CN115487871B - 一种催化还原型陶瓷膜的制备方法 - Google Patents

一种催化还原型陶瓷膜的制备方法 Download PDF

Info

Publication number
CN115487871B
CN115487871B CN202210001483.1A CN202210001483A CN115487871B CN 115487871 B CN115487871 B CN 115487871B CN 202210001483 A CN202210001483 A CN 202210001483A CN 115487871 B CN115487871 B CN 115487871B
Authority
CN
China
Prior art keywords
ceramic membrane
membrane
noble metal
catalytic reduction
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210001483.1A
Other languages
English (en)
Other versions
CN115487871A (zh
Inventor
陈锋涛
陈文兴
吕汪洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Leo Water Technology Co ltd
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN202210001483.1A priority Critical patent/CN115487871B/zh
Publication of CN115487871A publication Critical patent/CN115487871A/zh
Application granted granted Critical
Publication of CN115487871B publication Critical patent/CN115487871B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/17Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/18Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明专利涉及分离膜材料技术领域,具体为一种催化还原型陶瓷膜的制备方法。本发明通过共价键接枝均苯酰氯到陶瓷膜表面和孔隙壁上,然后通过酰氯水解后形成的羧基接枝配位贵金属离子,最后在将贵金属离子还原成贵金属纳米颗粒,与羧基官能团通过配位键固定在陶瓷膜表面和孔隙壁上,制备了一种由贵金属纳米颗粒构成的催化还原功能层。该方法制备的催化还原型陶瓷膜制备工艺简单、反应条件温和、分散均匀和稳定、不影响陶瓷膜的孔隙率和渗透通量、不损伤陶瓷膜的基底等优点,可广泛应用于化工生产等领域。

Description

一种催化还原型陶瓷膜的制备方法
所属技术领域
本发明专利涉及膜材料技术领域,具体为一种催化还原型陶瓷膜的制备方法。
背景技术
膜分离作为一种分离、纯化、浓缩的重要支撑技术,被广泛应用于化工生产、生物制药、食品加工和废水处理及污水资源化回用、饮用水深度净化等领域。在这些应用场景中,膜所担当的角色主要是选择型的分离,截留固体颗粒、胶体、大分子物质,溶质等,让小分子物质或溶剂透过的物理分割的过程。从而体现出膜法技术的功能单一性。
将膜分离技术与催化氧化或者还原技术集成一直是人们关注的焦点。单纯将流态床催化氧化或还原过程及膜分离耦合,反应效率的确得到明显提升。悬浮在液态流体中的粉末催化剂被分离膜截留,反应生成物透过分离膜,实现了催化剂与反应产物的高效分离。但是纳米颗粒的粉体在分离膜表面不断沉积,参与催化反应的催化剂在膜表面形成厚厚的滤饼层,阻碍反应产物透过膜的孔隙,降低了膜的分离效率,同时也降低了催化反应的效率。看来只是单纯的将两种工艺耦合,得不到催化与分离共同协作的效果。
因此,以多孔膜作为载体,将具有催化功能的催化剂负载在膜表面和孔隙壁上,催化反应在膜孔隙中进行,即解决催化反应的传质问题,又实现了催化剂与反应产物的分离,最重要的是可以形成“微纳米孔隙反应器”,催化反应效率可以提升千倍。基于以上思路,对膜材料的要求是,孔隙率高,耐溶剂性好,表面有活性位点官能团,便于接枝纳米颗粒的催化剂。相比于有机聚合物膜,陶瓷膜更具备做催化剂载体的要求,孔隙率高、耐有机溶剂、表面丰富的羟基官能团作为活性位点。
目前催化陶瓷膜的研究主要采用的是热沉积法,将陶瓷膜浸渍在过渡金属硝酸盐溶液中或者过渡金属醇盐的溶胶中,达到饱和吸附后,再高温煅烧成氧化物颗粒。存在的问题是陶瓷膜孔隙形成的毛细管作用力,充分吸收过渡金属硝酸盐或醇盐后,高温蒸发和煅烧后,晶体分布不均匀,并且晶格生长成大颗粒,催化效果不理想;最主要的是长大的晶体填充陶瓷膜孔隙,导致膜孔隙率降低,渗透通量降低,过滤效率降低。
发明内容
本发明是针对当前依靠陶瓷膜浸渍过渡金属硝酸盐或醇盐,通过热沉积法制备的催化陶瓷膜,催化效果不理想、膜孔隙率降低、膜渗透通量降低等问题,提出一种通过接枝-配位-还原的方法将具有催化还原功能的贵金属纳米颗粒接枝到管式陶瓷膜表面和孔隙壁上,制备一种催化还原型陶瓷膜。
实现本发明目的的技术解决方案,一种催化还原型陶瓷膜的制备方法,包括以下步骤:
步骤1、对陶瓷膜预处理:将管式陶瓷膜在超声波中超声清洗20min,然后在乙醇溶液中浸泡1h,去除其表面和孔隙中的杂质;
步骤2、均苯酰氯接枝到陶瓷膜上:将步骤1预处理后的陶瓷膜浸泡在含有一定浓度的均苯酰氯的异构烷烃溶液中5min,得到了接枝均苯酰氯的陶瓷管式膜,其反应过程如下:
Figure SMS_1
步骤3、金离子接枝到陶瓷膜上:将步骤2得到的陶瓷膜浸泡在含有一定浓度的四氯金酸的pH值为4的盐酸水溶液中24h,用去离子水反复冲洗,陶瓷膜表面和孔隙壁上接枝的酰氯基团水解成羧酸基团,得到了接枝间苯二甲酸的陶瓷膜,接着羧酸中的氢质子被金离子置换,得到了接枝间苯二甲酸金的管式陶瓷膜,反应过程如下:
Figure SMS_2
步骤4、陶瓷膜上的金离子还原成金纳米颗粒:将步骤3得到的陶瓷膜浸泡在含有一定浓度的硼氢化钠的水溶液中10min,用去离子水反复冲洗,得到了接枝金纳米颗粒的管式陶瓷膜,反应过程如下:
Figure SMS_3
作为优选,上述制备方法的步骤1中,所述的陶瓷膜是氧化铝、氧化钛、氧化锆、氧化硅、或碳化硅中的一种或一种以上的复合陶瓷膜。
进一步作为优选,上述制备方法的步骤1中,所述的陶瓷膜材质是氧化铝和碳化硅。
作为优选,上述制备方法的步骤2和步骤4中,所述的均苯酰氯的浓度为 0.1~1g/L。
进一步作为优选,上述制备方法的步骤2和步骤4中,所述的均苯酰氯的浓度为0.3~0.8g/L。
作为优选,上述制备方法的步骤3中,所述的四氯金酸的浓度为0.1~2.0g/L。
进一步作为优选,上述制备方法的步骤3中,所述的四氯金酸的浓度为 0.5~1.5g/L。
作为优选,上述制备方法的步骤3中,所述的贵金属盐是四氯金酸、硝酸银、硝酸钯、醋酸钯中的一种或者一种以上复合物。
作为优选,上述制备方法的步骤4中,所述的硼氢化钠的浓度为0.1~1g/L。
进一步作为优选,上述制备方法的步骤4中,所述的硼氢化钠的浓度为 0.3~0.8g/L。
本发明具有以下有益效果:
(1)该制备方法工艺简单、反应条件温和,都是在室温下进行;
(2)陶瓷膜具有耐有机溶剂特性,制备过程不会对膜微结构损伤;
(3)该制备方法是在过滤精度在微滤或超滤的陶瓷膜表面和孔隙壁上接枝和配位纳米颗粒,不会对陶瓷膜孔隙率造成很大的影响;
(4)该制备方法是在陶瓷膜表面和孔隙壁上接枝和配位贵金属纳米颗粒,颗粒分布均匀,不会发生颗粒团聚;
(5)该制备方法是采用接枝和配位技术将贵金属纳米颗粒通过共价键和配位键修饰在陶瓷膜所有表面积上,具有很好的稳定性;
(6)该制备方法不需要高温煅烧处理。
附图说明
图1陶瓷膜表面结构示意图
具体实施方式:
下面结合实例进一步说明本发明,但并不是本发明内容范围的任何限制。
实施例1
将管式碳化硅陶瓷膜在超声波中超声清洗20min,然后在乙醇溶液中浸泡1 h,去除其表面和孔隙中的杂质;
实施例2
步骤1、将管式碳化硅陶瓷膜在超声波中超声清洗20min,然后在乙醇溶液中浸泡1h,去除其表面和孔隙中的杂质;
步骤2、将步骤1预处理后的陶瓷膜浸泡在浓度为0.5g/L的均苯酰氯的异构烷烃溶液中5min,得到了接枝均苯酰氯的管式碳化硅陶瓷膜;
步骤3、将步骤2得到的碳化硅陶瓷膜浸泡在浓度为1.0g/L的四氯金酸的 pH值为4的盐酸水溶液中24h,用去离子水反复冲洗,得到了接枝了间苯二甲酸金的管式碳化硅陶瓷膜;
步骤4、将步骤3得到的陶瓷膜浸泡在浓度为0.5g/L的硼氢化钠的水溶液中10min,用去离子水反复冲洗,得到了接枝金纳米颗粒的管式碳化硅陶瓷膜;
实施例3
将实施例2的步骤3中的四氯金酸更换成硝酸银,其他参数和条件不变。
实施例4
将实施例2的步骤3中的四氯金酸更换成硝酸钯,其他参数和条件不变。
实施例5
将实施例1、2、3、4制备的管式碳化硅陶瓷膜,安装到膜组件中,采用错流循环恒压(1bar)过滤模式,过滤浓度为2.0g/L的4-硝基苯酚和2.0g/L的硼氢化钠的混合水溶液,回流液和渗透液都返回反应罐。随着反应的进行,每隔3 min取样测紫外光谱,观察波长400nm处的吸光度变化情况,判断催化还原型管式碳化硅陶瓷膜将4-硝基苯酚还原成4-氨基苯酚的进展情况。同时将取来的样品稀释20倍后,用高效液相测试定量检测4-硝基苯酚转化率和4-氨基苯酚的产率。测试条件:waters-ACQUITY UPLC BEH C18色谱柱2.1×100mm,1.7μm,柱温为室温,流动相为体积比80/20的甲醇/超纯水,流速1mL/min,263nm处紫外检测器单波长检测。其催化还原4-硝基苯酚的反应过程如下:
Figure SMS_4
表1:实施例1~4比较四种管式碳化硅陶瓷膜催化还原4-硝基苯酚100%转化所需要的时间及膜的渗透通量:
实施例 1 2 3 4
时间(min) - 14.2 21.8 19.5
膜的渗透通量(LMH) 1285 1197 1237 1208
结果发现:实施例1中的4-硝基苯酚转化率只有38.2%,实施例2、3和4 均催化还原膜都展现出优异的催化还原4-硝基苯酚的性能。相比于原膜,实施例 2、3和4陶瓷膜的渗透通量稍微减小,但是减少的不是很明显,说明接枝的纳米贵金属颗粒不影响膜的渗透通量。
以上所述,仅为本发明专利较佳实施例而已,不能依次限定本发明实施的范围,即依本发明专利范围及说明书内容所写的等效变化及修饰,皆应属于本发明涵盖的范围内。

Claims (1)

1.一种催化还原型陶瓷膜的制备方法,其特征在于,包括以下步骤:
步骤1、将管式陶瓷膜在超声波中超声清洗20 min,然后在乙醇溶液中浸泡1 h,去除其表面和孔隙中的杂质;
步骤2、将步骤1预处理后的管式陶瓷膜浸泡在含有一定浓度的均苯酰氯的异构烷烃溶液中5 min,得到了接枝均苯酰氯的管式陶瓷膜:所述的均苯酰氯的浓度为0.3~0.8 g/L;
步骤3、将步骤2得到的陶瓷膜浸泡在含有一定浓度的四氯金酸的pH值为4的盐酸水溶液中24 h,用去离子水反复冲洗,得到了接枝间苯二甲酸金的管式陶瓷膜:所述的四氯金酸的浓度为0.5~1.5 g/L;
步骤4、将步骤3得到的陶瓷膜浸泡在含有一定浓度的硼氢化钠的水溶液中10 min,用去离子水反复冲洗,得到了接枝贵金属纳米颗粒的管式陶瓷膜;所述的硼氢化钠的浓度为0.3~0.8 g/L;
所述的陶瓷膜是氧化铝、氧化钛、氧化锆、氧化硅、或碳化硅中一种以上的复合陶瓷膜。
CN202210001483.1A 2022-01-04 2022-01-04 一种催化还原型陶瓷膜的制备方法 Active CN115487871B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210001483.1A CN115487871B (zh) 2022-01-04 2022-01-04 一种催化还原型陶瓷膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210001483.1A CN115487871B (zh) 2022-01-04 2022-01-04 一种催化还原型陶瓷膜的制备方法

Publications (2)

Publication Number Publication Date
CN115487871A CN115487871A (zh) 2022-12-20
CN115487871B true CN115487871B (zh) 2023-07-14

Family

ID=84464503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210001483.1A Active CN115487871B (zh) 2022-01-04 2022-01-04 一种催化还原型陶瓷膜的制备方法

Country Status (1)

Country Link
CN (1) CN115487871B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006223564A1 (en) * 2005-03-09 2006-09-21 The Regents Of The University Of California Nanocomposite membranes and methods of making and using same
CN106000459A (zh) * 2016-06-06 2016-10-12 南京工业大学 一种负载型钯纳米催化剂的制备方法
CN109304095B (zh) * 2017-07-28 2020-09-08 华中科技大学 一种聚酰胺薄膜复合膜的改性方法、聚酰胺薄膜复合膜及其应用
CN109433029A (zh) * 2018-11-15 2019-03-08 山东大学 一种抗污型掺杂氧化铈与银纳米颗粒的反渗透膜的制备方法
CN109925895A (zh) * 2019-04-08 2019-06-25 河北工业大学 一种抗污染聚酰胺薄膜复合膜的制备方法

Also Published As

Publication number Publication date
CN115487871A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
Hsieh et al. Microporous alumina membranes
Yu et al. Photoinduced graft polymerization of acrylamide on polypropylene microporous membranes for the improvement of antifouling characteristics in a submerged membrane-bioreactor
Qiu et al. Synthesis of high flux forward osmosis membranes by chemically crosslinked layer-by-layer polyelectrolytes
Abdallah A review on catalytic membranes production and applications
CN103463999B (zh) 一种超薄截盐分离膜的制备方法
Gupta et al. Polymer nanocomposite membranes and their application for flow catalysis and photocatalytic degradation of organic pollutants
CN100363482C (zh) 利用亲水/疏水复合膜中的微结构固定化脂肪酶的方法
David et al. Tubular macro-porous titanium membranes
CN111203107B (zh) 一种多酚-铁纳米薄膜及其制备方法和应用
WO2012173591A1 (en) Functional and reusable electrodeposited coatings on porous membranes
Zhou et al. In-situ aeration-assisted polydopamine/polyethyleneimine copolymerization and deposition for rapid and uniform membrane modification
CN112933997A (zh) 一种基于原位还原的无机改性膜的制备方法及其应用
CN115487871B (zh) 一种催化还原型陶瓷膜的制备方法
Wang Fundamentals of membrane separation technology
Li et al. The preparation and application of a low-cost multi-channel tubular inorganic–organic composite microfiltration membrane
CN115487869B (zh) 一种催化臭氧型陶瓷膜的制备方法
WO2012173590A1 (en) Reliable point of use membrane modification
CN102389723A (zh) 一种用于油气回收的有机/无机复合膜及其制备方法
Bangxiao et al. Effect of separating layer in pervaporation composite membrane for MTBE/MeOH separation
Loddo et al. Membranes for photocatalysis in water and wastewater treatment
CN116099384A (zh) 一种尖晶石纳米颗粒改性的陶瓷膜制备方法
Loddo et al. Photocatalytic membrane reactors: case studies and perspectives
JP4803341B2 (ja) 平膜孔拡散分離機
KR101244695B1 (ko) 초임계 유체를 이용한 금속 나노 입자가 코팅된 분리막의 제조방법
JP2005349268A (ja) 多孔性膜の拡散現象を利用した物質分離精製方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240626

Address after: 317500 No.2, 4th Street, East New District, Wenling City, Taizhou City, Zhejiang Province

Patentee after: Zhejiang Leo Water Technology Co.,Ltd.

Country or region after: China

Address before: 310018 928, 2 Avenue, Xiasha Higher Education Park, Jianggan District, Hangzhou, Zhejiang.

Patentee before: ZHEJIANG SCI-TECH University

Country or region before: China