CN115490466A - 一种基于压裂技术的干热岩工艺 - Google Patents

一种基于压裂技术的干热岩工艺 Download PDF

Info

Publication number
CN115490466A
CN115490466A CN202211183455.2A CN202211183455A CN115490466A CN 115490466 A CN115490466 A CN 115490466A CN 202211183455 A CN202211183455 A CN 202211183455A CN 115490466 A CN115490466 A CN 115490466A
Authority
CN
China
Prior art keywords
parts
hot dry
process based
dry rock
fracturing technology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211183455.2A
Other languages
English (en)
Inventor
史洪军
徐天申
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Li Feng New Energy Technology Shandong Co ltd
Original Assignee
Li Feng New Energy Technology Shandong Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Feng New Energy Technology Shandong Co ltd filed Critical Li Feng New Energy Technology Shandong Co ltd
Priority to CN202211183455.2A priority Critical patent/CN115490466A/zh
Publication of CN115490466A publication Critical patent/CN115490466A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • C04B14/024Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/047Zeolites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • C04B14/104Bentonite, e.g. montmorillonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • C04B14/106Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/34Metals, e.g. ferro-silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/54Substitutes for natural stone, artistic materials or the like
    • C04B2111/542Artificial natural stone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

本申请公开了一种基于压裂技术的干热岩工艺,按质量份计算,该种干热岩包括以下原料:28~50质量份的油井超细水泥,6~15质量份的碳纤维素,15~25质量份的石墨,3~8质量份的沸石,3~6质量份的钢粉,1~2质量份的减水剂,20~60质量份的水。本申请的基于压裂技术的干热岩工艺,本工艺制备步骤简单,能够制备获取高导热率、低渗透率的仿热干岩,易于操作,适合在施工现场进行现场制作。

Description

一种基于压裂技术的干热岩工艺
技术领域
本申请涉及地热传导技术领域,具体是一种基于压裂技术的干热岩工艺。
背景技术
干热岩(HDR),也称增强型地热系统(EGS),或称工程型地热系统,是一般温度大于200℃,埋深数千米,内部不存在流体或仅有少量地下流体的高温岩体。而在实际情况中,真正有干热岩的地区较少,从而导致开发地热能源限制较大。因此,为了提高地热能源的有效利用,本申请提供了一种仿干热岩。
发明内容
本申请的目的在于提供一种基于压裂技术的干热岩工艺,得到一种能够在地热开发过程中代替干热岩进行高效的热交换工作。
为实现上述目的,本申请公开了以下技术方案:一种基于压裂技术的干热岩工艺,按质量份计算,该种干热岩包括以下原料:28~50质量份的油井超细水泥,6~15质量份的碳纤维素,15~25质量份的石墨,3~8质量份的沸石,3~ 6质量份的钢粉,1~2质量份的减水剂,20~60质量份的水。
作为优选,所述减水剂是C4H8O2。
作为优选,所述碳纤维素为通用级沥青碳纤维。
作为优选,该种仿干热岩还包括以下原料:1~7质量份的导热硅胶。
作为优选,该种仿干热岩还包括以下原料:1~3质量份的高岭土,0.5~1 质量份的膨润土。
作为优选,该工艺包括以下步骤:
称量对应质量份的原料;
在室温下将油井超细水泥、碳纤维素、石墨、钢粉充分混合并搅拌均匀得到 A料;
将A料与水充分混合并搅拌均匀得到B料;
在向地层采用压裂技术进行灌入前,将沸石、减水剂与B料混合搅拌均匀后制得C料,将C料通过射孔设备向井中注入凝固后得到所需的仿干热岩。
作为优选,该种仿干热岩的密度为2.2g/cm3。
作为优选,所述钢粉通过钢屑磨碎获取。
有益效果:本申请的基于压裂技术的干热岩工艺,在制备原料中采用了碳纤维素,使制得的产品在抗压强度、抗裂、抗冲磨、导热能力上均得到了提高;同样的,石墨、钢粉的加入,能够大幅地提高成品的导热效果。而加入的沸石,能够对成品起到催化作用,实现成品在灌入后,能够催化原料中的成分水化形成钙矾石的过程,使成品在较短的时间内即可形成亲脂骨架,达到低渗效果,增强成品抵御水等其他液体的能力。另一方面,在成品的原料中加入高岭土、膨润士达到调节砂浆黏结度的效果,能够提高成品的附着力、抗裂性、导热性能。同时,本工艺制备步骤简单,易于操作,适合在施工现场进行现场制作。
具体实施方式
下面将结合本申请实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本公开的描述中,需要说明的是,术语“包括”意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
一种基于压裂技术的干热岩工艺,包括以下步骤:
S1、称量对应质量份的原料,原料包括油井超细水泥、碳纤维素、石墨、沸石、减水剂、水,以及可以根据实际需求加入如导热硅胶、高岭土、膨润土;
S2、在室温下将油井超细水泥、碳纤维素、石墨、钢粉充分混合并搅拌均匀得到A料;
S3、将A料与水充分混合并搅拌均匀得到B料;
S4、在向地层采用压裂技术进行灌入前,将沸石、减水剂与B料混合搅拌均匀后制得C料,将C料通过射孔设备向井中注入凝固后得到所需的仿干热岩。
为了降低生产成本,以及简化生产步骤,减水剂选用C4H8O2,碳纤维素先用通用级沥青碳纤维,钢粉选择通过钢屑磨碎获取。
其中,众所周知的,沸石的一般化学式为:AmBpO2p·nH2O,结构式为 A(x/q)[(AlO2)x(SiO2)y]·n(H2O),A为Ca、Na、K、Ba、Sr等阳离子,B为 Al和Si,p为阳离子化合价,m为阳离子数,n为水分子数,x为Al原子数,y 为Si原子数,(y/x)通常在1~5之间,(x+y)是单位晶胞中四面体的个数。本实施例即下列实施例中均选用丝光沸石。通过沸石的添加,能够对成品起到催化作用,实现成品在灌入后,能够催化原料中的成分水化形成钙矾石的过程,使成品在较短的时间内即可形成亲脂骨架,达到低渗效果,增强成品抵御水等其他液体的能力。配合其他原料,特别是碳纤维素、石墨、钢粉的添加,能够大幅的增加成品的导热效率,进而制备得到低渗透、高热导率的仿干热岩。并且,利用石油压裂的技术把制备得到的低渗透、高热导率的仿干热岩压进地层来代替干热岩,从而使地热井周围的换热面积增加,进而可以提高各地区的地热能源开发效率和利用率。
基于上述的制备工艺,本申请提供如下的实施例。
实施例1
一种基于压裂技术的干热岩工艺,按质量份计算,包括以下原料:28质量份的油井超细水泥,6质量份的碳纤维素,15质量份的石墨,3质量份的沸石, 3质量份的钢粉,1质量份的减水剂,20质量份的水。
实施例2
一种基于压裂技术的干热岩工艺,按质量份计算,包括以下原料:28质量份的油井超细水泥,6质量份的碳纤维素,15质量份的石墨,3质量份的沸石,3质量份的钢粉,1质量份的减水剂,20质量份的水,3质量份的导热硅胶。
实施例3
一种基于压裂技术的干热岩工艺,按质量份计算,包括以下原料:28质量份的油井超细水泥,6质量份的碳纤维素,15质量份的石墨,3质量份的沸石, 3质量份的钢粉,1质量份的减水剂,20质量份的水,1质量份的高岭土,0.5 质量份的膨润土。
实施例4
一种基于压裂技术的干热岩工艺,按质量份计算,包括以下原料:28质量份的油井超细水泥,6质量份的碳纤维素,15质量份的石墨,3质量份的沸石,3质量份的钢粉,1质量份的减水剂,20质量份的水,3质量份的导热硅胶,1 质量份的高岭土,0.5质量份的膨润土。
基于上述的实施例1-4内容,可以看出,实施例1和实施例2的区别在于是否有导热硅胶的添加,制备得到的成品中,体现出实施例1成品的导热率略小于实施例2成品的导热率;实施例1和实施例3的区别在于是否有高岭土、膨润土的添加,制备得到的成品中,体现出实施例1成品的导热率与实施例2成品的导热率相差无几,但是,在抗裂测试、附着测试中,实施例1制得的成品的抗裂性能和附着力性能均小于实施例2制得的成品;实施例1和实施例4的区别在于是否有导热硅胶、高岭土、膨润土的添加,在各项测试中,实施例4制得的成品在热导率、抗裂性能、附着力、低渗透率上均有较高的表现。
最后应说明的是:以上所述仅为本申请的优选实施例而已,并不用于限制本申请,尽管参照前述实施例对本申请进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (8)

1.一种基于压裂技术的干热岩工艺,其特征在于,按质量份计算,该种干热岩包括以下原料:28~50质量份的油井超细水泥,6~15质量份的碳纤维素,15~25质量份的石墨,3~8质量份的沸石,3~6质量份的钢粉,1~2质量份的减水剂,20~60质量份的水。
2.根据权利要求1所述的基于压裂技术的干热岩工艺,其特征在于,所述减水剂是C4H8O2。
3.根据权利要求1所述的基于压裂技术的干热岩工艺,其特征在于,所述碳纤维素为通用级沥青碳纤维。
4.根据权利要求1所述的基于压裂技术的干热岩工艺,其特征在于,该种仿干热岩还包括以下原料:1~7质量份的导热硅胶。
5.根据权利要求1所述的基于压裂技术的干热岩工艺,其特征在于,该种仿干热岩还包括以下原料:1~3质量份的高岭土,0.5~1质量份的膨润土。
6.根据权利要求1-5任意一项所述的基于压裂技术的干热岩工艺,其特征在于,该工艺包括以下步骤:
称量对应质量份的原料;
在室温下将油井超细水泥、碳纤维素、石墨、钢粉充分混合并搅拌均匀得到A料;
将A料与水充分混合并搅拌均匀得到B料;
在向地层采用压裂技术进行灌入前,将沸石、减水剂与B料混合搅拌均匀后制得C料,将C料通过射孔设备向井中注入凝固后得到所需的仿干热岩。
7.根据权利要求6所述的基于压裂技术的干热岩工艺,其特征在于,该种仿干热岩的密度为2.2g/cm3
8.根据权利要求1所述的基于压裂技术的干热岩工艺,其特征在于,所述钢粉通过钢屑磨碎获取。
CN202211183455.2A 2022-09-27 2022-09-27 一种基于压裂技术的干热岩工艺 Pending CN115490466A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211183455.2A CN115490466A (zh) 2022-09-27 2022-09-27 一种基于压裂技术的干热岩工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211183455.2A CN115490466A (zh) 2022-09-27 2022-09-27 一种基于压裂技术的干热岩工艺

Publications (1)

Publication Number Publication Date
CN115490466A true CN115490466A (zh) 2022-12-20

Family

ID=84471670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211183455.2A Pending CN115490466A (zh) 2022-09-27 2022-09-27 一种基于压裂技术的干热岩工艺

Country Status (1)

Country Link
CN (1) CN115490466A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110067864A1 (en) * 2009-09-24 2011-03-24 Halliburton Energy Services, Inc. Compositions for Improving Thermal Conductivity of Cement Systems
CN107021705A (zh) * 2017-05-16 2017-08-08 西安浩沃新能源有限公司 一种深层地热传导根系建造用导热剂及其制备方法
CN108431169A (zh) * 2015-12-23 2018-08-21 阿格拉纳控股股份有限公司 具有环境相容的生物稳定剂的工艺流体在地热钻孔中的用途
CN110386780A (zh) * 2019-07-24 2019-10-29 中国煤炭地质总局水文地质局 一种中深层地热井的固井材料及其制备方法和地热井

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110067864A1 (en) * 2009-09-24 2011-03-24 Halliburton Energy Services, Inc. Compositions for Improving Thermal Conductivity of Cement Systems
CN108431169A (zh) * 2015-12-23 2018-08-21 阿格拉纳控股股份有限公司 具有环境相容的生物稳定剂的工艺流体在地热钻孔中的用途
CN107021705A (zh) * 2017-05-16 2017-08-08 西安浩沃新能源有限公司 一种深层地热传导根系建造用导热剂及其制备方法
CN110386780A (zh) * 2019-07-24 2019-10-29 中国煤炭地质总局水文地质局 一种中深层地热井的固井材料及其制备方法和地热井

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵黎安 等: "天然沸石在油气井固井中的应用之一─―沸石油井水泥的性能" *

Similar Documents

Publication Publication Date Title
CN104386981B (zh) 一种具有导热和储热功能的混凝土材料及其制备方法
CN102659377B (zh) 一种利用磷石膏制备的保温节能复合相变储能石膏板及其制备方法
CN105777039B (zh) 一种磷石膏基轻质保温板及其制备方法
CN102304288A (zh) 一种填充玻化微珠的sbs改性沥青防水卷材及制法
CN102827484B (zh) 一种沥青混合料温拌添加剂及其制备方法和应用方法
CN104829189B (zh) 一种相变储能复合泡沫混凝土砌块
CN104402353B (zh) 一种储热混凝土材料及其制备方法
CN102173664A (zh) 一种石墨-石蜡复合相变储能混凝土及其制备方法
CN102531506A (zh) 一种石膏基石蜡相变储能墙板及其制备方法
CN102795780B (zh) 一种低温微晶泡沫玻璃及其制备方法
CN103979848B (zh) 一种保温型混凝土及其制作方法
CN104591680A (zh) 一种抗水分散高粘结水泥基注浆材料
CN103435283B (zh) 一种膨化硅酸盐材料成型用无机胶粘剂及其制备方法
CN105367009A (zh) 一种淤泥固化剂及其制备方法和应用
CN106565274A (zh) 一种纤维增强陶粒泡沫混凝土及其制备方法
JP2015518435A (ja) 耐火性複合構造体
CN108640628A (zh) 赭石沸石珍珠岩相变智能板
CN102701704A (zh) 一种用于太阳能热电站的新型储热混凝土及其制备方法
CN107117914A (zh) 高强抗冻灌浆材料及其制备方法
Cheng et al. High-temperature mechanical properties of calcium sulfate whisker-reinforced high-alumina cement
CN101143768A (zh) 一种利用含硅尾矿制备轻质多孔保温砖的方法
CN108178581A (zh) 一种复合保温砌块及其制备方法
CN103467006A (zh) 一种高保温性能加气混凝土砌块
CN105503095B (zh) 一种相变储热混凝土及其制备方法
Liu et al. Characterization of novel shape‐stabilized phase change material mortar: Portland cement containing Na2SO4· 10H2O and fly ash for energy‐efficient building

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20221220