CN115491691A - 自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料制备方法及应用 - Google Patents

自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料制备方法及应用 Download PDF

Info

Publication number
CN115491691A
CN115491691A CN202211299105.2A CN202211299105A CN115491691A CN 115491691 A CN115491691 A CN 115491691A CN 202211299105 A CN202211299105 A CN 202211299105A CN 115491691 A CN115491691 A CN 115491691A
Authority
CN
China
Prior art keywords
feco
self
electrode material
porous layer
nano porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211299105.2A
Other languages
English (en)
Other versions
CN115491691B (zh
Inventor
郎兴友
曾书培
时航
文子
赵明
蒋青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202211299105.2A priority Critical patent/CN115491691B/zh
Publication of CN115491691A publication Critical patent/CN115491691A/zh
Application granted granted Critical
Publication of CN115491691B publication Critical patent/CN115491691B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明涉及一种自支撑纳米多孔层片状FeCo/Ce‑O‑N复合电极材料的制备方法及其作为电解水制氢阳极析氧反应(OER)催化剂的应用。本发明以FeCoCeAl合金作为前驱体,通过化学脱合金化和退火氮化处理的方法,制备了自支撑纳米多孔层片状FeCo/Ce‑O‑N。本发明制得的自支撑纳米多孔层片状FeCo/Ce‑O‑N复合电极材料具有独特的双模式孔结构、高的导电性、快的电子和离子传输速度,快的电极表面电化学反应速度和电极内部的原子扩散速度,以及FeCo和Ce‑O‑N之间的协同作用显著提高了其析氧反应电化学性能和稳定性。

Description

自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料制备方法 及应用
技术领域
本发明涉及自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料的制备方法及其作为电解水制氢阳极析氧反应(OER)催化剂的应用。
背景技术
利用丰富的太阳能和风能资源的可再生电力进行电解水是一种极具潜力的清洁的大规模制氢能源转换技术。它利用氢气(H2)作为清洁的高密度的能源载体来满足未来全球能源需求,从而建立一个环境友好的水循环能源框架。然而,无论是碱性水电解槽还是质子交换膜水电解槽中的水电解,其能效始终较低,这主要是由于析氧反应(OER)动力学缓慢以及 OER电催化剂活性不足。目前,贵金属OER电催化剂(如RuO2和IrO2)仍然认为是最先进的催化剂,但它们的稀缺性、高成本和低耐久性严重阻碍了实际应用。为了取代贵金属基电催化剂,许多以地球上含量丰富的3d过渡金属为基础的双金属或多金属材料,如铁(Fe)、钴(Co)和镍(Ni)被广泛开发应用。然而,它们大多数只能在低电流密度(<100mA cm-2) 持续工作几十小时,无法满足实际电解槽的工业要求(需要在<300mV的低过电位下,提供>500mAcm-2的高电流密度,并持续工作数千小时)。因此,人们迫切希望为高效实用的工业电解槽开发高活性、高强度和低成本的OER电催化材料。
发明内容
本发明的目的是提供一种自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料的制备方法及其作为电解水制氢阳极析氧反应(OER)催化剂的应用。该发明以FeCoCeAl合金作为前驱体,通过化学脱合金化和退火氮化处理的方法,制备了自支撑纳米多孔层片状FeCo/Ce-O-N。
本发明涉及一种自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料的制备方法及其作为电解水制氢阳极析氧反应催化剂的应用具体步骤如下:
1)自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料的制备方法:
a、按照铁、钴、铈、铝比例,分别称取纯铁、纯钴、纯铈、纯铝,去除氧化层后,在高纯氩气气氛中通过电弧熔炼的方法进行熔炼,得到铁钴铈铝合金锭;
b、使用金刚石线切割机将得到的合金锭切割成200-550μm厚的合金片;
c、砂纸打磨去除表面氧化层后,将合金片浸没于1-6mol/L的KOH溶液中,在50-85℃下进行脱合金处理,获得自支撑纳米多孔层片状FeCo/Ce-O复合电极材料;
d、将洗涤、干燥后的自支撑纳米多孔层片状FeCo/Ce-O复合电极材料在氩氨 (Ar/NH3=90/10)气氛下用管式炉进行氮化处理,加热至400-600℃保温1-4h,热处理结束后随炉冷却至室温,自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料制备完成。
2)根据上述制备方法得到的自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料,其作为电极材料进行电化学测试,包括以下步骤:
a、将所制备的自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料直接作为工作电极,碳棒作为对电极,饱和银/氯化银电极(Ag/AgCl)作为参比电极,1mol/L的KOH溶液作为电解液,组成标准的三电极体系进行电化学测试;
b、用所述所制备的自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料作为工作电极进行析氧反应(OER)电化学性能测试时,极化曲线(LSV)扫描速率在1mV/s,电化学阻抗(EIS)测试频率范围为100kHz到10mHz;
c、用自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料作为工作电极进行电化学性能测试,进行稳定性测试,恒电位下得到电流-时间曲线;
d、所制备的电极材料自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料作为电解水阳极析氧反应催化剂具有优异的析氧反应催化性能和良好的稳定性。
本发明制得的自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料具有独特的双模式孔结构、高的导电性、快的电子和离子传输速度,快的电极表面电化学反应速度和电极内部的原子扩散速度,以及FeCoCe-O-N之间的协同作用显著提高了其析氧反应电化学性能和稳定性。
附图说明
图1、自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料的扫描电子显微镜(SEM)图片;
图2、自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料的EDS-mapping图片;
图3、自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料的XRD图谱;
图4、自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料的高分辨透射电子显微镜(HRTEM)图片及相应区域经傅里叶变换(FFT)得到的衍射斑点;
图5、自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料和负载在玻碳电极上的商用 RuO2催化剂的析氧反应电化学性能极化曲线;
图6、自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料和负载在玻碳电极上的商用 RuO2催化剂的Tafel斜率对比;
图7、自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料和负载在玻碳电极上的商用 RuO2催化剂的EIS电化学阻抗图谱,插图为用于拟和EIS图谱的等效电路;
图8、自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料和负载在玻碳电极上的商用 RuO2催化剂的溶液电阻(RS)和电荷转移电阻(RCT)值;
图9、自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料稳定性测试,电流密度-时间曲线;
图10、自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料1000h稳定性测试后的SEM 图片;
图11、自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料1000h稳定性测试前后的XRD图谱对比。
具体实施方式
现将本发明的实施例述于后:
实施例
本实施例中的制备过程和步骤如下:
(1)将纯度为99.98%的纯铁和纯度为99.99%的纯钴分别置于稀HCl溶液中超声清洗去除表面氧化层和杂质后,用超纯水清洗去除残留杂质;将纯度为99.95%的纯铝置于稀 NaOH溶液中超声清洗去除表面氧化层和杂质后,用超纯水清洗去除残留杂质;将清洗后的金属置于真空中干燥;干燥后,分别称取2.17g纯铁、0.76g纯钴、1.81g纯铈和5.25g纯铝(金属原子比为Fe:Co:Ce:Al=15:5:5:75);
(2)将上述四种金属一同放入高真空电弧熔炼炉中,在有氩气保护的熔炼炉中进行除氧处理;
(3)加热至金属完全熔化后,保温2h,再利用循环水冷系统冷却至室温;
(4)重复过程(3)多次,以保证获得均匀的合金锭;
(5)将完全冷却至室温的合金锭(Fe15Co5Ce5Al75)置于金刚石线切割机上,切成~400 μm厚的金属片;
(6)将金属片浸没于6mol/L的KOH溶液中,在85℃的水浴锅中加热进行脱合金处理,得到自支撑纳米多孔层片状FeCo/Ce-O复合电极材料;
(7)用超纯水清洗数次去除残留KOH后,置于真空中干燥;
(8)将干燥好的自支撑纳米多孔层片状FeCo/Ce-O复合电极材料置于管式炉中,在氩氨(Ar/NH3=90/10)气氛下以5℃/min的升温速率加热至600℃保温2h,随炉冷却至室温,得到自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料。
材料的形貌和结构表征
通过扫描电镜(SEM)表征,如图1证明了自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料是由FeCo层和Ce-O-N层交替分布的层状结构。图2的EDS-mapping表征进一步证明了元素的交替分布。
图3为自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料的XRD图谱,对比标准PDF卡片证明了自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料由固溶了Co的Fe相和掺杂了N的CeO2相构成。
图4的自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料的透射电镜(TEM)图谱分别展示了Co固溶的Fe晶格间距0.198nm和N掺杂的CeO2晶格间距0.313nm,分别对应了Fe(110)晶面(晶面间距为0.203nm)和CeO2(111)晶面(晶面间距为0.312nm)。傅里叶变换(FFT)衍射斑点进一步证明自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料由FeCo和Ce-O-N两相组成。
材料的电化学性能表征结果
将通过上述制备方法获得的自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料直接作为工作电极,碳棒作为对电极,饱和银/氯化银电极(Ag/AgCl)作为参比电极,在1mol/L的KOH电解液中,组装成标准的三电极体系进行电化学测试:
A、自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料的极化曲线(LSV)测试,扫描速率为1mV/s;
B、自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料电化学阻抗(EIS)测试,过电位为0.336V,频率范围100kHz到10mHz;
C、自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料稳定性测试,恒电位(1.54V)下进行1000h,获得电流密度-时间曲线。
通过图5的不同材料的极化曲线测试,自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料的起始电位约为186mV,低于商用RuO2催化剂的217mV。在360mV的过电位下,自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料的电流密度可以达到约3940mA cm-2,而商用RuO2催化剂只能实现约114mA cm-2的电流密度。图6表示不同材料的Tafel斜率,自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料有着最小的Tafel斜率,其值为33mV dec-1,远小于商用RuO2催化剂的93mV dec-1,表明自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料快速的反应动力学。图7展示了不同材料在过电位0.336V下的EIS电化学阻抗图谱和相应的等效电路示意图;从图8中可以看出,两种材料具有相似的溶液电阻(自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料4.4Ω、商用RuO2催化剂5.0Ω),但自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料的电荷转移电阻(2.7Ω)远小于商用RuO2催化剂的24.3 Ω,表明自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料拥有良好的电子转移性能,也表明其拥有更快的反应动力学。
图9为稳定性测试的电流密度随测试时间变化的曲线,在1.54V电压下,自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料持续工作1000h,电流密度没有明显衰减,即使在此期间有瞬间断电的突发情况出现,再次施加电压启动后,仍能达到断电前的电流密度并维持稳定。说明自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料具有优异的稳定性。图10表明,在经过1000h稳定性测试后,自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料仍维持原有的异质层状结构,说明其具有优异的结构稳定性。图11对比了自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料在1000h稳定性测试前后的XRD图谱,可以看出没有明显变化,材料仍然由固溶了Co的Fe相和掺杂了N的CeO2相构成。
该复合材料可作为电解水制氢阳极析氧反应催化剂,在工业级产氢的领域具有很好的应用前景。

Claims (2)

1.一种自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料的制备方法,具体步骤如下:
其作为电解水制氢阳极析氧反应催化剂的应用具体步骤如下:
a、按照铁、钴、铈、铝比例,分别称取纯铁、纯钴、纯铈、纯铝,去除氧化层后,在高纯氩气气氛中通过电弧熔炼的方法进行熔炼,得到铁钴铈铝合金锭;
b、使用金刚石线切割机将得到的合金锭切割成200-550μm厚的合金片;
c、砂纸打磨去除表面氧化层后,将合金片浸没于1-6mol/L的KOH溶液中,在50-85℃下进行脱合金处理,获得自支撑纳米多孔层片状FeCo/Ce-O复合电极材料;
d、将洗涤、干燥后的自支撑纳米多孔层片状FeCo/Ce-O复合电极材料在Ar/NH3=90/10的氩氨气氛下用管式炉进行氮化处理,加热至400-600℃后保温1-4h,热处理结束后随炉冷却至室温,自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料制备完成。
2.根据权利要求1所述述制备方法得到的复合电极材料,其作为电极材料进行电化学测试,包括以下步骤:
a、将所制备的自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料直接作为工作电极,碳棒作为对电极,饱和银/氯化银电极(Ag/AgCl)作为参比电极,1mol/L的KOH溶液作为电解液,组成标准的三电极体系进行电化学测试;
b、用所述所制备的自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料作为工作电极进行析氧反应OER电化学性能测试时,极化曲线LSV扫描速率在1mV/s,电化学阻抗EIS测试频率范围为100kHz~10mHz;
c、用自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料作为工作电极进行电化学性能测试,进行稳定性测试,恒电位下得到电流-时间曲线;
d、所制备的电极材料自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料作为电解水制氢阳极析氧反应催化剂具有析氧反应催化性能和稳定性,用于工业级产氢。
CN202211299105.2A 2022-10-24 2022-10-24 自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料制备方法及应用 Active CN115491691B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211299105.2A CN115491691B (zh) 2022-10-24 2022-10-24 自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211299105.2A CN115491691B (zh) 2022-10-24 2022-10-24 自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料制备方法及应用

Publications (2)

Publication Number Publication Date
CN115491691A true CN115491691A (zh) 2022-12-20
CN115491691B CN115491691B (zh) 2024-07-23

Family

ID=84473434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211299105.2A Active CN115491691B (zh) 2022-10-24 2022-10-24 自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料制备方法及应用

Country Status (1)

Country Link
CN (1) CN115491691B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116334663A (zh) * 2023-05-29 2023-06-27 中石油深圳新能源研究院有限公司 非晶体过渡金属氮化物电催化剂的制备方法和制备装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974345A (zh) * 2012-11-13 2013-03-20 西安交通大学 贵金属负载氧化铈纳米多孔催化材料的制备方法
CN106000400A (zh) * 2016-05-12 2016-10-12 西安交通大学 三维稀土氧化物纳米棒构架负载贵金属纳米粒子制备方法
CN109012668A (zh) * 2018-08-17 2018-12-18 西安交通大学 CeO2骨架负载过渡金属氧化物和贵金属复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974345A (zh) * 2012-11-13 2013-03-20 西安交通大学 贵金属负载氧化铈纳米多孔催化材料的制备方法
CN106000400A (zh) * 2016-05-12 2016-10-12 西安交通大学 三维稀土氧化物纳米棒构架负载贵金属纳米粒子制备方法
CN109012668A (zh) * 2018-08-17 2018-12-18 西安交通大学 CeO2骨架负载过渡金属氧化物和贵金属复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHU-PEI ZENG: "Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution", NATURE COMMUNICATIONS, 31 March 2023 (2023-03-31) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116334663A (zh) * 2023-05-29 2023-06-27 中石油深圳新能源研究院有限公司 非晶体过渡金属氮化物电催化剂的制备方法和制备装置

Also Published As

Publication number Publication date
CN115491691B (zh) 2024-07-23

Similar Documents

Publication Publication Date Title
CN110639534B (zh) 一种析氧电催化材料及其制备方法和应用
CN108796535A (zh) 一种具备三金属铜-钴-钼/泡沫镍多孔电极材料及其制备方法与应用
CN113512731B (zh) 析氧电催化剂及其制备方法、应用和电解水装置
CN110846680B (zh) 一种多缺陷和活性位点的电催化剂的制备方法
CN111663152A (zh) 一种泡沫镍负载无定型磷掺杂钼酸镍双功能电催化电极的制备方法及应用
CN111715245A (zh) 基于高催化活性和结晶性RuTe2的电解水催化剂及其制备方法
CN115491691B (zh) 自支撑纳米多孔层片状FeCo/Ce-O-N复合电极材料制备方法及应用
Teng et al. Selective CO 2 Reduction to Formate on Heterostructured Sn/SnO 2 Nanoparticles Promoted by Carbon Layer Networks
CN112921351B (zh) 一种自支撑型催化电极的制备方法和应用
CN113957471A (zh) 一种用于高效电解水的镍铁双层氢氧化物的制备方法
Wang et al. Facile and green sculptured engineering of 3D hierarchical porous metals via gaseous oxidation-reduction and their use in efficient oxygen evolution reactions
Mir et al. Recent progress and advances in nickel (Ni) based amorphous metal alloys towards alkaline water splitting: A Review
CN115094457B (zh) 一种原位生长型复合过渡金属氧化物析氧催化电极材料及其制备方法和应用
CN114411016B (zh) 自支撑纳米多孔Ni4Mo/Ni合金材料的制备方法及应用
CN115386910A (zh) 异质结构锰钴铁磷双功能电解水电极材料的制备法和用途
CN115491699A (zh) 一种纳米铜基催化剂及其制备方法以及在二氧化碳和一氧化碳电催化还原中的应用
CN112981442A (zh) 一种用于碱性全解水的FeCoMoPC系非晶合金及其制备方法
Li et al. Electrochemical-leaching route for the size-controllable synthesis of copper-based oxygen reduction reaction catalysts: From nanoparticles to atomic clusters and single atoms
Yi et al. Hydrothermal synthesis of titanium-supported nanoporous palladium–copper electrocatalysts for formic acid oxidation and oxygen reduction reaction
CN116180124B (zh) 核壳结构高熵合金电催化电极的制备方法及其应用
CN113355681B (zh) MNi(1-x)FexF3析氧电催化材料、其制备方法及应用
Peron et al. Hollow iridium-based catalysts for the oxygen evolution reaction in proton exchange membrane water electrolyzers
CN117051429B (zh) 铂基非晶合金电解水双功能催化剂及其制备方法
CN116334424B (zh) 一种高熵合金水解制氢催化剂及其制备方法
CN111774071B (zh) 一种三元金属硫化物纳米片材料及其制备与电解水应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant