CN115503203A - 基于材料基因组方法的全降解血管支架材料筛选方法 - Google Patents
基于材料基因组方法的全降解血管支架材料筛选方法 Download PDFInfo
- Publication number
- CN115503203A CN115503203A CN202110698381.5A CN202110698381A CN115503203A CN 115503203 A CN115503203 A CN 115503203A CN 202110698381 A CN202110698381 A CN 202110698381A CN 115503203 A CN115503203 A CN 115503203A
- Authority
- CN
- China
- Prior art keywords
- pcl
- extrusion
- fully
- pla
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000012216 screening Methods 0.000 title claims abstract description 18
- 238000001125 extrusion Methods 0.000 claims abstract description 39
- 230000015556 catabolic process Effects 0.000 claims abstract description 15
- 238000006731 degradation reaction Methods 0.000 claims abstract description 15
- 230000008859 change Effects 0.000 claims abstract description 14
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 8
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 claims abstract description 5
- 238000011056 performance test Methods 0.000 claims abstract description 4
- 230000002792 vascular Effects 0.000 claims description 11
- 239000000155 melt Substances 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 238000012360 testing method Methods 0.000 abstract description 15
- 238000011161 development Methods 0.000 abstract description 7
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000004458 analytical method Methods 0.000 abstract description 2
- 239000012620 biological material Substances 0.000 abstract description 2
- 229920001610 polycaprolactone Polymers 0.000 description 39
- 239000004632 polycaprolactone Substances 0.000 description 39
- 229920000747 poly(lactic acid) Polymers 0.000 description 18
- 239000004626 polylactic acid Substances 0.000 description 18
- 210000002889 endothelial cell Anatomy 0.000 description 9
- 238000002156 mixing Methods 0.000 description 8
- 238000012827 research and development Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 208000024172 Cardiovascular disease Diseases 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 208000029078 coronary artery disease Diseases 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 208000007536 Thrombosis Diseases 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229920006237 degradable polymer Polymers 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000034827 Neointima Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010609 cell counting kit-8 assay Methods 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010046 negative regulation of endothelial cell proliferation Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/06—Rod-shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/34—Sorting according to other particular properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/17—Articles comprising two or more components, e.g. co-extruded layers the components having different colours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/285—Feeding the extrusion material to the extruder
- B29C48/288—Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
- B29C48/40—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明公开一种基于材料基因组方法的全降解血管支架材料筛选方法,属于生物材料领域。本发明包括以下步骤:S1:向挤出机中加入PLA,达到稳定挤出状态后停止加料;S2:将PLA‑PCL加入挤出机,连续进料,直到形成连续的深色挤出段,得到一段PLA与PCL含量连续变化的二元降解组分挤出棒;S3:截取数段不同PCL含量的二元降解组分挤出棒试样;S4:对步骤S3中的数段试样分别进行性能测试,筛选出全降解血管支架材料的最佳PCL含量。本发明利用梯度挤出的方法,在同一根棒材上实现二元降解组分的连续变化,高通量地制备具有不同组分的支架候选材料,有助于并行测试分析不同组分的支架候选材料性能,缩短全降解支架材料的开发周期,降低全降解支架材料的开发成本。
Description
技术领域
本发明属于生物材料领域,尤其涉及一种基于材料基因组方法的全降解血管支架材料筛选方法。
背景技术
心血管疾病已成为人类健康的头号大敌。根据《中国心血管病报告2018》,我国2.9亿人患有心血管疾病,其中冠心病患者1100万人。数据显示,心血管疾病的致死率高居疾病致死率榜首,高于肿瘤等其他疾病。对于冠心病患者来说,心脏支架手术已成为治疗的金标准。虽然心脏支架手术已成为治疗冠心病患者的金标准,但患者需要在术后终身服用抗凝血药物以防止支架内血栓形成。即使身体康复,很多患者也会烦恼自己身体里放有金属支架,影响正常的生活和工作。为此,科学家们发明了一种可以在体内自行溶解并被机体吸收的可吸收支架。这种支架放置在血管狭窄部位可起到支撑血管的作用,待血管修复后,支架被新生内膜覆盖、逐渐降解并被人体吸收,因此在体内无残留。这就避免了永久金属植入物长期留存体内引起的各种副作用,如潜在的局部长期炎症反应和血栓形成的风险。
目前已经获批上市的全降解血管支架,均采用聚乳酸材料制造。尽管已在临床上应用,但降解速率慢,体内完全降解需要3-5年,同时支撑强度有待进一步提高。全降解血管支架的性能主要由其材料决定。因此,通过对可降解聚合物的多元共混,有望增加支架材料的降解速率,提升支架的支撑强度。
通过聚合物的多元共混开发新材料,原料的配方决定了材料的性能。然而,即使是对于最简单的二元共混,在理论上,原料的配方也有无穷多种。若通过常规的每个配方逐一加工、逐一测试性能,再筛选,不仅研发周期长,而且研发成本高,特别是可降解聚合物如聚乳酸等目前价格均十分昂贵。
材料基因工程是材料科技领域的颠覆性前沿技术,它的基本理念是创新材料研发模式,采用“理性设计-高效实验-大数据技术”相互融合、协同创新的方法,取代传统的试错法,加速新材料的发展;通过突破高通量计算方法、高通量实验方法、材料大数据等关键技术,建设材料基因工程创新平台,实现新材料研发周期缩短一半、研发成本降低一半的目的。
发明内容
针对现有技术中的问题,本发明提供一种基于材料基因组方法的全降解血管支架材料筛选方法,其目的在于:缩短研发周期,降低研发成本。
为简化描述,本发明中对以下术语进行缩写简化:
PLA:聚乳酸;PCL:聚己内酯;PLA-PCL:聚乳酸-聚己内酯共聚物。
本发明采用的技术方案如下:
一种基于材料基因组方法的全降解血管支架材料的筛选方法,包括以下步骤:
S1:向挤出机中加入PLA,达到稳定挤出状态后停止加料;
S2:将PLA-PCL加入挤出机,连续进料,直到形成连续的深色挤出段,得到一段PLA与 PCL含量连续变化的二元降解组分挤出棒;
S3:截取数段不同PCL含量的二元降解组分挤出棒试样;
S4:对步骤S3中的数段试样分别进行性能测试,筛选出全降解血管支架材料的最佳PCL 含量。
优选的,所述PLA-PCL聚合物的PCL含量为50%。
优选的,PCL含量沿挤出棒长度方向的分布如下:
y=50%x/L
其中y为挤出棒PCL含量连续变化段上任一点处PCL的含量,L为PCL含量从0到50%连续变化段的挤出棒长度,PCL含量为0且开始增加处为原点,x为挤出棒上任一点距离原点的距离。
优选的,所述挤出机为微型双螺杆挤出机。
优选的,所述微型双螺杆挤出机的熔融挤出段温度控制范围为170-190℃,挤出口温度 150℃,螺杆转速80r/min。
一种全降解血管支架材料,采用上述方法制备得到。
本发明的原理为:将PLA-PCL连续加入PLA熔体,利用PLA-PCL与PLA良好的相容性,可以获得一段PLA与PCL含量连续变化的挤出棒。PLA为透明材料,PLA-PCL为深色材料,因此可以利用颜色变化判断渐变区域的起始点。挤出棒上任一点的PCL含量可以通过该点到原点的距离计算出来。与常规挤出相比,梯度挤出可以实现在同一根棒材上实现二元组分的连续变化,高通量地制备具有不同组分的材料。因此,本发明可以应用于全降解血管支架材料的筛选,并有望大幅缩短材料研发周期,降低材料研发成本。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明采用材料基因组的思想,利用梯度挤出的方法,在同一根棒材上实现二元降解组分的连续变化,高通量地制备具有不同组分的支架候选材料。
2、本发明制备的组分连续变化的支架候选材料,有助于并行测试分析不同组分的支架候选材料性能,缩短全降解支架材料的开发周期,降低全降解支架材料的开发成本。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1力学拉伸试验
图2拉伸蠕变试验
图3应力松弛试验
图4共混梯度挤出材料样品的水接触角
图5共混梯度挤出材料样品的原子力显微镜形貌图
图6共混梯度挤出材料样品的表面电位
图7共混梯度挤出材料样品表面;(A-F)为XPS的C1s高分辨结果;(G)为元素含量
图8(A)为内皮细胞在不同样品表面粘附24h的荧光染色图;(B)为内皮细胞在不同样品表面的增值活性;(C)为不同样品对内皮细胞增殖的抑制率
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
下面结合图1对本发明作详细说明。
实施例1
本发明较佳的实施例提供一种基于材料基因组方法的全降解血管支架材料的筛选方法,具体步骤如下:
S1:使用微型双螺杆挤出机,熔融挤出段温度控制范围为170-190℃,挤出口温度150℃,螺杆转速80r/min。先加入PLA粒料,形成稳定挤出段后,停止PLA的加入;
S2:向微型双螺杆挤出机中加入PLA-PCL(PCL含量50%)粒料,一直到形成稳定深色挤出段,得到一段PLA与PCL含量连续变化的二元降解组分挤出棒;通过量取原点到PCL含量;
S3:截取六段PCL含量分别为0%,10%,20%,30%,40%,50%的二元降解组分挤出棒试样,每段试样的长度为2cm(虽然PCL含量连续变化,但是在2cm范围内的PCL含量相差非常小,可视为PCL含量相同);
S4:对PCL含量为0%,10%,20%,30%,40%,50%的二元降解组分挤出棒试样分别进行性能测试,找出材料性能的变化规律,从而筛选出全降解血管支架材料的最佳PCL含量。
实验例1
PLA挤出段呈透明状态,PLA-PCL挤出段呈深色状态,通过颜色变化即可确定PCL含量梯度变化开始点与结束点。本实施例中,通过测量得到PCL含量连续变化的二元降解组分挤出棒的长度为100cm,挤出棒PCL含量变化梯度为10%/20cm。通过算式y=50%x/L可以计算出 PCL含量为0%、10%、20%、30%、40%、50%的每个点的位置。
实验例2
对PCL含量为0%,10%,20%,30%,40%,50%的试样分别进行力学测试。
拉伸试验、蠕变试验、应力松弛试验结果分别如图1、图2、图3所示。0#至5#分别是PCL含量为0%,10%,20%,30%,40%,50%的试验样品。通过拉伸试验可以看出,随着PCL含量的不断增加,材料的韧性越好,但拉伸强度逐步降低。由于试验时为了满足37℃恒温条件以模拟人体温度而在夹具周围固定了恒温箱,从而限制了拉伸范围,所以伸长率达到200%时停止试验。蠕变试验中每类样品测试3根,设置1h(T1)、10h(T2)、30h(T3)、48h(T4)四个时间节点,图2仅包括在4个时间节点内有效的试样。试验结果表明PCL含量越高,材料在长时间恒定荷载作用下的应变率越大,即变形越大。应力松弛试验结果表明材料中PCL含量越多,材料的应力松弛率越低,材料的弹性越好。
实验例3
对PCL含量为0%,10%,20%,30%,40%,50%的试样进行材料学测试。
如图4所示,PLA基材的水接触角为89.7°,随着PLA-PCL共聚物材料比例的增加,涂层表面的水接触角呈现逐渐增加趋势。
共混梯度挤出材料样品的原子力显微镜形貌图如图5所示,结果显示聚乳酸以及共混材料表面粗糙度都较小,近似为平滑表面。
图6显示的是共混梯度挤出材料的Zeta电位结果。聚乳酸与不同比例共混材料表面电位均为负且无明显变化。
图7(A-F)为不同材料表面的C1s高分辨结果,聚乳酸材料与共混梯度挤出材料样品表面在285.0eV处出现了C-C峰信号,288.3eV处出现了C=O峰信号。元素统计结果(图7(G))显示,随着聚乳酸-聚己内酯共聚物掺入比例的增加,材料表面的C、O元素比例无明显变化。
实验例4
对PCL含量为0%,10%,20%,30%,40%,50%的试样进行生物学测试。
内皮细胞与不同材料共培养24h后铺展形态如图8(A)所示,聚乳酸材料表面内皮细胞呈现出较好的粘附和铺展;随着聚乳酸-聚己内酯共聚物材料比例的增加,共混梯度挤出材料样品表面内皮细胞粘附数量下降且形态逐渐变为圆形。内皮细胞活性通过CCK-8实验来检测,实验结果如图8(B)所示,PLA>2#>1#>3#>4#>5#。细胞增殖活性结果表明,涂层中聚乳酸-聚己内酯共聚物材料的加入降低了内皮细胞的活性。如图8(C)所示,聚乳酸-聚己内酯共聚物材料的加入抑制了对内皮细胞的增殖(将PLA材料对内皮细胞的抑制率计为0)。
以上所述实施例仅表达了本申请的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请技术方案构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。
Claims (6)
1.一种基于材料基因组方法的全降解血管支架材料的筛选方法,其特征在于,包括以下步骤:
S1:向挤出机中加入PLA,达到稳定挤出状态后停止加料;
S2:将PLA-PCL加入挤出机,连续进料,直到形成连续的深色挤出段,得到一段PLA与PCL含量连续变化的二元降解组分挤出棒;
S3:截取数段不同PCL含量的二元降解组分挤出棒试样;
S4:对步骤S3中的数段试样分别进行性能测试,筛选出全降解血管支架材料的最佳PCL含量。
2.根据权利要求1所述的一种基于材料基因组方法的全降解血管支架材料的筛选方法,其特征在于,所述PLA-PCL聚合物的PCL含量为50%。
3.根据权利要求1所述的一种基于材料基因组方法的全降解血管支架材料的筛选方法,其特征在于,PCL含量沿挤出棒长度方向的分布如下:
y=50%x/L
其中y为挤出棒PCL含量连续变化段上任一点处PCL的含量,L为PCL含量从0到50%连续变化段的挤出棒长度,PCL含量为0且开始增加处为原点,x为挤出棒上任一点距离原点的距离。
4.根据权利要求1所述的一种基于材料基因组方法的全降解血管支架材料的筛选方法,其特征在于,所述挤出机为微型双螺杆挤出机。
5.根据权利要求4所述的一种基于材料基因组方法的全降解血管支架材料的筛选方法,其特征在于,所述微型双螺杆挤出机的熔融挤出段温度控制范围为170-190℃,挤出口温度150℃,螺杆转速80r/min。
6.一种全降解血管支架材料,其特征在于,采用权利要求1-5中任一项所述方法制备得到。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110698381.5A CN115503203A (zh) | 2021-06-23 | 2021-06-23 | 基于材料基因组方法的全降解血管支架材料筛选方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110698381.5A CN115503203A (zh) | 2021-06-23 | 2021-06-23 | 基于材料基因组方法的全降解血管支架材料筛选方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115503203A true CN115503203A (zh) | 2022-12-23 |
Family
ID=84499410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110698381.5A Pending CN115503203A (zh) | 2021-06-23 | 2021-06-23 | 基于材料基因组方法的全降解血管支架材料筛选方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115503203A (zh) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10125571A1 (de) * | 2001-05-25 | 2002-12-05 | Ticona Gmbh | Mischungen mit hoher Diversität, Verfahren zu ihrer Herstellung und ihre Verwendung |
JP2003291200A (ja) * | 2002-04-05 | 2003-10-14 | Research Laboratory Of Plastics Technology Co Ltd | プラスチック組成物の物性測定方法および物性測定装置 |
US20090182415A1 (en) * | 2008-01-15 | 2009-07-16 | Yunbing Wang | Implantable medical devices fabricated from polyurethanes with biodegradable hard and soft blocks and blends thereof |
US7632433B1 (en) * | 2004-03-23 | 2009-12-15 | Frederick Mitchell Gallant | Process for making gradient materials |
US20110079936A1 (en) * | 2009-10-05 | 2011-04-07 | Neri Oxman | Methods and Apparatus for Variable Property Rapid Prototyping |
US20120290073A1 (en) * | 2011-05-13 | 2012-11-15 | Abbott Cardiovascular Systems Inc. | Bioabsorbable scaffolds made from composites |
CN103496149A (zh) * | 2013-10-23 | 2014-01-08 | 四川大学 | 聚合物梯度功能材料连续制备成型装置 |
CN104530678A (zh) * | 2014-12-17 | 2015-04-22 | 安徽科聚新材料有限公司 | 一种可降解高流动pc/pla合金材料及其制备方法 |
BR102014023798A2 (pt) * | 2014-09-25 | 2016-06-21 | Fundação Universidade Fed De São Carlos | processo de desenvolvimento de blendas de poli(l-co-d ácido lático) e policaprolactona compatibilizadas, blendas de poli(l-co-d ácido lático) e policaprolactona compatibilizadas e uso das mesmas |
CN105835332A (zh) * | 2016-05-23 | 2016-08-10 | 上海大学 | 熔融挤出法制备梯度结构聚合物材料的方法 |
CN109498851A (zh) * | 2018-12-11 | 2019-03-22 | 上海七木医疗器械有限公司 | 一种完全可降解内部含药支架的生产工艺 |
CN109735076A (zh) * | 2019-01-23 | 2019-05-10 | 哈尔滨知明科技有限公司 | 一种高性能生物基/聚乳酸全降解材料的制备方法 |
-
2021
- 2021-06-23 CN CN202110698381.5A patent/CN115503203A/zh active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10125571A1 (de) * | 2001-05-25 | 2002-12-05 | Ticona Gmbh | Mischungen mit hoher Diversität, Verfahren zu ihrer Herstellung und ihre Verwendung |
WO2002096545A1 (de) * | 2001-05-25 | 2002-12-05 | Ticona Gmbh | Mischungen mit hoher diversität, verfahren zu ihrer herstellung und ihre verwendung |
JP2003291200A (ja) * | 2002-04-05 | 2003-10-14 | Research Laboratory Of Plastics Technology Co Ltd | プラスチック組成物の物性測定方法および物性測定装置 |
US7632433B1 (en) * | 2004-03-23 | 2009-12-15 | Frederick Mitchell Gallant | Process for making gradient materials |
US20090182415A1 (en) * | 2008-01-15 | 2009-07-16 | Yunbing Wang | Implantable medical devices fabricated from polyurethanes with biodegradable hard and soft blocks and blends thereof |
US20110079936A1 (en) * | 2009-10-05 | 2011-04-07 | Neri Oxman | Methods and Apparatus for Variable Property Rapid Prototyping |
US20120290073A1 (en) * | 2011-05-13 | 2012-11-15 | Abbott Cardiovascular Systems Inc. | Bioabsorbable scaffolds made from composites |
CN103496149A (zh) * | 2013-10-23 | 2014-01-08 | 四川大学 | 聚合物梯度功能材料连续制备成型装置 |
BR102014023798A2 (pt) * | 2014-09-25 | 2016-06-21 | Fundação Universidade Fed De São Carlos | processo de desenvolvimento de blendas de poli(l-co-d ácido lático) e policaprolactona compatibilizadas, blendas de poli(l-co-d ácido lático) e policaprolactona compatibilizadas e uso das mesmas |
CN104530678A (zh) * | 2014-12-17 | 2015-04-22 | 安徽科聚新材料有限公司 | 一种可降解高流动pc/pla合金材料及其制备方法 |
CN105835332A (zh) * | 2016-05-23 | 2016-08-10 | 上海大学 | 熔融挤出法制备梯度结构聚合物材料的方法 |
CN109498851A (zh) * | 2018-12-11 | 2019-03-22 | 上海七木医疗器械有限公司 | 一种完全可降解内部含药支架的生产工艺 |
CN109735076A (zh) * | 2019-01-23 | 2019-05-10 | 哈尔滨知明科技有限公司 | 一种高性能生物基/聚乳酸全降解材料的制备方法 |
Non-Patent Citations (3)
Title |
---|
李小博;吴明坤;罗岳;瞿金平;: "拉伸形变支配的PLA/PCL复合材料制备及性能研究", 塑料工业, no. 05, 20 May 2017 (2017-05-20) * |
温变英, 吴刚, 侯少华: "新型聚合物基复合梯度材料的制备及材料结构性能", 复合材料学报, no. 03, 30 June 2004 (2004-06-30), pages 151 - 155 * |
王波群;揭晓华;: "基于活塞挤出式3D打印制备PLA/PCL生物支架的研究", 合成树脂及塑料, no. 02, 25 March 2019 (2019-03-25) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Singh et al. | 3D printed biodegradable composites: An insight into mechanical properties of PLA/chitosan scaffold | |
Xu et al. | Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes | |
Merkle et al. | Core–shell PVA/gelatin electrospun nanofibers promote human umbilical vein endothelial cell and smooth muscle cell proliferation and migration | |
Zeng et al. | Body temperature-triggered shape-memory effect via toughening sustainable poly (propylene carbonate) with thermoplastic polyurethane: toward potential application of biomedical stents | |
Hou et al. | Biodegradable and bioactive PCL–PGS core–shell fibers for tissue engineering | |
Nejad et al. | Electrospun PET/PCL small diameter nanofibrous conduit for biomedical application | |
Leszczak et al. | Hemocompatibility of polymeric nanostructured surfaces | |
Kharazi et al. | A nanofibrous bilayered scaffold for tissue engineering of small‐diameter blood vessels | |
Karimi et al. | Measurement of the mechanical failure of polyvinyl alcohol sponge using biaxial puncture test | |
Du et al. | Guiding the behaviors of human umbilical vein endothelial cells with patterned silk fibroin films | |
Tsiapla et al. | Biomimetic and biodegradable cellulose acetate scaffolds loaded with dexamethasone for bone implants | |
Salerno et al. | Microstructure, degradation and in vitro MG63 cells interactions of a new poly (ε-caprolactone), zein, and hydroxyapatite composite for bone tissue engineering | |
BR112016024206B1 (pt) | prótese para inserção in vivo revestida com polifosforilcolina reticulada | |
Han et al. | Cell adhesion on zein films under shear stress field | |
Durán-Rey et al. | Development and evaluation of different electroactive poly (vinylidene fluoride) architectures for endothelial cell culture | |
Jahnavi et al. | Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering | |
Atari et al. | Fabrication and characterization of a 3D scaffold based on elastomeric poly-glycerol Sebacate polymer for heart valve applications | |
CN115503203A (zh) | 基于材料基因组方法的全降解血管支架材料筛选方法 | |
Asplund et al. | Effects of hydrolysis on a new biodegradable co-polymer | |
Heljak et al. | Micro and nanoscale characterization of poly (DL-lactic-co-glycolic acid) films subjected to the L929 cells and the cyclic mechanical load | |
Suroto et al. | Biocompatibility evaluation of electrospun Poly-L lactic Acid-chitosan immobilized with heparin as scaffold for vascular tissue repair | |
Ragaert et al. | Methods for improved flexural mechanical properties of 3D-plotted PCL-based scaffolds for heart valve tissue engineering | |
Yang et al. | Bionic structure and blood compatibility of highly oriented homo-epitaxially crystallized poly (l-lactic acid) | |
Wang et al. | Reduction of thrombotic and inflammatory complications of polystyrene-block-polyisoprene-block-polystyrene (SIS) with one-step electrospinning | |
Lin et al. | Polymer blends and composites for biomedical applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |