍射。将所得炭化料、活性炭进行XRD检测,测试条件为:Cu靶,Kα辐射λ=0.15406nm,电源电压40KV,电流40mA,扫描速度为5°/min,步长为0.02°,扫描范围5-85°。
(2)用孔径及比表面积分析仪测定所得活性炭样品的氮气吸脱附等温线,采用BET方程计算活性炭的比表面积,采用BJH方程来解析活性炭的孔结构参数和孔径分布,结果如表4所示。
(3)根据GB/T7702.6-2008检测亚甲蓝吸附值。
(4)腐殖酸吸附量的测定方法为:配制0.2g/L、0.4g/L、0.6g/L、0.8g/L、1g/L的腐殖酸原水,检测其在254nm波长处的吸光度,绘制标准曲线。将活性炭磨至过325目筛,取10mg待测活性炭添加到100mL的1g/L腐殖酸溶液中,于25℃下震荡3天,过滤,测滤液在254nm处的吸光度,根据标准曲线计算滤液浓度,计算得到每克活性炭的腐殖酸吸附量。
结果表明,本实施例所得活性炭的炭化得率为60.25%,活化得率为48.02%,亚甲蓝吸附值为287.70mg/g,腐殖酸吸附量为454.91mg/g。
实施例2
(1)炭化前驱体的制备:将原料煤磨过200目筛,得到粉煤。在水热反应釜内衬中加入12g新疆煤粉、0.4mmol FeCl3·6H2O、40ml无水乙醇,混合后于180℃水热反应24小时,得到炭化前驱体。
(2)成型:将所得炭化前驱体离心干燥后,在28MPa压力下挤压30s,形成直径为25mm,厚度为10mm的饼状煤块。
(3)炭化:将制得的煤块放入管式炉中,通入流量为200mL/min的氮气,将管式炉按10℃/min的速率升温至600℃,炭化2h后,自然冷却至室温,得到炭化料。
(4)活化:将所得炭化料破碎至8-30目,放入管式炉中,通入流量为200mL/min的CO2,将管式炉按10℃/min的速率升温至950℃,活化3h后,立即移除CO2通入氮气,自然冷却至室温,得到压块活性炭。
结果表明,本实施例所得活性炭的炭化得率为61.48%,活化得率为35.21%,亚甲蓝吸附值为219.81mg/g,腐殖酸吸附量为690.22mg/g。
实施例3
(1)炭化前驱体的制备:将原料煤磨过200目筛,得到粉煤。在水热反应釜内衬中加入14g新疆煤粉、0.4mmol CoCl2·6H2O、40ml去离子水,混合后于180℃水热反应20小时,得到炭化前驱体。
(2)成型:将所得炭化前驱体离心干燥后,在28MPa压力下挤压2min,形成直径为25mm,厚度为10mm的饼状煤块。
(3)炭化:将制得的煤块放入管式炉中,通入流量为200mL/min的氮气,将管式炉按10℃/min的速率升温至600℃,炭化3h后,自然冷却至室温,得到炭化料。
(4)活化:将所得炭化料破碎至8-30目,放入管式炉中,通入流量为200mL/min的CO2,将管式炉按10℃/min的速率升温至950℃,活化4h后,立即移除CO2通入氮气,自然冷却至室温,得到压块活性炭。
本实施例所得活性炭的XRD图谱如图1所示,其中,在26.6°和44.7°处出现尖峰,与标准卡片对比后,认为是各向同性石墨结构(PDF26-1077),且活性炭产物中有氧化钴存在。
结果表明,本实施例所得活性炭的炭化得率为59.43%,活化得率为48.01%,亚甲蓝吸附值为264.24mg/g,腐殖酸吸附量为453.31mg/g。
实施例4
(1)炭化前驱体的制备:将原料煤磨过200目筛,得到粉煤。在水热反应釜内衬中加入8g新疆煤粉、0.4mmol CoCl2·6H2O、40ml无水乙醇,混合后于180℃水热反应22小时,得到炭化前驱体。
(2)成型:将所得炭化前驱体离心干燥后,在30MPa压力下挤压30s,形成直径为25mm,厚度为10mm的饼状煤块。
(3)炭化:将制得的煤块放入管式炉中,通入流量为200mL/min的氮气,将管式炉按10℃/min的速率升温至600℃,炭化3h后,自然冷却至室温,得到炭化料。
(4)活化:将所得炭化料破碎至8-30目,放入管式炉中,通入流量为200mL/min的CO2,将管式炉按10℃/min的速率升温至900℃,活化2h后,立即移除CO2通入氮气,自然冷却至室温,得到压块活性炭。
结果表明,本实施例所得活性炭的炭化得率为59.93%,活化得率为45.43%,亚甲蓝吸附值为259.08mg/g,腐殖酸吸附量为345.33mg/g。
实施例5
(1)炭化前驱体的制备:将原料煤磨过200目筛,得到粉煤。在水热反应釜内衬中加入12g新疆煤粉、0.4mmol Ni(NO3)2·6H2O、30ml去离子水,混合后于160℃水热反应24小时,得到炭化前驱体。
(2)成型:将所得炭化前驱体离心干燥后,在28MPa压力下挤压30s,形成直径为25mm,厚度为10mm的饼状煤块。
(3)炭化:将制得的煤块放入管式炉中,通入流量为200mL/min的氮气,将管式炉按10℃/min的速率升温至600℃,炭化2h后,自然冷却至室温,得到炭化料。
(4)活化:将所得炭化料破碎至8-30目,放入管式炉中,通入流量为200mL/min的CO2,将管式炉按10℃/min的速率升温至950℃,活化2h后,立即移除CO2通入氮气,自然冷却至室温,得到压块活性炭。
本实施例所得活性炭的XRD图谱如图1所示,其中,在26.6°和44.7°处出现尖峰,与标准卡片对比后,认为是各向同性石墨结构(PDF26-1077),且活性炭产物中有氧化镍存在。
结果表明,本实施例所得活性炭的炭化得率为60.86%,活化得率为47.56%,亚甲蓝吸附值为205.30mg/g,腐殖酸吸附量为454.91mg/g。
实施例6
(1)炭化前驱体的制备:将原料煤磨过200目筛,得到粉煤。在水热反应釜内衬中加入12g新疆煤粉、0.4mmol Ni(NO3)2·6H2O、40ml无水乙醇,混合后于180℃水热反应24小时,得到炭化前驱体。
(2)成型:将所得炭化前驱体离心干燥后,在28MPa压力下挤压30s,形成直径为25mm,厚度为10mm的饼状煤块。
(3)炭化:将制得的煤块放入管式炉中,通入流量为200mL/min的氮气,将管式炉按10℃/min的速率升温至600℃,炭化2h后,自然冷却至室温,得到炭化料。
(4)活化:将所得炭化料破碎至8-30目,放入管式炉中,通入流量为200mL/min的CO2,将管式炉按10℃/min的速率升温至950℃,活化3h后,立即移除CO2通入氮气,自然冷却至室温,得到压块活性炭。
结果表明,本实施例所得活性炭的炭化得率为61.02%,活化得率为46.78%,亚甲蓝吸附值为274.59mg/g,腐殖酸吸附量为599.14mg/g。
实施例7
(1)炭化前驱体的制备:将原料煤磨过200目筛,得到粉煤。在水热反应釜内衬中加入12g新疆煤粉、0.2mmol FeCl3·6H2O、0.2mmol Ni(NO3)2·6H2O、40ml无水乙醇,混合后于180℃水热反应24小时,得到炭化前驱体。
(2)成型:将所得炭化前驱体离心干燥后,在28MPa压力下挤压30s,形成直径为25mm,厚度为10mm的饼状煤块。
(3)炭化:将制得的煤块放入管式炉中,通入流量为200mL/min的氮气,将管式炉按10℃/min的速率升温至600℃,炭化2h后,自然冷却至室温,得到炭化料。
(4)活化:将所得炭化料破碎至8-30目,放入管式炉中,通入流量为200mL/min的CO2,将管式炉按10℃/min的速率升温至950℃,活化3h后,立即移除CO2通入氮气,自然冷却至室温,得到压块活性炭。
结果表明,本实施例所得活性炭的炭化得率为61.27%,活化得率为34.64%,亚甲蓝吸附值为319.44mg/g,腐殖酸吸附量为630.09mg/g。
实施例8
(1)炭化前驱体的制备:将原料煤磨过200目筛,得到粉煤。在水热反应釜内衬中加入12g新疆煤粉、0.2mmol FeCl3·6H2O、0.2mmol CoCl2·6H2O、40ml无水乙醇,混合后于170℃水热反应24小时,得到炭化前驱体。
(2)成型:将所得炭化前驱体离心干燥后,在28MPa压力下挤压30s,形成直径为25mm,厚度为10mm的饼状煤块。
(3)炭化:将制得的煤块放入管式炉中,通入流量为200mL/min的氮气,将管式炉按10℃/min的速率升温至600℃,炭化2h后,自然冷却至室温,得到炭化料。
(4)活化:将所得炭化料破碎至8-30目,放入管式炉中,通入流量为200mL/min的CO2,将管式炉按10℃/min的速率升温至950℃,活化3h后,立即移除CO2通入氮气,自然冷却至室温,得到压块活性炭。
结果表明,本实施例所得活性炭的炭化得率为62.79%,活化得率为32.92%,亚甲蓝吸附值为304.30mg/g,腐殖酸吸附量为439.74mg/g。
实施例9
(1)炭化前驱体的制备:将原料煤磨过200目筛,得到粉煤。在水热反应釜内衬中加入12g新疆煤粉、0.2mmol FeCl3·6H2O、0.2mmol CoCl2·6H2O、40ml去离子水,混合后于180℃水热反应24小时,得到炭化前驱体。
(2)成型:将所得炭化前驱体离心干燥后,在28MPa压力下挤压30s,形成直径为25mm,厚度为10mm的饼状煤块。
(3)炭化:将制得的煤块放入管式炉中,通入流量为200mL/min的氮气,将管式炉按15℃/min的速率升温至600℃,炭化2h后,自然冷却至室温,得到炭化料。
(4)活化:将所得炭化料破碎至8-30目,放入管式炉中,通入流量为200mL/min的CO2,将管式炉按15℃/min的速率升温至950℃,活化3h后,立即移除CO2通入氮气,自然冷却至室温,得到压块活性炭。
本实施例所得活性炭的XRD图谱如图1所示,其中,在26.6°和44.7°处出现尖峰,与标准卡片对比后,认为是各向同性石墨结构(PDF26-1077),且活性炭产物中有四氧二铁酸钴存在。
结果表明,本实施例所得活性炭的炭化得率为60.24%,活化得率为43.87%,亚甲蓝吸附值为310.65mg/g,腐殖酸吸附量为710.36mg/g。
实施例10
(1)炭化前驱体的制备:将原料煤磨过200目筛,得到粉煤。在水热反应釜内衬中加入12g新疆煤粉、0.2mmol FeCl3·6H2O、0.2mmol Ni(NO3)2·6H2O、40ml去离子水,混合后于180℃水热反应24小时,得到炭化前驱体。
(2)成型:将所得炭化前驱体离心干燥后,在28MPa压力下挤压30s,形成直径为25mm,厚度为10mm的饼状煤块。
(3)炭化:将制得的煤块放入管式炉中,通入流量为200mL/min的氮气,将管式炉按10℃/min的速率升温至600℃,炭化2h后,自然冷却至室温,得到炭化料。
(4)活化:将所得炭化料破碎至8-30目,放入管式炉中,通入流量为200mL/min的CO2,将管式炉按10℃/min的速率升温至950℃,活化3h后,立即移除CO2通入氮气,自然冷却至室温,得到压块活性炭。
本实施例所得活性炭的XRD图谱如图1所示,其中,在26.6°和44.7°处出现尖峰,与标准卡片对比后,认为是各向同性石墨结构(PDF26-1077),且活性炭产物中有四氧二铁酸镍存在。
结果表明,本实施例所得活性炭的炭化得率为60.89%,活化得率为44.13%,亚甲蓝吸附值为290.41mg/g,腐殖酸吸附量为863.01mg/g。
实施例11
(1)炭化前驱体的制备:将原料煤磨过200目筛,得到粉煤。在水热反应釜内衬中加入12g新疆煤粉、0.1mmol FeCl3·6H2O、0.3mmol CoCl2·6H2O、40ml去离子水,混合后于180℃水热反应24小时,得到炭化前驱体。
(2)成型:将所得炭化前驱体离心干燥后,在28MPa压力下挤压30s,形成直径为25mm,厚度为10mm的饼状煤块。
(3)炭化:将制得的煤块放入管式炉中,通入流量为200mL/min的氮气,将管式炉按10℃/min的速率升温至600℃,炭化2h后,自然冷却至室温,得到炭化料。
(4)活化:将所得炭化料破碎至8-30目,放入管式炉中,通入流量为200mL/min的CO2,将管式炉按10℃/min的速率升温至950℃,活化3h后,立即移除CO2通入氮气,自然冷却至室温,得到压块活性炭。
结果表明,本实施例所得活性炭的炭化得率为59.81%,活化得率为42.60%,亚甲蓝吸附值为297.66mg/g,腐殖酸吸附量为741.01mg/g。
实施例12
(1)炭化前驱体的制备:将原料煤磨过200目筛,得到粉煤。在水热反应釜内衬中加入12g新疆煤粉、0.3mmol FeCl3·6H2O、0.1mmol CoCl2·6H2O、40ml去离子水,混合后于180℃水热反应24小时,得到炭化前驱体。
(2)成型:将所得炭化前驱体离心干燥后,在28MPa压力下挤压30s,形成直径为25mm,厚度为10mm的饼状煤块。
(3)炭化:将制得的煤块放入管式炉中,通入流量为200mL/min的氮气,将管式炉按10℃/min的速率升温至600℃,炭化2h后,自然冷却至室温,得到炭化料。
(4)活化:将所得炭化料破碎至8-30目,放入管式炉中,通入流量为200mL/min的CO2,将管式炉按10℃/min的速率升温至950℃,活化3h后,立即移除CO2通入氮气,自然冷却至室温,得到压块活性炭。
结果表明,本实施例所得活性炭的炭化得率为61.39%,活化得率为42.41%,亚甲蓝吸附值为304.92mg/g,腐殖酸吸附量为553.15mg/g。
实施例13
(1)炭化前驱体的制备:将原料煤磨过200目筛,得到粉煤。在水热反应釜内衬中加入10g新疆煤粉、0.1mmol FeCl3·6H2O、0.3mmol Ni(NO3)2·6H2O、40ml去离子水,混合后于180℃水热反应24小时,得到炭化前驱体。
(2)成型:将所得炭化前驱体离心干燥后,在28MPa压力下挤压30s,形成直径为25mm,厚度为10mm的饼状煤块。
(3)炭化:将制得的煤块放入管式炉中,通入流量为200mL/min的氮气,将管式炉按10℃/min的速率升温至700℃,炭化2h后,自然冷却至室温,得到炭化料。
(4)活化:将所得炭化料破碎至8-30目,放入管式炉中,通入流量为200mL/min的CO2,将管式炉按10℃/min的速率升温至960℃,活化3h后,立即移除CO2通入氮气,自然冷却至室温,得到压块活性炭。
结果表明,本实施例所得活性炭的炭化得率为60.01%,活化得率为45.02%,亚甲蓝吸附值为273.17mg/g,腐殖酸吸附量为804.24mg/g。
由实施例可知,当煤粉中掺杂铁元素和其他金属元素,如镍或钴时,产物中会形成铁合金,如铁镍合金或铁钴合金,此时,活性炭的亚甲蓝吸附量大大提高,最高可达320mg/g,说明活性炭的微中孔都得到了很好的发育。
表4实施例所得活性炭的孔结构表征结果
综上所述,本发明通过水热或溶剂热法制备得到了微中孔发育良好的活性炭,大大提高了活性炭对天然有机物的吸附能力,扩展了其在水处理领域的应用。

Claims (4)

1.一种水热或溶剂热制备煤基活性炭的方法,其特征在于,由包含下述组分的原料制备得到:
煤粉、金属盐和溶剂;
所述活性炭由包含下述步骤的方法制备得到:
(1)将包含煤粉、金属盐和溶剂的原料混合后,于160-180℃进行水热或溶剂热反应,得到炭化前驱体;
(2)将所得炭化前驱体成型后,经炭化和活化过程,得到所述煤基活性炭;其中,所述煤粉的固定碳含量为55-60%,所述金属盐选自铁盐、钴盐或镍盐的一种或两种以上,所述金属盐占煤粉的比例为0.01-0.05mmol/g;所述溶剂选自水或乙醇;活化剂为CO2,活化温度为950-960℃; 水热或溶剂热反应时间为20-24h,炭化时间为2-4h,活化时间为2-4h; 炭化升温速率为5-15℃/min,活化过程的活化剂为CO2,活化剂流速为150-250 mL/min,升温速率为5-15℃/min。
2.根据权利要求1所述的方法,其中,所述活性炭的微孔孔容为0.20-0.45cm3/g,所述活性炭的中孔孔容为0.10-0.55cm3/g。
3.根据权利要求1所述的方法,其中,所述活性炭的平均孔径为2.0-3.5nm。
4.根据权利要求1-3任一项所述的方法在气体分离、水污染处理或化工催化领域的应用。
CN202211377402.4A 2022-11-04 2022-11-04 水热或溶剂热法制备的煤基活性炭及其制法和应用 Active CN115520863B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211377402.4A CN115520863B (zh) 2022-11-04 2022-11-04 水热或溶剂热法制备的煤基活性炭及其制法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211377402.4A CN115520863B (zh) 2022-11-04 2022-11-04 水热或溶剂热法制备的煤基活性炭及其制法和应用

Publications (2)

Publication Number Publication Date
CN115520863A CN115520863A (zh) 2022-12-27
CN115520863B true CN115520863B (zh) 2023-11-21

Family

ID=84704861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211377402.4A Active CN115520863B (zh) 2022-11-04 2022-11-04 水热或溶剂热法制备的煤基活性炭及其制法和应用

Country Status (1)

Country Link
CN (1) CN115520863B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621498A (zh) * 2004-10-16 2005-06-01 中国海洋大学 一种活性半焦h2s脱硫剂的制备方法
WO2009090072A1 (de) * 2008-01-16 2009-07-23 Lucia Viviane Sanders Hydrothermale karbonisierung von biomasse
JP2019019043A (ja) * 2017-07-21 2019-02-07 国立大学法人山梨大学 鉄粒子−多孔質炭素複合体の製造方法
KR20210034148A (ko) * 2019-09-19 2021-03-30 한국에너지기술연구원 철-니켈 합금 나노 입자, 그 제조방법 및 이를 이용한 일산화탄소 제조방법
CN112707398A (zh) * 2019-10-25 2021-04-27 新奥石墨烯技术有限公司 制备煤基多孔碳的方法、电极材料和超级电容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621498A (zh) * 2004-10-16 2005-06-01 中国海洋大学 一种活性半焦h2s脱硫剂的制备方法
WO2009090072A1 (de) * 2008-01-16 2009-07-23 Lucia Viviane Sanders Hydrothermale karbonisierung von biomasse
JP2019019043A (ja) * 2017-07-21 2019-02-07 国立大学法人山梨大学 鉄粒子−多孔質炭素複合体の製造方法
KR20210034148A (ko) * 2019-09-19 2021-03-30 한국에너지기술연구원 철-니켈 합금 나노 입자, 그 제조방법 및 이를 이용한 일산화탄소 제조방법
CN112707398A (zh) * 2019-10-25 2021-04-27 新奥石墨烯技术有限公司 制备煤基多孔碳的方法、电极材料和超级电容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Cost‑effective microwave‑assisted hydrothermal rapid synthesis of analcime‑activated carbon composite from coal gangue used for Pb2+ adsorption;LI,Q.等;Environmental Science and Pollution Research;第29卷(第51期);77788-77799 *

Also Published As

Publication number Publication date
CN115520863A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
Heidari et al. Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: effect of chemical activation
Gao et al. Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni (II) adsorption
Rajapaksha et al. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars
Li et al. Effect of nitric acid pre-oxidation concentration on pore structure and nitrogen/oxygen active decoration sites of ethylenediamine-modified biochar for mercury (II) adsorption and the possible mechanism
Demiral et al. Production and characterization of activated carbons from pumpkin seed shell by chemical activation with ZnCl2
Demiral et al. Surface properties of activated carbon prepared from wastes
Fu et al. Physicochemical and adsorptive properties of activated carbons from Arundo donax Linn utilizing different iron salts as activating agents
Williams et al. Modification, Production, and Methods of KOH‐Activated Carbon
CN109110742B (zh) 利用锰化合物制备的中孔炭及制备方法
Zhu et al. Environmental performances of hydrochar-derived magnetic carbon composite affected by its carbonaceous precursor
JPH10297912A (ja) メソポアカーボンおよびその製造方法
CN113145076B (zh) 一种改性生物炭的制备方法及改性生物炭
Ahmed Potential of Arundo donax L. stems as renewable precursors for activated carbons and utilization for wastewater treatments
Kazmierczak-Razna et al. The use of microwave radiation for obtaining activated carbons enriched in nitrogen
Singh et al. Chemically modified biochar derived from effluent treatment plant sludge of a distillery for the removal of an emerging pollutant, tetracycline, from aqueous solution
Sanchis et al. N-doped activated carbon as support of Pd-Sn bimetallic catalysts for nitrate catalytic reduction
CN115520863B (zh) 水热或溶剂热法制备的煤基活性炭及其制法和应用
Zhao et al. Effects of cellulose addition on the physicochemical properties, pore structure and iodine adsorption of lignin-based biochar
Azani et al. Characterisation and Kinetic Studies on Activated Carbon Derived from Rubber Seed Shell for the Removal of Methylene Blue in Aqueous Solutions.
Joshi Optimization of Conditions for the Preparation of Activated Carbon from Lapsi (Choerospondias axillaris) Seed Stone Using ZnCl 2.
Patel et al. Study of KOH impregnated jack fruit leaf based carbon as adsorbent for treatment of wastewater contaminated with nickel
Peng et al. Preparation of ordered mesoporous carbons with ammonia modification for Orange II adsorption
Singh et al. Waste derived modified biochar as promising functional material for enhanced water remediation potential
Merzougui et al. Effect of activation method on the pore structure of activated carbon from date pits application to the treatment of water
Thomas et al. A comparative study on the efficiency of KOH and H3PO4 impregnated jackfruit leaf based carbon as adsorbent for removal of Cr (VI) from its aqueous solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant