CN115485100A - 成形磨料颗粒 - Google Patents

成形磨料颗粒 Download PDF

Info

Publication number
CN115485100A
CN115485100A CN202180030730.4A CN202180030730A CN115485100A CN 115485100 A CN115485100 A CN 115485100A CN 202180030730 A CN202180030730 A CN 202180030730A CN 115485100 A CN115485100 A CN 115485100A
Authority
CN
China
Prior art keywords
particle
shaped
particles
mold
shaped abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180030730.4A
Other languages
English (en)
Inventor
约瑟夫·B·埃克尔
托马斯·J·纳尔逊
费伊·T·萨蒙
大卫·T·巴克利
多米尼克·J·特里亚纳
阿里礼萨·加德里
阿龙·K·尼纳贝尔
罗纳德·D·杰斯密
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN115485100A publication Critical patent/CN115485100A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0009Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0072Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using adhesives for bonding abrasive particles or grinding elements to a support, e.g. by gluing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • C09K3/1418Abrasive particles per se obtained by division of a mass agglomerated by sintering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • C09K3/1427Abrasive particles per se obtained by division of a mass agglomerated by melting, at least partially, e.g. with a binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles

Abstract

本公开提出了一种用于制备磨料颗粒的模具。该模具包括表面和从该表面向下延伸的多个腔。每一个腔包括:颗粒形状部分,该颗粒形状部分具有多边形形状;和破裂部分,该破裂部分与该颗粒形状部分连接。该破裂部分被构造成在应力事件期间从该颗粒形状部分断裂,从而得到破裂形状的磨料颗粒。

Description

成形磨料颗粒
背景技术
磨料颗粒和包括磨料颗粒的磨料制品可在产品制造过程中用于研磨、抛光或磨削多种材料和表面。因此,一直存在对磨料颗粒或磨料制品的成本、性能或寿命进行改善的需求。
发明内容
提出了一种用于制备磨料颗粒的模具。该模具包括表面和从该表面向下延伸的多个腔。每一个腔包括:颗粒形状部分,该颗粒形状部分具有多边形形状;和破裂部分,该破裂部分与该颗粒形状部分连接。该破裂部分被构造成在应力事件期间从该颗粒形状部分断裂,从而得到破裂形状的磨料颗粒。
附图说明
附图通常以举例的方式示出,但不受限于本文档中讨论的各种实施方案。
图1是本发明的实施方案可用于其中的磨料制品。
图2A和图2B是根据本发明的一个实施方案的用于将成形磨料颗粒对准在带涂层磨料制品上的说明性示意图。
图3是示出磁场对磨料颗粒的影响的图。
图4是假设磨料颗粒的图解图。
图5A至图5E示出了根据本发明的一个实施方案的成形磨料颗粒的扭矩图。
图6示出了根据本发明的实施方案的成形磨料颗粒的组分。
图7A至图7J示出了根据本发明的一个实施方案的成形磨料颗粒的视图。
图8示出了根据本发明的一个实施方案的制备带涂层磨料制品的方法。
图9示出了根据本发明的一个实施方案的使用带涂层磨料制品的方法。
图10A至图10D示出了作为磨料制品的一部分的磨料颗粒。
图11示出了根据本发明的实施方案的破裂磨料颗粒。
图12A和图12B示出了根据本发明的实施方案的用于破裂磨料颗粒的磨具。
图13示出了根据本发明的实施方案的破裂成形磨料颗粒的组分。
图14示出了根据本发明的实施方案的制备破裂磨料颗粒的方法。
图15A至图15D示出了根据本文中的实施方案的磨料颗粒的另外的形状。
图16至图17示出了如实施例中讨论的用于制备磨料颗粒的模腔形状。
具体实施方式
在整个该文档中,以一个范围格式表达的值应当以灵活的方式解释为不仅包括作为范围的极限明确列举的数值而且还包括涵盖在该范围内的所有单个数值或子范围,如同明确列举了每个数值和子范围一样。例如,范围“约0.1%至约5%”或“约0.1%至5%”应当解释为不仅包括约0.1%至约5%,而且还包括在指示范围内的单个值(例如,1%、2%、3%和4%)和子范围(例如,0.1%至0.5%、1.1%至2.2%、3.3%至4.4%)。除非另外指明,否则表述“约X至Y”具有与“约X至约Y”相同的含义。同样,除非另外指明,否则表述“约X、Y或约Z”具有与“约X、约Y或约Z”相同的含义。
在该文档中,除非上下文清楚地指明,否则术语“一个”、“一种”或“该/所述”用于包括一个(种)或多于一个(种)。除非另外指明,否则术语“或”用于指非排他性的“或”。表述“A和B中的至少一者”具有与“A、B或者A和B”相同的含义。此外,应当理解,本文所用且未以其它方式定义的措辞或术语仅出于说明的目的而不具有限制性。部分标题的任何使用均旨在有助于文档的理解且不应当解释为是限制性的;与部分标题相关的信息可在该特定部分内或外出现。
在本文所述的方法中,除了明确列举了时间或操作序列之外,可以任何顺序进行各种行为而不脱离本发明原理。此外,规定的行为可同时进行,除非明确的权利要求语言暗示它们单独地进行。例如,进行X的受权利要求保护的行为和进行Y的受权利要求保护的行为可在单一操作中同时进行,并且所得的过程将落入受权利要求保护的过程的字面范围内。
如本文所用,术语“约”可允许例如数值或范围的一定程度的可变性,例如在所述值或所述范围极限的10%内、5%内或1%内,并且包括确切表述的值或范围。
如本文所用,术语“大致”是指大部分或大多数,如至少约50%、60%、70%、80%、90%、95%、96%、97%、98%、99%、99.5%、99.9%、99.99%、或至少约99.999%或更多、或100%。
如本文所用,术语“成形磨料颗粒”意指其中磨料颗粒的至少一部分具有预定形状的磨料颗粒,该预定形状由用于形成成形前体磨料颗粒的模腔复制而得。除了在磨料碎片(例如,如美国专利申请公布No.2009/0169816和2009/0165394中所述)的情况下,成形磨粒将通常具有大致复制了用来形成成形磨粒的模腔的预定几何形状。如本文所用,成型磨料颗粒不包括通过机械粉碎操作获得的磨料颗粒。具有至少一个顶端的几何形状的合适的示例包括多边形(包括等边、等角、星形、规则和不规则的多边形)、透镜形状、半月形形状、圆形形状、半圆形形状、椭圆形形状、圆扇形、圆弓形、水滴形状和内摆线(例如超椭圆形)。
术语“亚铁磁的”是指呈现出亚铁磁性的材料。亚铁磁性是一类在固体中发生的永磁性,其中与单个原子相关联的磁场自发地自身对齐,一些是平行的,或在相同的方向上(如在铁磁性中),而其它是大致反平行的,或在相反的方向上结成对(如在反铁磁性中)。亚铁磁材料的单晶的磁性行为可归因于平行对准;这些原子在反平行排列中的稀释效应将这些材料的磁强度保持为通常小于诸如金属铁的纯铁磁固体的磁强度。亚铁磁性主要发生在称为铁氧体的磁性氧化物中。产生亚铁磁性的自发对齐在高于称为居里点的温度(每一个亚铁磁材料的特性)时被完全破坏。当材料的温度降至低于居里点时,亚铁磁性恢复。
术语“铁磁的”是指呈现出铁磁性的材料。铁磁性是一种物理现象,其中某些不带电荷的材料会强烈吸引其它材料。与其它物质相比,铁磁材料被容易地磁化,并且在强磁场中,磁化接近称为饱和的明确极限。当应用场然后将其去除时,磁化不会恢复到其初始值。此现象被称为滞后。当加热至称为居里点的某一温度(这对于每种物质来讲通常是不同的)时,铁磁材料失去其固有特性并且不再是磁性的;然而,它们在冷却时再次变成铁磁的。
术语“磁性的”和“磁化”意指是在20℃是铁磁的或亚铁磁的,或者能够如此制得,除非另外指明。优选地,根据本公开的可磁化层具有或可通过暴露于所施加的磁场而制成。
术语“磁场”是指不是由任何一个或多个天体(例如,地球或太阳)产生的磁场。一般来讲,在本公开的实践中使用的磁场在可磁化磨料颗粒的区域中具有至少约10高斯(1mT)(优选至少约100高斯(10mT),并且更优选至少约1000高斯(0.1T))的磁场强度。
术语“可磁化的”是指能够被磁化或已经处于磁化状态。
出于本发明的目的,几何形状还旨在包括规则或不规则多边形或星形,其中一条或多条边(面的周边部分)可为弓形(朝向内部或朝向外部,其中第一另选形式为优选的)。因此,出于本发明的目的,三角形形状还包括其中一条或多条边(面的周边部分)可为弓形的三边多边形。第二侧面可包括(并且优选地为)第二面。第二面可具有第二几何形状的边缘。
出于本发明的目的,成形磨料颗粒还包括例如在磨料颗粒的不同面上具有不同形状的面的磨料颗粒。一些实施方案包括具有不同形状的相对侧面的成形的磨料颗粒。不同的形状可以包括例如两个相对侧面的表面积的差异,或两个相对侧面的不同多边形形状。
成形磨料颗粒通常被选择为具有在0.001mm至26mm、更通常0.1mm至10mm、并且更通常0.5mm至5mm范围内的边长,但也可使用其它长度。
成形磨料颗粒可具有“锋利部分”,其在本文中用于描述磨料制品的锋利尖端或锋利边。锋利部分可使用曲率半径来限定,在本公开中,对于锋利点,曲率半径被理解为最逼近该点处的曲线的圆弧的半径。对于锋利边,曲率半径被理解为在垂直于该边的切线方向的平面上的边的轮廓的曲率半径。此外,曲率半径是最佳适配沿锋利边的长度的正截面或所测量截面的平均值的圆的半径。曲率半径越小,磨料颗粒的锋利部分越锋利。具有锋利部分的成形磨料颗粒限定于提交于2019年7月23日的美国临时专利申请序列号62/877,443,该文献据此以引入方式并入。
图1是本发明的实施方案可用于其中的磨料制品。在一个实施方案中,带涂层磨料制品100包括粘附到背衬122的多个成形磨料颗粒110。磨料颗粒110的切削方向由箭头120表示。磨料颗粒布置在背衬102上,使得每一个磨料制品的切削面130暴露以研磨表面。在一些实施方案中,如平行线150所示,切削面130中的至少大部分彼此平行对准。在一些实施方案中,切削面130中的至少约50%、或至少约60%、或至少约70%、或至少约80%、或至少约90%、或至少约95%或大致全部相对于彼此对准。另外,磨料颗粒的磨料颗粒基部中的至少大部分也相对于彼此对准,如附图标号140所示。在一个实施方案中,磨料颗粒基部垂直于幅材方向对准,如平行线150所示。在一些实施方案中,基部中的至少约50%、或至少约60%、或至少约70%、或至少约80%、或至少约90%、或至少约95%或大致全部相对于彼此对准。
磨料颗粒的取向对于磨料制品的功效尤其重要。例如,成形磨料颗粒可具有应远离背衬材料取向的锋利尖端或锋利边。如下文更详细地讨论的,锋利边可具有优选的研磨取向,并且可具有不同的研磨特性,具体取决于在研磨操作期间切削表面是前导的还是拖尾的。带涂层磨料制品中的磨料颗粒的取向通常对研磨特性有影响。在磨料颗粒精确成形的情况下(例如,精确成形为三角形片状物或锥形颗粒),这种取向效应可能尤其重要,如美国专利申请公布No.2013/0344786A1(Keipert)中所述,该文献以引用方式并入本文。
出于若干原因,颗粒110的取向和对准是有利的。本文所述的颗粒可具有沿切削面的锋利切削刃。将此类颗粒取向以使得切削面垂直于幅材方向允许磨料制品具有持续且较高的切削速率。具体地讲,相对于幅材方向的90°取向可通过使成形磨料颗粒在已经破裂之后能够更容易地后续破裂来帮助减少磨平。
需要一种可对准大致垂直于幅材方向的成形颗粒,同时将磨料颗粒的锋利边或尖端取向以远离背衬的解决方案,如图1所示。该解决方案还应能够以向前至向后的倾斜来取向精确成形磨料颗粒以实现期望的前角。前角更详细地描述于提交于2018年11月1日的序列号为62/754,225的共同拥有的临时专利申请中,该文献以引用方式并入本文。在一些实施方案中,成形颗粒被成形成使得全部或大致全部取向而使得切削刃朝向同一方向。本文所述的成形磨料颗粒具有改善的取向控制,从而允许更多的颗粒处于期望取向,并且相对于彼此取向。
除了提供取向益处之外,在一些实施方案中,本文设计的颗粒包括被设计成在制造期间或在第一研磨操作期间破裂开的部分。由于模具设计和脱离剂使用的限制,完全破裂可产生比可单独通过模制实现的更锋利的尖端或边。此外,在制造过程期间由破裂形成的锋利边或尖端可减少或消除在制造母模工具时对高精度的需要,从而增加制造速度、工具制造选项并且降低成本。
图2A和图2B是根据本发明的一个实施方案的用于将成形磨料颗粒对准在带涂层磨料制品上的示意图。图2A示出了用于使用磁场将磁响应磨料颗粒对准在背衬上的系统200。可使用包括至少一些磁性材料的成形磨料颗粒并且将它们暴露于磁场来实现成形磨料颗粒250的优选的取向。成形磨料颗粒可在其组成中包括磁性材料、可涂覆有磁性材料层或两种情况皆有。
磁响应成形磨料颗粒可随机布置或沉积在背衬210上。可随后以取向成形磨料颗粒250的方式将成形磨料颗粒250暴露于磁场230。一旦正确取向,就可用称为底胶层的树脂粘结剂将成形磨料颗粒250粘附到背衬210。任选地,还可施加另外的层,诸如复胶。该过程的结果是,单个成形磨料颗粒250定位在背衬210上,使得磨料颗粒250彼此平行并且具有面向顺维方向214的切削面。
图2A示出了从料斗275接收磨料颗粒250的背衬210。背衬210可具有设置在其上的底胶层或底胶层前体(未示出)。背衬210在顺维方向214(例如,纵向)上沿幅材路径212移动。背衬210具有垂直于顺维方向214的横维方向(未示出)。可磁化颗粒250下落通过施加的磁场230的一部分到达背衬210上。可磁化颗粒250中的至少一些可磁化颗粒是具有本文进一步详细描述的形状的磨料颗粒,当暴露于磁场230时,这些形状使它们经受净磁矩。尽管在图2A和图2B中示出三棱柱作为示例,但是明确考虑了本文所述的其它形状可更好地对磁场230作出响应,使得它们更容易地相对于幅材和彼此在期望方向上对准。
可磁化颗粒250在沿着向下倾斜的分配表面240向下行进之后主要沉积到背衬210上,该向下倾斜的分配表面从料斗275进料。各种幅材处理部件280(例如辊、传送带、进料辊和收卷辊)处理背衬210。
可磁化颗粒250的形状影响每一个颗粒250在暴露于磁场230时将如何对准以及是否将对准。在制造期间影响颗粒取向的一些因素为:颗粒的大小、颗粒的形状、磁场的强度、颗粒上的磁性材料的类型、底胶层的组成、线速和其它制造过程。如在2019年10月23日提交的共同未决申请62/924,956(该文献以引用方式并入本文)中更详细地描述的,当暴露于磁场时,可磁化颗粒的不同形状将经受不同磁矩,该磁场可使它们“站立”或“平躺”在背衬212上。除了站立或平躺扭矩之外,还存在使颗粒绕z轴旋转并且使切削面取向的扭矩。例如,图2A和图2B中示出的是颗粒250、颗粒292,这些颗粒“站立”在边上,使得多边形面和切削面254均垂直于幅材。
期望具有带有一定形状的可磁化颗粒250,这些形状使它们在Z方向上取向,使得切削面254在顺维方向214上取向,并且其它颗粒的切削面254彼此平行。
一般来讲,在本公开的实践中使用的施加磁场在可磁化颗粒的受影响(例如被吸引和/或被取向)的区域中具有至少约10高斯(1mT)、至少约100高斯(10mT)或至少约1000高斯(0.1T)的场强,但这不是必需的。
磁性元件202和磁性元件204被定位成使得磁性颗粒250在颗粒250也接触背衬210之前经受磁场的力230。在一个实施方案中,磁性颗粒250在接触背衬210之前大致不经受磁力230。在不受磁场影响的情况下分配磁性颗粒250的实施方案中,颗粒250具有落在最大表面上并处于随机取向的趋势。当随后由磁性元件202和磁性元件204施加磁场230时,磁性颗粒250将“站立”,使得厚度293接触背衬210,使得切削面254在顺维方向上对准,并且使得颗粒250大致彼此平行。在一个实施方案中,磁性颗粒250在施加底胶层或底胶前体之前接触背衬210。
施加的磁场可由例如一个或多个永磁体和/或电磁体或磁体和铁磁构件的组合提供。合适的永磁体包括稀土磁体。施加的磁场可以是静态的或可变的(例如振荡)。各自具有北极(N)和南极(S)的上部磁性元件和/或下部磁性元件(202,204)可为单片的,或者它们可由例如多个部件磁体和/或可磁化主体构成。如果由多个磁体构成,则给定磁性构件中的多个磁体可相对于其部件磁体彼此最接近的磁场线相接和/或共同对准(例如,至少大致平行)。磁体202和磁体204可通过一个或多个保持器(未示出)保持在适当位置。虽然不锈钢304或等同材料由于其低磁性特性而适于将磁体202、磁体204保持在适当位置,但也可使用可磁化材料。软钢支架可支撑不锈钢保持器。然而,磁场的应用并不旨在局限于例示的布置方式。在一些实施方案中,还设想了连接磁体202和磁体204的磁轭。另外,在一些实施方案中,海尔贝克(Halbach)磁体阵列可能是合适的。
向下倾斜的分配表面240可以任何合适的角度倾斜,前提条件是可磁化颗粒可沿着表面向下行进并且分配到幅材上。合适的角度可在15度至60度的范围内,但也可使用其它角度。在一些情况下,可能期望振动该向下倾斜的分配表面以有利于颗粒移动。
向下倾斜的分配表面可由任何尺寸上稳定的材料构造,该材料可以是不可磁化的材料。示例包括:金属,诸如铝;木材;和塑料。
一旦可磁化颗粒被涂覆到背衬210上,底胶层前体就在固化站(未示出)处至少部分地固化,以便将可磁化颗粒牢固地保持在适当位置。在一些实施方案中,可在固化之前将另外的可磁化颗粒和/或不可磁化颗粒(例如填料磨料颗粒和/或助磨剂颗粒)施加到底胶层前体。
就涂层磨料制品而言,可固化粘结剂前体包括底胶层前体,并且可磁化颗粒包括可磁化磨料颗粒。复胶层前体可施加到至少部分固化的底胶层前体以及可磁化磨料颗粒上,但这不是必需的。如果存在复胶层前体的话,则在第二固化站处至少部分地固化该复胶层前体,任选地进一步固化至少部分固化的底胶层前体。在一些实施方案中,顶胶层设置在至少部分固化的复胶层前体上。
图2B示出了用于将磁响应颗粒对准在背衬上的系统290的示意图。图2B示出了背衬294上的单一颗粒292的简单示例。背衬294在如箭头295所示的涂覆方向上移动。如图所示,磁性元件296、磁性元件297产生作用在颗粒292上的磁场298。
磁性元件296、磁性元件297定位在涂覆幅材的相反侧面上,并且相对于涂覆幅材方向295偏移。在一个实施方案中,如图2B所示,颗粒292遇到的第一磁性元件296位于背衬294下方,而第二磁性元件297位于背衬294上方。然而,在另一个实施方案中,颗粒292首先经历位于背衬上方的磁性元件和位于背衬下方的第二磁性元件。其它合适的构造也是可能的。
图3是示出磁场对磨料颗粒的影响的图。磨料颗粒300是磁响应磨料颗粒,包括例如磁响应涂层(未在图3中示出)。为了便于理解,磨料颗粒300被示出为矩形棱柱。然而,相似的原理将适用于具有其它形状的磨料颗粒,诸如在图5和图7中描述的那些。
磨料颗粒300具有长度330、宽度340和厚度350。当落在背衬上时,磨料颗粒300具有如图所示落在位置310中的趋势,具有与背衬接触的最大表面积。然而,当施加磁场360时,磨料颗粒300经受的扭矩使最大尺寸与磁场方向对准,进入第二位置320。
图4是具有相等高度420和长度410、各自分别具有宽度422、宽度412的假设磨料颗粒的图解图。整个颗粒具有厚度430。如在2019年10月23日提交的共同未决申请62/924,956中更详细地描述的,通过改变宽度422、宽度412和厚度430,颗粒400的行为可随着所经受的净磁矩改变而改变。当暴露于垂直磁场时,该L形颗粒将经受净磁矩,具有来自基部和轴的磁矩贡献。
图1至图2示出了可在构造磨料制品(诸如带涂层磨料制品、非织造磨料制品、粘结磨料制品或其它磨料制品)中使用的三角形磨料颗粒。然而,可能难以使三角形磨料颗粒取向以使得它们“站立”在厚度上,其中切削面面向相同方向。然而,如图3至图5所理解,通过将一个或多个牺牲部分添加到颗粒,可改变三角形颗粒上所经受的磁矩。
图5A至图5E示出了根据本发明的一个实施方案的成形磨料颗粒的扭矩图。假设图5A至图5E的颗粒对磁场作出响应,例如包括磁响应材料或磁响应材料的涂层。如图所示,图5A至图5E的颗粒被建模为具有各种轮廓的具有1/4单位长度厚度的钢的薄片。颗粒被定位在0.17Tesla的均匀磁场中。使用Finite Element Method Magnetics(版本4.2,http://www.femm.info)完成建模和模拟。图5A示出了具有1单位的长度502和0.1单位的宽度504的杆形颗粒的描绘510。图5B至图5E示出了另外的轮廓和所得相对扭矩,其相对于图5A的杆归一化,使得杆经受归一化为1.0的参考扭矩。图5的扭矩分析不直接考虑迫使颗粒“站立”的扭矩,而是分析用于将颗粒对准为彼此平行并使切削面面向顺维方向(如图1和图2所示)的扭矩。可优选产生更高扭矩的形状,以实现更好的对准,尤其是当颗粒暴露于粘合剂或粘性流体时,以及在可能期望每颗粒使用更少磁性材料的情况下。图5B示出了具有斜边的直角三角形磨料颗粒的描绘520,该斜边具有1单位的长度522。三角形522经受0.545的相对扭矩。
图5C至图5E示出了在斜边的任一端添加牺牲部分的三角形磨料颗粒。在一个实施方案中,牺牲部分与三角形的不是斜边的边成一直线。在一个实施方案中,牺牲部分相对于成形磨料颗粒的三角形部分共面。然而,明确考虑了,一个或多个牺牲部分的其它位置是可能的,诸如与斜边成一直线的那些位置,或者被定位成使得它们不与任何边成一直线。对于图5C至图5E,牺牲部分中的每一个牺牲部分的宽度为0.05单位,并且牺牲部分具有与成形磨料颗粒的三角形部分相同的厚度。
图5C示出了颗粒的描绘530,该颗粒具有:斜边,该斜边具有1单位的长度532;以及第一牺牲部分536和第二牺牲部分538,每一个牺牲部分具有0.15个单位的长度。颗粒530经受0.859的相对磁矩。
图5D示出了颗粒的描绘530,该颗粒具有:斜边,该斜边具有长度542;以及第一牺牲部分546和第二牺牲部分548。牺牲部分546和牺牲部分548各自具有0.25个单位的长度。颗粒540经受1.021的相对磁矩,这高于杆510。
图5E示出了颗粒的描绘550,该颗粒具有:斜边,该斜边具有长度552;以及第一牺牲部分556和第二牺牲部分558。牺牲部分556和牺牲部分558各自具有0.35个单位的长度。颗粒550经受1.170的相对磁矩,这高于杆510。
图5A至图5E示出了相对于三角形颗粒的斜边对称存在的牺牲部分。然而,明确考虑了也可使用不对称牺牲部分。对称设计的有用之处可能在于,哪一不是斜边的边接触背衬都无关紧要——由于颗粒的对称性,因此背衬上的颗粒的轮廓无论哪种方式都是相同的。然而,对于期望特定“站立”取向的颗粒形状,可能使用不对称牺牲部分或多个部分,以使优选的切削面垂直于背衬并且平行于其它颗粒的优选切削面对准。
除了改变成形磨料颗粒的净磁矩之外,添加牺牲部分可提供优于无牺牲部分的相似成形磨料颗粒的结构和性能益处。例如,如下文更详细地讨论的图10B和图10D所示,与基部面1062连接的牺牲部分1064可提供用于嵌入底胶层1020中的另外的表面积。另外,由于切削面的几何形状,牺牲部分1068在暴露于工作表面时将在破裂点破裂,从而得到锋利边1078。
图6示出了成形磨料颗粒的组分。成形磨料颗粒600具有精确工程化形状610。形状610包括规则部分612和牺牲部分640。规则部分612可与杆形614、圆形616、多边形622或另一形状相似。如在规则部分612中,术语规则是指在磨料制品内的多个磨料颗粒600中看到的重复形状。规则可包括规则形状,诸如规则多边形形状,或者它可包括其它形状,诸如星形、新月形或其它不规则形状。在一些实施方案中,牺牲部分640是指磨料颗粒600的一部分,其在磨料制品的第一研磨操作期间或之前断裂并且基本上不对工件提供任何研磨效果。在一些实施方案中,牺牲部分640在研磨操作期间保持与规则部分612连接,但基本上不有助于磨料颗粒600的研磨效果。
牺牲部分640还可被限定为存续小于制品的完整使用寿命。例如,如果磨料制品旨在存续100使用小时,则牺牲部分640存续小于100使用小时。例如,牺牲部分640可存续小于磨料制品的使用寿命的10%,或小于5%、或小于4%、或小于3%、或小于2%、或小于1%、或小于0.5%、或小于0.1%、或小于0.01%。
牺牲部分640可具有形状,并且可以是杆形642、或多边形形状644,诸如图5C至图5E所示的矩形棱柱。牺牲部分640可以是直的或者可具有曲率646。牺牲部分640还可具有其它限定特征648。
虽然图6中示出了单一牺牲部分640,但是明确考虑了可存在一对牺牲部分640,如图5C至图5E所示。然而,在一些实施方案中,可能存在甚至更多的牺牲部分640,诸如3个、4个、5个或更多个牺牲部分。在一些实施方案中,至少一个牺牲部分640被定位成使得该至少一个牺牲部分与规则部分612的至少一部分成平面620。然而,在一些实施方案中,至少一个牺牲部分640与规则部分612不成平面630。
形状610可包括一个或多个切削面632,该一个或多个切削面旨在远离带涂层磨料制品背衬成角度,使得切削面632在研磨操作期间与工作表面相互作用。形状610还可包括一个或多个基部面634,该一个或多个基部面旨在直接与磨料制品背衬连接,或嵌入到底胶树脂中。
成形磨料颗粒由材料650形成。在一个实施方案中,材料650可以是陶瓷材料。材料650可以是基于氧化铝的材料652或基于氧化锆的材料654或另一材料656。虽然图6中未示出,但明确考虑了材料650可以是掺杂材料,如本文所述。材料650可以是连续材料658,该连续材料包括单一材料或多种材料的大体共混物。例如,材料650还可包含离散的部分662,这些离散的部分可例如更大程度地掺杂、由不同材料形成或具有不同材料共混物。另外,材料650可包含不同材料的一个或多个相664。
在一些实施方案中,成形磨料颗粒600还可包括磁响应元件670。磁响应元件670可包括在颗粒烧制672之前施加的磁性涂层,如在以下文献中进行描述的:2019年10月14日提交的美国临时62/914,778和2019年7月18日提交的62/875,700和2019年10月23日提交的62/924,956,或在烧制之后施加的磁性涂层,如在以下文献中进行描述的:PCT专利申请公布WO2018/080703(Nelson等人)、WO2018/080756(Eckel等人)、WO2018/080704(Eckel等人)、WO2018/080705(Adefris等人)、WO2018/080765(Nelson等人)、WO2018/080784(Eckel等人)、WO2018/136271(Eckel等人)、WO2018/134732(Nienaber等人)、WO2018/080755(Martinez等人)、WO2018/080799(Nienaber等人)、WO2018/136269(Nienaber等人)、WO2018/136268(Jesme等人)、WO2019/207415(Nienaber等人)、WO2019/207417(Eckel等人)、WO2019/207416(Nienaber等人)。在一些实施方案中,磁响应元件670可以是材料650的一部分,或者可以是磨料颗粒600的另一处理,使得磨料颗粒600响应于施加的磁场。然而,在其它实施方案中,不需要磁性涂层,因为本文中的具有一些形状的颗粒可自对准或者可静电对准。
图7A至图7J示出了根据本发明的一个实施方案的成形磨料颗粒的视图。
虽然本文中的许多实施方案描述了用于取向目的的颗粒部分,但它们也可提供其它益处。例如,弯曲牺牲部分可能由于模具形状而不能够完全回缩到模具内,并且在一些实施方案中将部分或完全破裂。由于模具设计和脱离剂使用的限制,完全破裂可产生比可单独通过模制实现的更锋利的尖端或边。此外,在制造过程期间由破裂形成的锋利边或尖端可减少或消除在制造母模工具时对高精度的需要,从而增加制造速度、工具制造选项并且降低成本。
图7A示出了具有第一牺牲部分702和第二牺牲部分704的球形颗粒700。球形或接近球形颗粒尤其难以取向。例如,如果颗粒具有优选的破裂取向,则可能期望球形颗粒的取向。第一牺牲部分702和第二牺牲部分704可为相似的大小或不同的大小,这取决于颗粒700的期望取向。第一牺牲部分702和第二牺牲部分704还可各自具有介于颗粒700的直径的10%至100%之间的长度。在图7A的实施方案中,牺牲部分702、牺牲部分704各自正交于颗粒700的表面定位,但明确考虑了牺牲部分702、牺牲部分704中的任一个或两个牺牲部分可相对于颗粒700的表面以另一角度定位。
图7B示出了具有单一牺牲部分706的杆形颗粒705。然而,虽然在杆705的第一端示出了单一牺牲部分706,但明确考虑了另一牺牲部分可定位在杆705的第二端处或沿该杆的长度定位。牺牲部分706以与由杆705的长度限定的轴线成角度示出。然而,明确考虑了牺牲部分706可与杆705共线,并且可以是延伸超过复胶层和/或顶胶层足够远以使得它在第一研磨操作期间破裂开的部分。牺牲部分706可使杆705垂直于带涂层磨料制品的背衬,使得它直接或通过底胶层与背衬连接。
图7C示出了具有第一牺牲部分711和第二牺牲部分712的颗粒710。如图7C所示,在一些实施方案中,牺牲部分711和牺牲部分712相似地成形,使得两者均包括楔形边。然而,在其它实施方案中,牺牲部分711和牺牲部分712中的任一个或两个牺牲部分可为杆形的。
图7D示出了颗粒715具有第一牺牲部分716和第二牺牲部分717。如图7D所示,牺牲部分716和牺牲部分717两者均为矩形形状的。然而,明确考虑了任一或两个牺牲部分716、牺牲部分717可为圆柱形的或另一合适的形状。另外,虽然牺牲部分716、牺牲部分717被示出为与颗粒715的三角形部分共面,但明确考虑了任一或两个牺牲部分716、牺牲部分717可不与三角形部分共面。在一些实施方案中,牺牲部分716、牺牲部分717在图7D中被示出为与颗粒715的不是斜边的边共线。然而,牺牲部分716、牺牲部分717中的任一个或两个牺牲部分也可以不与颗粒715的任一个或两个不是斜边的边共线。另外,虽然牺牲部分716、牺牲部分717被示出为定位在颗粒715的斜边的边的第一端和第二端处,但明确考虑了它们可放置在其它合适的位置处。
图7E示出了具有第一牺牲部分721和第二牺牲部分722的颗粒720。与颗粒715相似,颗粒720具有定位在斜边的边的第一端和第二端处的牺牲部分721、牺牲部分722。然而,第一牺牲部分721和第二牺牲部分722具有曲率。可通过模制过程或通过烧制过程赋予曲率。在一个实施方案中,虽然第一牺牲部分721和第二牺牲部分722被示出为位于斜边的边的任一端,但明确考虑了它们可处于其它合适的位置。
图7E中的牺牲部分721、牺牲部分722的曲率还具有增加的效果,即,在颗粒干燥过程期间,部分721、部分722将不能够收缩并且将破裂,从而使大致三角形的颗粒720在两个角处具有锋利边。
图7B至图7E示出了牺牲部分与磨料颗粒的规则部分共面的实施方案。然而,在一些实施方案中,诸如图7F至图7I中示出的那些,牺牲部分可不为共面的。
图7F示出了具有颗粒725和远离颗粒725的面成角度的牺牲部分726的实施方案。牺牲部分726可以一定角度定位,使得它用作颗粒725的“支架”,使得切削刃727相对于带涂层磨料制品的背衬成角度。在一个实施方案中,切削刃727可与背衬平行,或者可成角度。
图7G示出了具有牺牲部分731的颗粒730。在一个实施方案中,牺牲部分731被示出为相对于颗粒730的三角形面成角度。然而,在另一个实施方案中,牺牲部分731可与三角形面共面。
图7H和图7I分别示出了具有牺牲部分736、牺牲部分741的颗粒735和颗粒740。牺牲部分736、牺牲部分741与颗粒735、颗粒701的侧面连接并且被构造成与带涂层磨料制品的背衬连接。虽然针对颗粒735、颗粒740中的每一个示出了单一牺牲部分,但明确考虑了可存在另外的牺牲部分。
图7J示出了具有等边三角形形状的颗粒745。颗粒745具有三个牺牲部分746,每一个牺牲部分从等边三角形形状的顶点延伸。
虽然图7D至图7J示出了直角三角形或等边三角形,但明确考虑了其它多边形形状可用作磨料颗粒的基部。例如,另一种三角形形状,诸如不等边三角形、等腰三角形、等边三角形、锐角或钝角三角形也可用作磨料颗粒的理论多边形形状,具有被设计成相似地影响颗粒上的净磁矩的缺陷。另外,平行四边形、矩形、正方形或其它四边形状也可用作磨料颗粒的理论多边形基部。其它多边形也可以是合适的,包括像星形、五边形的五星形形状。另外,具有弯曲边的形状(诸如新月形)也可以是合适的。其它形状也可以是合适的,像十字形。
磨料颗粒的每一个面的形状可部分地通过改变高度、宽度或直径的长度来控制。虽然每条边可具有任何合适的长度,但每条边一般来讲可具有在约0.01mm至约10mm的范围内、约0.03mm至约5mm、小于、等于或大于约0.01mm、0.05mm、0.1mm、0.5mm、1mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4mm、4.5mm、5mm、5.5mm、6mm、6.5mm、7mm、7.5mm、8mm、8.5mm、9mm、9.5mm或约10mm的长度。
成形磨料颗粒可用于带涂层磨料制品(例如,诸如图1中示出的带)上。背衬可具有任何期望程度的柔性。背衬可包括任何合适的材料。例如,背衬可包括聚合物膜、金属箔、织造织物、针织织物、纸材、硫化纤维、非织造物、泡沫、筛网、层合物或它们的组合。背衬还可包括各种添加剂。合适的添加剂的示例包括着色剂、加工助剂、增强纤维、热稳定剂、紫外线稳定剂和抗氧化剂。可用的填料的示例包括粘土、碳酸钙、玻璃珠、滑石粉、黏土、云母、木屑和炭黑。
本文所述的至少一些颗粒可表征为具有两个部分,即切削部分和基部部分。切削部分和基部部分连接,并且可被想象为形成三角形的两条边。切削部分和基部部分可以90°角连接,或者可连接成使得颗粒具有介于-60°和60°之间的受控前角。
在一些实施方案中,切削部分和基部部分具有相似的形状,使得任一者可用作切削部分或基部部分。基部部分被设计成平行于背衬并固定于背衬。当基部部分固定到背衬时,切削部分将相对于背衬以30°至129°之间的任何角度与背衬成角度。
切削部分的高度与最大厚度的比率介于1.5和20之间。基部部分的长度与基部部分的平均宽度的比率介于2和10之间。切削刃的宽度介于切削刃的高度的10%和1000%之间。
设想本文所述的颗粒都对磁场作出响应。例如,颗粒可包括磁性材料或者可具有在烧制之前或之后施加的磁性涂层。当暴露于合适的磁场时,磁性响应使得颗粒以优选的布置方式对准。颗粒被设计成经受大于颗粒上的重力的磁矩,从而使颗粒“站立”并且基部边缘面向背衬。切削部分和基部部分两者的纵横比需要在一定范围内,使得颗粒以90°取向对准并竖直站立。
图8示出了根据本发明的一个实施方案的制备带涂层磨料制品的方法。图8的方法可适用于形成图5或图7中描述的颗粒中的任何颗粒。此类方法也适用于形成其它形状的颗粒。另外,虽然方法800被描述为连续的步骤集合,但也明确考虑了对于一些应用,下文所述的步骤可以不同顺序发生。例如,830、840和850的步骤可取决于例如颗粒、粘结剂或涂料组合物以不同顺序发生。
在框810中,形成磨料颗粒。在一个实施方案中,磨料颗粒可由磁性材料形成,使得它们是磁响应的。
在步骤810中,磨料颗粒形成为具有经受净磁矩的形状,该净磁矩使颗粒在暴露于磁场时将使颗粒被取向以使得磨料颗粒的大部分切削面彼此对准。另外,颗粒对准,使得大部分基部与背衬材料接触或可直接接合到背衬材料。
虽然本文所述的许多实施方案设想具有平行表面的颗粒,但也明确考虑了其它形状。另外,虽然描述了切削刃,但也考虑了在一些实施方案中可存在切削尖端。
磨料颗粒可由多种合适的材料或材料的组合形成。例如,成形磨料颗粒可包含陶瓷材料或聚合物材料。可用的陶瓷材料包括例如熔融氧化铝、热处理氧化铝、白色熔融氧化铝、陶瓷氧化铝材料(诸如可以3M陶瓷磨粒(3M CERAMIC ABRASIVE GRAIN)从美国明尼苏达州圣保罗的3M公司(3M Company,St.Paul,Minnesota)商购获得的那些)、α-氧化铝、氧化锆、稳定氧化锆、莫来石、氧化锆增韧氧化铝、尖晶石、铝硅酸盐(例如莫来石、堇青石)、钙钛矿、碳化硅、氮化硅、碳化钛、氮化钛、碳化铝、氮化铝、碳化锆、氮化锆、碳化铁、氮氧化铝、氮氧化硅铝、钛酸铝、碳化钨、氮化钨、滑石、金刚石、立方氮化硼,溶胶-凝胶衍生的陶瓷(例如掺杂有添加剂的氧化铝陶瓷)、二氧化硅(例如石英、玻璃珠、玻璃泡和玻璃纤维)等或它们的组合。溶胶凝胶衍生的粉碎陶瓷颗粒的示例可见于美国专利4,314,827(Leitheiser等人)、4,623,364(Cottringer等人)、4,744,802(Schwabel)、4,770,671(Monroe等人)和4,881,951(Monroe等人)中。改性添加剂可用于增强磨料的某些所需特性或者提高后续烧结步骤的效率。改性添加剂或改性添加剂的前体可为可溶性盐的形式,通常为水溶性盐。它们通常由含金属的化合物组成,并且可为下列物质的氧化物的前体:镁、锌、铁、硅、钴、镍、锆、铪、铬、钙、锶钇、镨、钐、镱、钕、镧、钆、铈、镝、铒、钛以及它们的混合物。可存在于磨料分散体中的这些添加剂的具体浓度可根据本领域的技术人员的要求而变。关于制造溶胶凝胶衍生的磨料颗粒的方法的进一步细节可见于例如美国专利4,314,827(Leitheiser)、5,152,917(Pieper等人),5,213,591(Celikkaya等人),5,435,816(Spurgeon等人),5,672,097(Hoopman等人),5,946,991(Hoopman等人),5,975,987(Hoopman)等人,和6,129,540(Hoopman等人)和见于美国公布专利申请2009/0165394Al(Culler等人)和2009/0169816A1(Erickson等人)中。
包含聚合物材料的成形磨料颗粒可表征为软磨料颗粒。软成形磨料颗粒可包括任何合适的材料或材料的组合。例如,软成形磨料颗粒可包括包含一种或多种可聚合树脂的可聚合混合物的反应产物。该一种或多种可聚合树脂选自酚醛树脂、脲醛树脂、氨基甲酸乙酯树脂、三聚氰胺树脂、环氧树脂、双马来酰亚胺树脂、乙烯基醚树脂、氨基塑料树脂(其可包括侧链α、β不饱和羰基)、丙烯酸酯树脂、丙烯酸酯化异氰脲酸酯树脂、异氰脲酸酯树脂、丙烯酸酯化聚氨酯树脂、丙烯酸改性环氧树脂、烷基树脂、聚酯树脂、干性油或它们的混合物。可聚合混合物可包括附加组分,诸如增塑剂、酸催化剂、交联剂、表面活性剂、柔和磨料、颜料、催化剂和抗菌剂。
在可聚合混合物中存在多种组分的情况下,这些组分可占混合物的任何合适的重量百分比。例如,可聚合树脂可在可聚合混合物的约35重量%至约99.9重量%、约40重量%至约95重量%的范围内,或者可小于、等于或大于约35重量%、40重量%、41重量%、42重量%、43重量%、44重量%、45重量%、46重量%、47重量%、48重量%、49重量%、50重量%、51重量%、52重量%、53重量%、54重量%、55重量%、56重量%、57重量%、58重量%、59重量%、60重量%、61重量%、62重量%、63重量%、64重量%、65重量%、66重量%、67重量%、68重量%、69重量%、70重量%、71重量%、72重量%、73重量%、74重量%、75重量%、76重量%、77重量%、78重量%、79重量%、80重量%、81重量%、82重量%、83重量%、84重量%、85重量%、86重量%、87重量%、88重量%、89重量%、90重量%、91重量%、92重量%、93重量%、94重量%、95重量%、96重量%、97重量%、98重量%或约99.9重量%。
如果存在交联剂的话,则该交联剂可在可聚合混合物的约2重量%至约60重量%、约5重量%至约10重量%的范围内,或者可小于、等于或大于约2重量%、3重量%、4重量%、5重量%、6重量%、7重量%、8重量%、9重量%、10重量%、11重量%、12重量%、13重量%、14重量%或约15重量%。合适的交联剂的示例包括以商品名CYMEL 303LF购自美国佐治亚州阿尔法利塔的湛新美国股份有限公司(Allnex USAInc.,Alpharetta,Georgia,USA)的交联剂;或以商品名CYMEL 385购自美国佐治亚州阿尔法利塔的湛新美国股份有限公司的交联剂。
如果存在柔和磨料的话,则该柔和磨料可在可聚合混合物的约5重量%至约65重量%、约10重量%至约20重量%的范围内,或者可小于、等于或大于约5重量%、6重量%、7重量%、8重量%、9重量%、10重量%、11重量%、12重量%、13重量%、14重量%、15重量%、16重量%、17重量%、18重量%、19重量%、20重量%、21重量%、22重量%、23重量%、24重量%、25重量%、26重量%、27重量%、28重量%、29重量%、30重量%、31重量%、32重量%、33重量%、34重量%、35重量%、36重量%、37重量%、38重量%、39重量%、40重量%、41重量%、42重量%、43重量%、44重量%、45重量%、46重量%、47重量%、48重量%、49重量%、50重量%、51重量%、52重量%、53重量%、54重量%、55重量%、56重量%、57重量%、58重量%、59重量%、60重量%、61重量%、62重量%、63重量%、64重量%或约65重量%。合适的柔和磨料的示例包括以商品名MINSTRON 353TALC购自美国蒙大拿州斯里福克斯的英格瓷滑石美国公司(Imerys Talc America,Inc.,Three Forks,Montana,USA)的柔和磨料;以商品名USG TERRA ALBA NO.1CALCIUM SULFATE购自美国伊利诺伊州芝加哥的USG公司(USGCorporation,Chicago,Illinois,USA)的柔和磨料;购自美国宾夕法尼亚州哈特菲尔德的ESCA工业有限公司(ESCA Industries,Ltd.,Hatfield,Pennsylvania,USA)的回收玻璃(40-70号砂)、二氧化硅、方解石、霞石、正长岩、碳酸钙或它们的混合物。
如果存在增塑剂的话,则该增塑剂可在可聚合混合物的约5重量%至约40重量%、约10重量%至约15重量%的范围内,或者小于、等于或大于约5重量%、6重量%、7重量%、8重量%、9重量%、10重量%、11重量%、12重量%、13重量%、14重量%、15重量%、16重量%、17重量%、18重量%、19重量%、20重量%、21重量%、22重量%、23重量%、24重量%、25重量%、26重量%、27重量%、28重量%、29重量%、30重量%、31重量%、32重量%、33重量%、34重量%、35重量%、36重量%、37重量%、38重量%、39重量%或40重量%。合适的增塑剂的示例包括丙烯酸类树脂或苯乙烯丁二烯树脂。丙烯酸类树脂的示例包括以商品名RHOPLEX GL-618购自美国密歇根州米德兰的陶氏化学公司(DOW Chemical Company,Midland,Michigan,USA)的丙烯酸类树脂;以商品名HYCAR 2679购自美国俄亥俄州威克利夫的路博润公司的丙烯酸类树脂;以商品名HYCAR 26796购自美国俄亥俄州威克利夫的路博润公司的丙烯酸类树脂;以商品名ARCOL LG-650购自美国密歇根州米德兰的陶氏化学公司的聚醚多元醇;或以商品名HYCAR 26315购自美国俄亥俄州威克利夫的路博润公司的丙烯酸类树脂。苯乙烯丁二烯树脂的示例包括以商品名ROVENE 5900购自美国北卡罗来纳州夏洛特的马拉德克里科聚合物公司(Mallard Creek Polymers,Inc.,Charlotte,NorthCarolina,USA)的树脂。
如果存在酸催化剂的话,则该酸催化剂可在可聚合混合物的1重量%至约20重量%、约5重量%至约10重量%的范围内,或者可小于、等于或大于约1重量%、2重量%、3重量%、4重量%、5重量%、6重量%、7重量%、8重量%、9重量%、10重量%、11重量%、12重量%、13重量%、14重量%、15重量%、16重量%、17重量%、18重量%、19重量%或约20重量%。合适的酸催化剂的示例包括氯化铝溶液或氯化铵溶液。
如果存在表面活性剂的话,则该表面活性剂可在可聚合混合物的约0.001重量%至约15重量%、约5重量%至约10重量%的范围内,或者可小于、等于或大于约0.001重量%、0.01重量%、0.5重量%、1重量%、2重量%、3重量%、4重量%、5重量%、6重量%、7重量%、8重量%、9重量%、10重量%、11重量%、12重量%、13重量%、14重量%或约15重量%。合适的表面活性剂的示例包括以商品名GEMTEX SC-85-P购自美国北卡罗来纳州索尔兹伯里的Innospec功能化学品公司(Innospec Performance Chemicals,Salisbury,NorthCarolina,USA)的表面活性剂;以商品名DYNOL 604购自美国宾夕法尼亚州阿伦敦的空气化工产品有限公司(Air Products and Chemicals,Inc.,Allentown,Pennsylvania,USA)的表面活性剂;以商品名ACRYSOL RM-8W购自美国密歇根州米德兰的陶氏化学公司的表面活性剂;或以商品名XIAMETER AFE 1520购自美国密歇根州米德兰的陶氏化学公司的表面活性剂。
如果存在抗微生物剂的话,则该抗微生物剂可在可聚合混合物的0.5重量%至约20重量%、约10重量%至约15重量%的范围内,或者可小于、等于或大于约0.5重量%、1重量%、2重量%、3重量%、4重量%、5重量%、6重量%、7重量%、8重量%、9重量%、10重量%、11重量%、12重量%、13重量%、14重量%、15重量%、16重量%、17重量%、18重量%、19重量%或约20重量%。合适的抗微生物剂的示例包括吡啶硫酮锌。
如果存在颜料的话,则该颜料可在可聚合混合物的约0.1重量%至约10重量%、约3重量%至约5重量%的范围内,或者可小于、等于或大于约0.1重量%、0.2重量%、0.4重量%、0.6重量%、0.8重量%、1重量%、1.5重量%、2重量%、2.5重量%、3重量%、3.5重量%、4重量%、4.5重量%、5重量%、5.5重量%、6重量%、6.5重量%、7重量%、7.5重量%、8重量%、8.5重量%、9重量%、9.5重量%或10重量%。合适的颜料的示例包括以商品名SUNSPERSE BLUE 15购自美国新泽西州帕西帕尼的太阳化学有限公司(Sun ChemicalCorporation,Parsippany,New Jersey,USA)的颜料分散体;以商品名SUNSPERSE VIOLET23购自美国新泽西州帕西帕尼的太阳化学有限公司的颜料分散体;以商品名SUN BLACK购自美国新泽西州帕西帕尼的太阳化学有限公司的颜料分散体;或以商品名BLUE PIGMENTB2G购自美国北卡罗来纳州夏洛特的科莱恩有限公司(Clariant Ltd.,Charlotte,NorthCarolina,USA)的颜料分散体。
成形磨料颗粒是单片磨料颗粒。如图所示,成形磨料颗粒不含粘结剂,并且不是通过粘结剂或其它粘合剂材料保持在一起的磨料颗粒团聚物。
可以许多合适的方式形成成形磨料颗粒,例如,可根据多操作方法制备成形磨料颗粒。该方法可使用任何材料或前体分散体材料进行。简而言之,对于其中成形磨料颗粒是单片陶瓷颗粒的实施方案,该方法可包括以下操作:制备可被转变为对应物的有晶种或无晶种的前体分散体(例如,可转变为α氧化铝的勃姆石溶胶-凝胶);用前体分散体填充具有成形磨料颗粒的所需外形的一个或多个模腔;干燥前体分散体以形成前体成形磨料颗粒;从模腔中移除前体成形磨料颗粒;煅烧前体成形磨料颗粒以形成经煅烧的前体成形磨料颗粒;然后烧结经煅烧的前体成形磨料颗粒以形成成形磨料颗粒。现在将在含α-氧化铝的成形磨料颗粒的上下文中对该方法进行更详细地描述。在其它实施方案中,模腔可填充有三聚氰胺以形成三聚氰胺成形磨料颗粒。
该方法可包括提供能够转化为陶瓷的有晶种或无晶种的前体分散体的操作。在对前体加晶种的示例中,前体可引入晶种铁氧化物(例如,FeO)。前体分散体可包含作为挥发性组分的液体。在一个示例中,该挥发性组分是水。分散体可包含足量的液体,以使分散体的粘度足够低,从而能够填充模腔并且复制模具表面,但是液体的量不能太多,因为会导致随后将液体从模腔中移除的成本过高。在一个示例中,前体分散体包含2重量%至90重量%的能够转化为陶瓷的颗粒诸如一水合氧化铝(勃姆石)颗粒,以及至少10重量%、或50重量%至70重量%、或50重量%至60重量%的挥发性组分诸如水。反之,在一些实施方案中,前体分散体包含30重量%至50重量%或40重量%至50重量%的固体。
合适的前体分散体的示例包括氧化锆溶胶、氧化钒溶胶、氧化铈溶胶、氧化铝溶胶以及它们的组合。合适的氧化铝分散体包括例如勃姆石分散体以及其它氧化铝水合物分散体。勃姆石可通过已知的技术来制备或者可商购获得。市售勃姆石的示例包括均购自沙索尔北美有限公司(Sasol North America,Inc.)的商品名为“DISPERAL”和“DISPAL”的产品,或购自BASF公司的商品名为“HIQ-40”的产品。这些一水合氧化铝是相对纯的;即,它们除了一水合物外只包含相对较少的(如果有的话)其它水合物相,并且具有高表面积。
所得成形磨料颗粒的物理性质可通常取决于前体分散体中所用材料的类型。如本文所用,“凝胶”是分散在液体中的固体的三维网络。
前体分散体可包含改性添加剂或改性添加剂的前体。改性添加剂可用于增强磨料颗粒的某些所需特性,或者提高后续烧结步骤的效率。改性添加剂或改性添加剂的前体可呈可溶性盐的形式,诸如水溶性盐。它们可包括含金属的化合物,并且可以是镁、锌、铁、硅、钴、镍、锆、铪、铬、钇、镨、钐、镱、钕、镧、钆、铈、镝、铒、钛的氧化物的前体,以及它们的混合物。可存在于前体分散体中的这些添加剂的具体浓度可以变化。
引入改性添加剂或改性添加剂前体可导致前体分散体胶凝。也可以通过以下方式使前体分散体胶凝:在一定时期内进行加热,从而通过蒸发来减少分散体中的液体含量。前体分散体还可包含成核剂。适用于本公开的成核剂可以包括α氧化铝、α氧化铁或其前体、二氧化钛和钛酸盐、氧化铬的细粒,或者使转化成核的任何其它物质。如果使用成核剂的话,则其量应当足够多,以对α-氧化铝进行转化。
可将胶溶剂添加到前体分散体中以制备更稳定的水溶胶或胶态前体分散体。合适的胶溶剂为单质子酸或酸性化合物,诸如乙酸、盐酸、甲酸和硝酸。也可使用多质子酸,但是它们可能使前体分散体快速胶凝,从而使得难以对其进行处理或难以引入附加组分。某些商业来源的勃姆石包含有助于形成稳定前体分散体的酸滴度(例如,所吸收的甲酸或硝酸)。
前体分散体可通过任何合适的手段形成;例如,就溶胶-凝胶氧化铝前体而言,其可通过将氧化铝一水合物与含有胶溶剂的水简单地混合,或者通过形成添加有胶溶剂的氧化铝一水合物浆液而形成。
可添加消泡剂或其它合适的化学品,以降低混合时形成气泡或夹带空气的倾向。如果需要,可添加其它化学品,诸如润湿剂、醇类或偶联剂。
进一步操作可包括提供模具,该模具具有至少一个模腔,或形成于模具的至少一个主表面中的多个腔。在一些示例中,模具被形成为生产工具,其可以是例如带、片、连续纤维网、轮转凹辊等涂布辊、安装在涂布辊上的套筒或者模头。在一个示例中,生产工具可包含聚合物材料。合适的聚合物材料的示例包括热塑性塑料,诸如聚酯、聚碳酸酯、聚(醚砜)、聚(甲基丙烯酸甲酯)、聚氨酯、聚氯乙烯、聚烯烃、聚苯乙烯、聚丙烯、聚乙烯或它们的组合,或热固性材料。在一个示例中,整个模具由聚合物材料或热塑性材料制成。在另一个示例中,在干燥前体分散体时与前体分散体接触的模具的表面(诸如多个腔的表面)包含聚合物材料或热塑性材料,并且该模具的其它部分可以由其它材料制成。例如,可将合适的聚合物涂层涂覆到金属模具上以改变其表面张力特性。
聚合物型或热塑性生产工具可以由金属母模工具复制而成。母模工具可具有生产工具所需的反向图案。母模工具可以与生产工具相同的方式制成。在一个示例中,母模工具由金属(例如镍)制成,并且经过金刚石车削。在一个示例中,母模工具至少部分地使用立体光照型技术形成。可将聚合物片状材料连同母模工具一起加热,使得通过将二者压制在一起而在聚合物材料上压印出母模工具图案。也可将聚合物或热塑性材料挤出或浇铸到母模工具上,并且然后对其进行压制。冷却热塑性材料以使其硬化,从而制得生产工具。如果利用热塑性生产工具,则应当注意不要产生过多热量,这些热量可使热塑性生产工具变形,从而限制其寿命。
从模具的顶部表面或底部表面中的开口均可进入腔中。在一些示例中,腔可延伸过模具的整个厚度。另选地,腔可仅延伸至模具的厚度的一部分。在一个示例中,顶部表面大致平行于模具的底部表面,其中腔具有大致均匀的深度。模具的至少一个侧面,即在其中形成腔的那一侧面可以在去除挥发性组分的步骤中保持暴露于周围大气环境。
腔具有特定三维形状以制备成形磨料颗粒。深度尺寸等于从顶部表面到底部表面上最低点的垂直距离。给定腔的深度可为均匀的,或者可沿其长度和/或宽度而发生变化。给定模具的腔可具有相同的形状或不同的形状。
另外的操作涉及使用前体分散体填充模具中的腔(例如,通过常规技术进行填充)。在一些示例中,可使用刀辊涂布机或真空槽模涂布机。如果需要,可使用脱模剂以有助于从模具移除颗粒。脱模剂的示例包括油类(诸如花生油或矿物油、鱼油)、有机硅、聚四氟乙烯、硬脂酸锌和石墨。一般来讲,将在液体诸如水或醇中的脱模剂诸如花生油施加到与前体分散体接触的生产模具的表面,使得当需要脱模时,每单位面积模具上存在约0.1mg/in2(0.6mg/cm2)至约3.0mg/in2(20mg/cm2),或约0.1mg/in2(0.6mg/cm2)至约5.0mg/in2(30mg/cm2)的脱模剂。在一些实施方案中,模具的顶部表面被覆有前体分散体。前体分散体可以被抽吸到该顶部表面上。
在另外的操作中,可以使用刮刀或平整棒将前体分散体完全压入模具的腔中。可将未进入腔中的前体分散体的其余部分从模具的顶部表面去除,并将其回收利用。在一些示例中,前体分散体的一小部分可以保留在顶部表面上,并且在其它示例中,顶部表面大致不含分散体。刮刀或平整棒施加的压力可小于100psi(0.6MPa)、或小于50psi(0.3MPa)、或甚至小于10psi(60kPa)。在一些示例中,前体分散体的暴露表面大致不会延伸超过顶部表面。
在期望使用腔的暴露表面形成成形陶瓷磨料颗粒的平面的那些示例中,可能需要使腔装填过满(例如,使用微喷嘴阵列),并且使前体分散体缓慢地干燥。
另外的操作涉及除去挥发性组分以干燥分散体。挥发性组分可以通过快速蒸发速率去除。在一些示例中,通过蒸发去除挥发性组分在高于挥发性组分的沸点的温度下进行。干燥温度的上限通常取决于制成模具的材料。就聚丙烯模具而言,温度应低于该塑料的熔点。在一个示例中,就含约40%至50%固体的水分散体以及聚丙烯模具而言,干燥温度可为约90℃至约165℃,或约105℃至约150℃,或约105℃至约120℃。更高的温度可导致改善的生产速度,但是也可导致聚丙烯模具的降解,从而限制其作为模具的使用寿命。
在干燥期间,前体分散体收缩,从而通常导致从腔壁回缩。例如,如果腔具有平面的壁,那么所得成形磨料颗粒往往可具有至少三个凹形主侧面。目前发现,通过使腔壁成凹形(由此,腔容积增加),可获得具有至少三个大致平面的主侧面的成形磨料颗粒。凹陷程度一般取决于前体分散体的固含量。
另外,如相对于图7E所述,本文所述的一些颗粒形状被设计成利用颗粒前体的回缩。例如,弯曲牺牲部分将由于模具形状而不能够回缩到模具内,并且在一些实施方案中将部分或完全破裂。由于模具设计和脱离剂使用的限制,完全破裂可产生比可单独通过模制实现的更锋利的尖端或边。此外,在制造过程期间由破裂形成的锋利边或尖端可减少或消除在制造母模工具时对高精度的需要,从而增加制造速度、工具制造选项并且降低成本。
另外的操作涉及从模腔中移除所得前体成形磨料颗粒。可通过在模具上单独使用或组合使用以下工艺来从腔中移除前体成形磨料前体:重力、振动、超声振动、真空或加压空气从模腔中移除颗粒。
前体成形磨料颗粒可在模具外进一步干燥。如果在模具中将前体分散体干燥至所需程度,则该附加干燥步骤不是必要的。然而,在一些情况下,采用该附加干燥步骤来使前体分散体在模具中的停留时间最小化可能是经济的。前体成形磨料颗粒将在50℃至160℃、或120℃至150℃的温度下干燥10分钟至480分钟、或120分钟至400分钟。
另外的操作涉及煅烧前体成形磨料颗粒。在锻烧期间,基本上所有挥发性物质都被去除,并且存在于前体分散体中的各种组分均转化成金属氧化物。前体成形磨料颗粒通常被加热到400℃至800℃的温度,并且保持在该温度范围内,直至去除游离水和90重量%以上的任何结合的挥发性物质为止。在任选步骤中,可能期望通过浸渍方法引入改性添加剂。水溶性盐可通过将其注入到经煅烧的前体成形磨料颗粒的孔中来引入。然后再次预烧前体成形磨料颗粒。
另外的操作可涉及使经煅烧的前体成形磨料颗粒进行烧结以形成磨料颗粒。然而,在前体包含稀土金属的一些示例中,烧结可能并非必要。在烧结之前,经煅烧的前体成形磨料颗粒并未完全致密化,因此缺乏用作成形磨料颗粒所需的硬度。通过将经煅烧的前体成形磨料颗粒加热到1000℃至1650℃的温度来进行烧结。为实现这种转化程度,经煅烧的前体成形磨料颗粒可暴露于烧结温度的时间长度取决于多种因素,但五秒至48小时都是可能的。
在另一个实施方案中,烧结步骤的持续时间在一分钟至90分钟的范围内。烧结之后,成形磨料颗粒14可具有10GPa(吉帕斯卡)、16GPa、18GPa、20GPa或更大的维氏硬度。
可以使用附加操作来修改所述方法,该操作例如将材料从煅烧温度快速加热至烧结温度,并且对前体分散体进行离心以去除淤渣和/或废物。此外,如果需要,则可以通过组合这些方法步骤中的两个或更多个来修改该方法。
为了形成软成形磨料颗粒,可将本文所述的可聚合混合物沉积在腔中。腔可具有与所需成形磨料颗粒的阴印模相对应的形状。在将腔填充至所需程度之后,使可聚合混合物在腔中固化。固化可在室温(例如,约25℃)下或在高于室温的任何温度下发生。固化也可通过使可聚合混合物暴露于电磁辐射源或紫外线辐射源来实现。
成形磨料颗粒可根据磨料行业公认的指定标称等级独立地确定尺寸。磨料行业公认的分级标准包括由ANSI(美国国家标准学会)、FEPA(欧洲磨料制造者联盟)和JIS(日本工业标准)颁布的那些标准。ANSI等级标号(即规定的标称等级)包括例如:ANSI 4、ANSI 6、ANSI 8、ANSI 16、ANSI 24、ANSI 36、ANSI 46、ANSI 54、ANSI 60、ANSI 70、ANSI 80、ANSI90、ANSI 100、ANSI 120、ANSI 150、ANSI 180、ANSI 220、ANSI 240、ANSI 280、ANSI 320、ANSI 360、ANSI 400和ANSI 600。FEPA等级标号包括F4、F5、F6、F7、F8、F10、F12、F14、F16、F18、F20、F22、F24、F30、F36、F40、F46、F54、F60、F70、F80、F90、F100、F120、F150、F180、F220、F230、F240、F280、F320、F360、F400、F500、F600、F800、F1000、F1200、F1500和F2000。JIS等级标号包括:JIS8、JIS12、JIS16、JIS24、JIS36、JIS46、JIS54、JIS60、JIS80、JIS100、JIS150、JIS180、JIS220、JIS240、JIS280、JIS320、JIS360、JIS400、JIS600、JIS800、JIS1000、JIS1500、JIS2500、JIS4000、JIS6000、JIS8000和JIS10,000。
成形磨料颗粒的表面中的任一个表面可包括表面特征,诸如大致平面的表面;具有三角形、矩形、六边形或其它多边形周边的大致平面的表面;凹表面;凸表面;孔;脊;线或多条线;突出部;点;或凹陷。可以选择表面特征以改变切削速率、减少所形成磨料颗粒的磨损或改变磨料制品的最终光洁度。另外,成形磨料颗粒300可以采用上述形状元素(例如,凸侧面、凹侧面、不规则侧面以及平侧面)的组合。
成形磨料颗粒可具有至少一个侧壁,其可为倾斜侧壁。在一些实施方案中,可存在多于一个(例如两个或三个)倾斜侧壁,并且每一个倾斜侧壁的倾斜度或角度可相同或不同。在其它实施方案中,对于第一面和第二面渐缩成其交汇的薄边或点而不具有侧壁的颗粒而言,侧壁可最小化。倾斜侧壁也可通过半径R限定(如美国专利申请No.2010/0151196的图5B中所示)。侧壁中的每一个的半径R可变化。
具有脊线的成形颗粒的具体示例包括屋顶形颗粒,例如如WO2011/068714的图4A至图4C中所示的颗粒。优选的屋顶形颗粒包括具有四坡顶或四坡屋顶形状(其中存在的任何侧壁小面从脊线向下倾斜至第一侧面的屋顶类型)的颗粒。四坡屋顶通常不包括竖直侧壁或小面。
成形磨料颗粒可具有选自以下的一种或多种形状特征:开口(优选地延伸或穿过第一侧面和第二侧面的开口);至少一个凹陷(或凹形)面或小面;向外成形(或凸形)的至少一个面或小面;包括多个凹槽的至少一个侧面;至少一个破裂表面;具有低圆度系数的腔;或所述形状特征中的一个或多个的组合。
成形磨料颗粒300还可在其表面上包括多个脊。多个沟槽(或脊)可通过模腔的底部表面中的多个脊(或沟槽)形成,该多个脊(或沟槽)已发现更易于使成形磨料颗粒前体从模具移除。
多个沟槽(或脊)未具体限制,并且可例如包括平行线,其可完全或可不完全地延伸穿过整个侧面。优选地,平行线沿第一边缘以90°角与周边相交。沟槽或脊的横截面几何形状可为截顶三角形、三角形或其它几何形状,如下文进一步讨论。在本发明的各种实施方案中,多个沟槽的深度可介于约1微米至约400微米之间。
根据另一个实施方案,多个沟槽包括相交平行线的十字划痕图案,其可完全或可不完全地延伸穿过整个面。在各种实施方案中,十字划痕图案可采用相交的平行线或非平行线、各种线间的百分比间距、弧形交叉线、或沟槽的各种横截面几何形状。在其它实施方案中,每一个模腔的底部表面中的脊(或沟槽)的数量可介于1和约100之间,或介于2至约50之间,或介于约4至约25之间,从而在所形成的磨料颗粒中形成对应数量的沟槽(或脊)。
用于制备具有至少一个倾斜侧壁的成形磨料颗粒的方法例如在美国专利申请公布2009/0165394中有所描述。用于制备具有开口的成形磨料颗粒的方法例如在美国专利申请公布2010/0151201和2009/0165394中有所描述。用于制备至在少一个侧面上具有沟槽的成形磨料颗粒的方法例如在美国专利申请公布2010/0146867中有所描述。用于制备碟形磨料颗粒的方法例如在美国专利申请公布2010/0151195和2009/0165394中有所描述。用于制备具有低圆度系数的成形磨料颗粒的方法例如在美国专利申请公布2010/0319269中有所描述。用于制备具有至少一个破裂表面的成形磨料颗粒的方法例如在美国专利申请公布2009/0169816和2009/0165394中有所描述。用于制备其中第二侧面包括顶点(例如,双楔形磨料颗粒)或脊线(例如,屋顶形颗粒)的磨料颗粒的方法例如在WO 2011/068714中有所描述。
在框820中,使磨料颗粒具有磁响应性。在一个实施方案中,使颗粒具有磁响应性包括用磁响应涂层涂覆非磁响应颗粒。然而,在另一个实施方案中,颗粒由磁响应材料形成,使得步骤810和步骤820大致同时完成,例如如在提交于2019年10月14日的共同拥有的美国临时专利62/914778中所述。
除了已经描述的材料之外,至少一种磁性材料可包括在成形磨料颗粒内或涂覆到成形磨料颗粒上。磁性材料的示例包括铁;钴;镍;销售为各种等级的坡莫合金(Permalloy)的各种镍和铁的合金;销售为铁镍钴合金(Fernico)、科瓦铁镍钴合金(Kovar)、铁镍钴合金I(Fernico I)或铁镍钴合金II(Fernico II)的各种铁、镍和钴的合金;销售为各种等级的铝镍钴合金(Alnico)的各种铁、铝、镍、钴以及(有时还有)铜和/或钛的合金;销售为铁铝硅合金的铁、硅和铝(按重量计约85:9:6)的合金;赫斯勒合金(例如,Cu2MnSn);锰铋化物(也称为铋化锰(Bismanol));稀土可磁化材料,诸如钆、镝、钬、铕氧化物、钕、铁和硼的合金(例如,Nd2Fe14B)以及钐和钴的合金(例如,SmCo5);MnSb;MnOFe2O3;Y3Fe5O12;CrO2;MnAs;铁氧体,诸如铁氧体、磁铁矿;锌铁氧体;镍铁氧体;钴铁氧体、镁铁氧体、钡铁氧体以及锶铁氧体;钇铁石榴石;以及前述的组合。在一些实施方案中,可磁化材料是含有8重量%至12重量%的铝、15重量%至26重量%的镍、5重量%至24重量%的钴、高达6重量%的铜、至多1重量%的钛的合金,其中总计达100重量%的材料的余量为铁。在一些其它实施方案中,使用气相沉积技术诸如例如物理气相沉积(PVD),包括磁控溅射,可在磨料颗粒100上沉积可磁化涂层。
包含这些可磁化材料可使得成形磨料颗粒对磁场作出响应。成形磨料颗粒中的任一者可包含相同的材料或包含不同的材料。
磁性涂层可以是连续涂层,例如涂覆整个磨料颗粒,或至少涂覆磨料颗粒的一个整个表面。在另一个实施方案中,连续涂层是指在涂覆表面上不存在未涂覆部分的涂层。在一个实施方案中,涂层是由单层磁性材料形成的整体涂层,而不是作为离散的磁性颗粒。在一个实施方案中,当磨料颗粒仍在模腔中时,在磨料颗粒上提供磁性涂层,使得磁性涂层直接接触磨料颗粒前体表面。在一个实施方案中,磁性涂层的厚度至多等于或优选小于磨料颗粒的厚度。在一个实施方案中,磁性涂层不超过最终颗粒的约20重量%,或不超过最终颗粒的约10重量%,或不超过最终颗粒的5重量%。
在框830中,颗粒在背衬上相对于彼此放置。将磨料颗粒相对于彼此对准一般来讲需要两个步骤。第一,在具有主表面的基底上提供本文所述的可磁化磨料颗粒。第二,向可磁化磨料颗粒施加磁场,使得大部分可磁化磨料颗粒被取向以大致垂直于主表面。
在不施加磁场的情况下,所得可磁化磨料颗粒可以不具有磁矩,并且组成磨料颗粒或可磁化磨料颗粒可以是随机取向的。然而,当施加足够的磁场时,可磁化磨料颗粒将倾向于与磁场对准。在有利的实施方案中,陶瓷颗粒具有长轴(例如纵横比为2)并且长轴与磁场平行对准。优选地,大部分或甚至全部可磁化磨料颗粒将具有大致彼此平行对准的磁矩。如上所述,本文所述的磨料颗粒可具有一个以上的磁矩,并且将与净磁力矩对准。
磁场可由任何外部磁体(例如,永磁体或电磁体)或磁体组提供。在一些实施方案中,磁场通常在0.5至1.5kOe的范围内。优选地,磁场在单个可磁化磨料颗粒的尺度上是大致均匀的。
对于磨料制品的生产,在固化粘结剂(例如玻璃状或有机的)前体以生产磨料制品之前,可任选地使用磁场来放置和/或取向可磁化磨料颗粒。在可磁化磨料颗粒固定在粘结剂中的适当位置或在整个粘结剂上连续之前,磁场可以在可磁化磨料颗粒上是大致均匀的,或者磁场可以是不均匀的,或甚至有效地分离成离散的部分。通常,磁场的取向被构造成根据预先确定的取向实现可磁化磨料颗粒的对准。
该过程的结果是,单个成形磨料颗粒定位在背衬上,使得磨料颗粒彼此平行并且具有面向顺维方向的切削面。
磁场配置的示例和用于产生磁场的设备描述于美国专利8,262,758(Gao)和美国专利2,370,636(Carlton)、2,857,879(Johnson)、3,625,666(James),4,008,055(Phaal)、5,181,939(Neff)以及英国专利1 477 767(艾德威工程有限公司(Edenville EngineeringWorks Limited))。
在框840中,将颗粒粘附到背衬。任何磨料制品诸如研磨带或研磨盘可包括底胶层,以将成形磨料颗粒或成形磨料颗粒与粉碎磨料颗粒的共混物粘附到背衬。
图8将框430和框440示出为两个单独的步骤。然而,明确考虑了,在一些实施方案中,放置和对准例如通过在放置期间将颗粒暴露于磁场而同时发生。
在框850中,施加另外的涂层,诸如复胶涂层或顶胶涂层。磨料制品还可包括将成形磨料颗粒粘附至底胶层的复胶层。底胶层、复胶层或这两者可包含任何合适的树脂,诸如酚醛树脂、环氧树脂、脲醛树脂、丙烯酸酯树脂、氨基塑料树脂、三聚氰胺甲醛树脂、丙烯酸改性环氧树脂、氨基甲酸乙酯树脂或它们的混合物。另外,底胶层、复胶层或这两者可包含填料、助磨剂、润湿剂、表面活性剂、染料、颜料、偶联剂、增粘剂或它们的混合物。填料的示例可包括碳酸钙、二氧化硅、滑石、粘土、偏硅酸钙、白云石、硫酸铝或它们的混合物。在一些实施方案中,在涂层的应用之间需要固化步骤。例如,在施加复胶层之前,可至少部分地固化底胶层。
图9示出了根据本发明的一个实施方案的使用磨料制品的方法。方法910可用于研磨多个不同工件。在接触时,磨料制品和工件中的一者相对于彼此在使用方向上移动,并且工件的一部分被移除。
工件材料的示例包括金属、金属合金、钢、合金钢、铝异金属合金、陶瓷、玻璃、木材、仿木材料、复合材料、涂漆表面、塑料、增强塑料、石材和/或它们的组合。工件可以是平坦的或具有与之关联的形状或轮廓。示例性工件包括金属部件、塑料部件、颗粒板、凸轮轴、曲柄轴、家具和涡轮叶片。
根据本发明的磨料制品可用于研磨工件。研磨的方法涵盖了荒磨(即高压高切削量)到打磨(例如,用砂布带打磨医用植入物),其中后者通常用更细粒级的磨料颗粒制成。一种此类方法包括以下步骤:使磨料制品(例如,带涂层磨料制品、非织造磨料制品或粘结磨料制品)与工件的表面摩擦接触,并使磨料制品或工件中的至少一者相对于另一者移动,以研磨表面的至少一部分。
在框910中,提供磨料制品。在一个实施方案中,磨料制品包括被设计成具有第一使用方向和第二使用方向的多个磨料颗粒。例如,重新参见图1,使磨料制品在第一使用方向上移动是指使磨料制品移动成使得切削面130首先遇到工件。第二使用方向是指使磨料制品在相反方向上移动。根据各种实施方案,使用磨料制品诸如研磨带或研磨盘的方法包括使成形磨料颗粒与工件或基底接触。
根据各种实施方案,在基底或工件中的切削深度可为至少1μm、约10μm、至少约20μm、至少约30μm、至少约40μm、至少约50μm或至少约60μm。切削深度可部分地取决于磨料颗粒的大小。例如,更小的颗粒可具有甚至更小的切削深度,诸如小于1μm,或小于0.5μm,或小于0.1μm。基底或工件的一部分作为切屑被磨料制品移除。
根据各种实施方案,当在优选的使用方向上移动时,本文所述的磨料制品可具有若干优点。例如,在相同的施加力、切削速度或它们的组合下,从工件移除的材料量、从工件移除的切屑长度、在工件中的切削深度、工件的表面粗糙度或它们的组合在第一方向上比在任何其它第二方向上更大。
例如,在第一使用方向上从基底或工件上多移除至少约10%、或至少约15%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约100%、至少约120%、至少约130%、至少约140%、至少约150%的材料。在一些实施方案中,在第一使用方向上多移除约15%至约500%、或约30%至约70%、或约40%至约60%、或者小于、等于或大于约15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、100%、105%、110%、115%、120%、125%、130%、135%、140%、145%、150%、155%、160%、165%、170%、175%、180%、185%、190%、195%、200%、205%、210%、215%、220%、225%、230%、235%、240%、245%、250%、255%、260%、265%、270%、275%、280%、285%、290%、295%、300%、305%、310%、315%、320%、325%、330%、335%、340%、345%、350%、355%、360%、365%、370%、375%、380%、385%、390%、395%、400%、405%、410%、415%、420%、425%、430%、435%、440%、445%、450%、455%、460%、465%、470%、475%、480%、485%、490%、495%或约500%的材料。移除的材料量可参考初始切削量(例如,切削循环的第一切削量)或总切削量(例如,在设定数量的切削循环内移除的材料量的总和)。
又如,在基底或工件中的切削深度可在第一使用方向上深至少约10%、或至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约100%、至少约120%、至少约130%、至少约140%、至少约150%。在一些实施方案中,在第一使用方向上深约10%至约500%、或约30%至约70%、或约40%至约60%、或者小于、等于或大于约15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、100%、105%、110%、115%、120%、125%、130%、135%、140%、145%、150%、155%、160%、165%、170%、175%、180%、185%、190%、195%、200%、205%、210%、215%、220%、225%、230%、235%、240%、245%、250%、255%、260%、265%、270%、275%、280%、285%、290%、295%、300%、305%、310%、315%、320%、325%、330%、335%、340%、345%、350%、355%、360%、365%、370%、375%、380%、385%、390%、395%、400%、405%、410%、415%、420%、425%、430%、435%、440%、445%、450%、455%、460%、465%、470%、475%、480%、485%、490%、495%或约500%。
又如,通过在第一使用方向202或304上移动磨料制品而切削的工件或基底的算术平均粗糙度值(Sa)可高于在完全相同的条件下但在第二移动方向上切削的对应基底或工件。例如,当在第一方向上切削工件或基底时,表面粗糙度可高约30%、或高约40%、高约50%、高约60%、高约70%、高约80%、高约90%、高约100%、高约110%、高约120%、高约130%、高约140%、高约150%、高约160%、高约170%、高约180%、高约190%、高约200%、高约210%、高约220%、高约230%、高约240%、高约250%、高约260%、高约270%、高约280%、高约290%、高约300%、高约310%、高约320%、高约330%、高约340%、高约350%、高约360%、高约370%、高约380%、高约390%、高约400%、高约410%、高约420%、高约430%、高约440%、高约450%、高约460%、高约470%、高约480%、高约490%或高约500%。算术平均粗糙度值可在约1000至约2000、约1000至约1100、或者小于、等于或大于约1000、1050、1100、1150、1200、1250、1300、1350、1400、1450、1500、1550、1600、1650、1700、1750、1800、1850、1900、1950或约2000的范围内。
另选地,如框930所示,磨料制品可以在不同于第一使用方向的第二方向上移动。第二方向可以在相对于第一使用方向旋转约1度至360度、约160度至约200度、小于、等于或大于约1度、5度、10度、15度、20度、25度、30度、35度、40度、45度、50度、55度、60度、65度、70度、75度、80度、85度、90度、95度、100度、105度、110度、115度、120度、125度、130度、135度、140度、145度、150度、155度、160度、165度、170度、175度、180度、185度、190度、195度、200度、205度、210度、215度、220度、230度、240度、250度、260度、265度、270度、275度、280度、285度、290度、295度、300度、305度、310度、315度、320度、325度、330度、335度、340度、350度、355度或约360度的方向上。
尽管可能期望使磨料制品在第一使用方向上移动,但存在一些理由使磨料制品在除第一使用方向之外的第二移动方向上移动。例如,使基底或工件与磨料制品接触并在第二方向上移动磨料制品可有益于对基底或工件抛光。虽然不旨在受任何特定理论的束缚,但发明人假设第二方向上的移动可使基底或工件暴露于除磨料制品的前角之外的角度,这更适于抛光应用。
在一些实施方案中,本文所述的成形磨料颗粒可包括在随机轨道式砂光机或振动式砂光机中。在这些实施方案中,可能希望使成形磨料颗粒随机取向(例如,具有不同或随机z方向旋转角)。这是因为这种磨料制品的使用方向是可变的。因此,无论随机轨道式砂光机或振动式砂光机的具体使用方向如何,随机取向成形磨料颗粒都可有助于将合适量的成形磨料颗粒的切削面暴露于工件。
成形磨料颗粒诸如本文所述的那些可占任何磨料制品中磨料颗粒的100重量%。另选地,成形磨料颗粒可以是分布在背衬上的磨料颗粒的共混物的一部分。如果作为共混物的一部分存在,则成形磨料颗粒可在共混物的约5重量%至约95重量%、约10重量%至约80重量%、约30重量%至约50重量%的范围内,或者小于、等于或大于共混物的约5重量%、10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、40重量%、45重量%、50重量%、55重量%、60重量%、65重量%、70重量%、75重量%、80重量%、85重量%、90重量%或约95重量%。在共混物中,磨料颗粒的剩余部分可包含常规的粉碎磨料颗粒。粉碎磨料颗粒通常通过机械粉碎操作形成并且不具有复制的形状。磨料颗粒的剩余部分还可包含其它成形磨料颗粒,该其它成形磨料颗粒可例如包括等边三角形形状(例如,平坦的三角形成形磨料颗粒或四面体成形磨料颗粒,其中四面体的每一个面是等边三角形)。
图10A至图10D示出了其中磨料制品是适于线性移动的研磨带或研磨片的实施方案。然而,在其它实施方案中,磨料制品可以是适于旋转运动的研磨盘。用于研磨盘的切向旋转方向可用与研磨盘的外周边相切的线来确定。
图10A示出了磨料制品1000,其中多个磨料颗粒1010嵌入位于背衬1020上的底胶层1030内。也可添加复胶层1040和任选的顶胶层1045。在一些实施方案中,如图10B的特写视图所示,牺牲部分1068可延伸超过涂层1067,该涂层可由复胶层1040和/或顶胶层1045组成。然而,虽然图10B示出了从顶胶层1045和复胶层1040露出的牺牲部分1068。然而,明确考虑了,在一些实施方案中,复胶涂层1040和/或顶胶涂层1045可覆盖边1066的牺牲部分1068。
图10B示出了嵌入与背衬连接的单一颗粒1060的特写视图,其中涂层1067施加在底胶层上,牺牲部分1068大致在涂层1067上方延伸。如图10B所示,第二牺牲部分1064可延伸超过嵌入在底胶层内的基部边缘1062。
图10C和图10D示出了在与工件的初始接触之后的磨料制品1000。如图10C所示,多个颗粒1070仍通过底胶层1030与背衬1020连接。在一些实施方案中,第二牺牲部分1074仍嵌入在底胶层1030m内。
如图10D所示,通过牺牲部分1068的破裂开形成锋利边1078。锋利边1078可具有锋利尖端,该锋利尖端具有可使用传统模制过程获得的更小曲率半径。破裂颗粒具有高度1076。
图11示出了根据本发明的实施方案的破裂磨料颗粒。颗粒1100被示出为具有大致三角形形状1110,然而应理解,概念扩展到其它合适的形状。通过模制过程向颗粒1100赋予大致三角形形状1110,如下文相对于图12至图13描述的。
颗粒1100具有一个或多个破裂部分1120,该一个或多个破裂部分在模具中的初始干燥步骤期间或在烧制或烧结期间由于颗粒1100上的增强的应力而脱离颗粒1100。如本文所述,颗粒1100可由溶胶-凝胶、浆料或另一合适的方法形成。磨料颗粒由多种方法制成,这些方法在从模具移除之前需要至少初始干燥步骤。在干燥步骤期间,发生一定程度的收缩。颗粒1100被形成为使得在一个或多个破裂点1130处,来自在干燥期间引起的收缩的应变引起破裂点处的破裂,从而得到破裂部分1120。如图11所示,破裂部分1120表示颗粒1100的三角形形状1110的小体积。例如,在一个实施方案中,小于约15%、或小于约10%、或小于约5%的假设多边形形状因破裂而损失。
图12A和图12B示出了根据本发明的实施方案的用于破裂磨料颗粒的模具。模具1200示出了在初始干燥过程之后的多个腔,在该过程中,颗粒1210已沿破裂点破裂,从而使破裂部分1220断裂。如图12所示,模具1200包括具有大致三角形形状1204和一个或多个破裂腔部分1206的腔形状1202。在干燥期间,磨料颗粒材料收缩并且脱离腔的边。破裂腔部分1206被设计成使得颗粒的破裂部分无法与形状部分1204一起向内退回,从而导致破裂点1230处的断裂。如图12A和图12B所示,通过使破裂部分远离颗粒形状部分成角度,可在模腔1202内形成破裂点1230。角度必须足够大以阻碍收缩并且转而引起断裂。相对于颗粒形状部分1204的锐角1208是足够的,然而,直角或钝角也可以是足够的,这取决于干燥条件、溶液组分和浓度以及形状部分1204。另外,破裂部分1230可以是弯曲的,如图7E所示,例如或简单地为楔形的,如图7C所示。
破裂部分1206被示出为从形状部分1204的角延伸的棒形形状。然而,其它形状和其它位置也可以是合适的。然而,在三角形磨料颗粒的上下文中,在三个顶点中的每一个顶点处存在破裂确保了锋利边在磨料制品上可用,其中相对边仍可用于形成用于嵌入磨料制品的底胶层内的稳定基部。
图13示出了根据本发明的实施方案的破裂成形磨料颗粒的组分。模具1300包括多个腔1310。每一个腔1310包括深度1320,该深度可以是恒定的或可变的。例如,破裂部分1314可以是更深的或更浅的,以便在干燥期间促进破裂。腔1310还可包括沿侧面或沿底部的纹理化表面,使得向磨料颗粒赋予纹理化表面。
腔1310中的每一个腔还可包括向产生的磨料颗粒赋予的形状1330。形状1330包括:颗粒部分1312,该颗粒部分可具有多边形或其它有意选择的形状;以及一个或多个破裂部分1314,该一个或多个破裂部分被设计成在干燥、烧制或烧结期间在应力点1316处或附近脱离颗粒部分1312。
图14示出了根据本发明的实施方案的制备破裂磨料颗粒的方法。方法1400可与诸如图12或图13的那些的模具或任何其它合适的模制过程一起使用。
在框1410中,提供模具。模具包括具有形状1412的至少一个腔。形状1412可被设计成产生任何合适的成形磨料颗粒。例如,合适的形状可包括任何多边形形状(包括规则多边形、不规则多边形)、具有弯曲边的形状(诸如凸面部分或凹面部分),或者可具有直的形状。形状1412还可具有被设计成在制造期间断裂的一个或多个破裂部分。破裂部分可位于合适的形状的顶点处或沿合适的形状的边定位。腔还可具有深度1414,该深度在腔的区域内可以是恒定的或可变的。例如,腔可具有合适的形状部分的第一深度和破裂部分的第二深度。
在框1420中,向模具施加脱离剂。可向每一个腔的整个内表面施加脱离剂。脱离剂可促进在干燥期期间收缩,以及从腔移除所得磨料颗粒。对于磨料颗粒前体的水溶液,脱离剂可包括油。
在框1430中,模腔填充有磨料颗粒前体。腔可以是过度填充的1432、不足填充的1434或均匀填充的1436。
在框1440中,在颗粒前体仍在模腔中时,在初始干燥步骤期间干燥颗粒。虽然可能需要进一步处理来完成磨料颗粒,但可以在模具中发生初始干燥步骤。模具中的干燥可能引起破裂部分的破裂1442。干燥也可能引起磨料颗粒形状的收缩1444。干燥还可以具有其它效应,诸如层的沉降或分离,或磨料颗粒混合物的固化。
图15A至图15D示出了根据本文中的实施方案的磨料颗粒的另外的形状。本文中的描述的大部分涉及示例性实施方案,其中所得磨料颗粒具有三角形或大致三角形形状。然而,明确考虑了其它形状。图15A至图15B示出了一些示例性形状。
图15A和图15B示出了在破裂步骤期间可能未形成单独的破裂或牺牲部分的形状。相反,破裂释放每一个磨料颗粒。例如,图15A示出了具有第一部分1502和第二部分1504的颗粒1500,该颗粒可在干燥步骤期间发生的破裂步骤期间断裂成两个单独的磨料颗粒,该两个磨料颗粒中的每一个磨料颗粒可成为最终磨料制品的一部分。
图15B示出了在破裂点1514处连接的可由具有形状1510的单一模具制成的多个磨料颗粒1512。模具类似物1510可由于应力点1514处的颗粒之间的脆弱连接而使颗粒1512在干燥期间或在移除步骤期间彼此破裂。
图15C示出了可用于制备颗粒1512的模具1520。在图15D中示出颗粒512的3D表示。根据各种实施方案,磨料制品的切削速度可为至少约100m/min、至少约110m/min、至少约120m/min、至少约130m/min、至少约140m/min、至少约150m/min、至少约160m/min、至少约170m/min、至少约180m/min、至少约190m/min、至少约200m/min、至少约300m/min、至少约400m/min、至少约500m/min、至少约1000m/min、至少约1500m/min、至少约2000m/min、至少约2500m/min、至少约3000m/min或至少约4000m/min。
根据本发明的磨料制品可以手工使用和/或与机器联合使用。进行研磨时,使磨料制品和工件中的至少一者相对于另一者移动。可在湿润或干燥条件下进行研磨。用于润湿研磨的示例性液体包括水、含有常规防锈化合物的水、润滑剂、油、肥皂和切削液。液体还可含有例如消泡剂、去油剂。
虽然已讨论了本文讨论的许多实施方案,但在制造期间生成的破裂部分也可用于研磨产品。破裂部分可以较小大小提供成形磨料颗粒的一些相同益处。
一种用于制备磨料颗粒的模具包括表面和从该表面向下延伸的多个腔。每一个腔包括:颗粒形状部分,该颗粒形状部分具有多边形形状;和破裂部分,该破裂部分与该颗粒形状部分连接。该破裂部分被构造成在应力事件期间从该颗粒形状部分断裂,从而得到破裂形状的磨料颗粒。
该模具可被实施成使得破裂部分具有破裂形状。
该模具可被实施成使得破裂形状从多边形形状的边延伸。
该模具可被实施成使得破裂形状从多边形形状的角延伸。
该模具可被实施成使得破裂形状比颗粒形状部分更远地延伸到表面中。
该模具可被实施成使得破裂形状相对于多边形形状的边成角度。
该模具可被实施成使得角度为锐角。
该模具可被实施成使得角度为直角。
该模具可被实施成使得角度为钝角。
该模具可被实施成使得破裂部分是第二颗粒形状部分。
该模具可被实施成使得破裂形状与多边形形状至少约90%相似。
该模具可被实施成使得应力事件是在磨料颗粒前体处于模具中时发生的干燥阶段。
该模具可被实施成使得应力事件是第一研磨操作。
该模具可被实施成使得应力事件是烧制事件。
该模具可被实施成使得应力事件是烧结步骤。
该模具可被实施成使得应力事件是冷却步骤。
提出了一种成形磨料颗粒,该成形磨料颗粒包括第一面和第二面。第一面大致平行于第二面,第一面和第二面被成形磨料颗粒的厚度隔开。第一面包括第一模制边缘和第二模制边缘以及位于第一模制边缘和第二模制边缘的交点处的破裂顶点。破裂顶点具有第一曲率半径,该第一曲率半径小于与第一边缘相关联的第二曲率半径。
该成形磨料颗粒可被实施成使得第一面和第二面为大致三角形形状。破裂顶点位于大致三角形形状的第一角处。
该成形磨料颗粒可被实施成使得大致三角形形状包括位于第二角处的第二破裂顶点。
该成形磨料颗粒可被实施成使得大致三角形形状包括位于第三角处的第三破裂顶点。
该成形磨料颗粒可被实施成使得破裂顶点形成在成形磨料颗粒前体的破裂点处。在应力事件期间在破裂点处发生破裂。应力事件选自由干燥、冷却、烧制、烧结、磨料制品制造和与工件的初始接触组成的群组。
该成形磨料颗粒可被实施成使得破裂顶点与成形磨料颗粒前体的预破裂顶点相比具有更小的曲率半径。
提出了一种制造磨料颗粒的方法。该方法包括用磨料颗粒前体混合物填充模腔。模腔包括颗粒形状部分、从颗粒形状部分延伸的破裂部分。颗粒形状部分和破裂部分在应力点处连接在一起。该方法还包括使模腔中的磨料颗粒前体混合物干燥以形成磨料颗粒前体。干燥使破裂部分在应力点附近从颗粒形状部分断裂。
该方法可被实施成使得颗粒形状部分具有规则多边形。
该方法可被实施成使得颗粒形状部分具有不规则多边形。
该方法可被实施成使得破裂部分沿颗粒形状部分的边从颗粒形状部分延伸。
该方法可被实施成使得破裂部分包括第二颗粒形状。
该方法可被实施成使得破裂部分在颗粒形状部分的角处从颗粒形状部分延伸。
该方法可被实施成使得破裂部分从颗粒形状部分的面延伸。
该方法可被实施成使得颗粒形状部分包括第一面和第二面。第一面平行于第二面。
该方法可被实施成使得模腔具有深度。
该方法可被实施成使得深度为可变深度。
该方法可被实施成使得破裂部分是从颗粒形状部分的第一点延伸的第一破裂部分,并且还包括在颗粒形状部分的第二点处从颗粒形状部分延伸的第二破裂部分。
该方法可被实施成使得在干燥之后,磨料颗粒前体的颗粒形状与模腔的颗粒形状部分约90%相似。
该方法可被实施成使得使破裂部分从颗粒形状部分破裂所需的力小于使颗粒部分破裂至颗粒部分的一半高度的力的50%。
提出了一种制备磨料制品的方法,该方法包括提供多个磨料颗粒。通过用磨料颗粒前体混合物填充多个模腔来形成多个磨料颗粒。多个模腔中的每一个模腔包括颗粒部分和破裂部分。形成磨料颗粒还包括:使磨料颗粒前体混合物干燥以形成磨料颗粒前体;从模具移除多个磨料颗粒前体;以及烧制多个磨料颗粒前体以形成成形磨料颗粒。该方法还包括:将烧制成的多个成形磨料颗粒嵌入位于磨料制品的背衬上的底胶层内。该方法还包括:使多个成形磨料颗粒破裂以使得破裂部分在磨料制品的寿命期间基本上不提供研磨功效。
该方法可被实施成使得颗粒部分具有多边形形状。在牺牲部分破裂开之后,磨料颗粒中的75%与多边形形状具有至少约90%的相似度。
该方法可被实施成使得它还包括:用磁响应材料涂覆磨料颗粒;以及通过提供磁场使磨料颗粒在背衬上取向以使得磨料颗粒中的大部分各自取向而使得切削面朝向同一方向。
该方法可被实施成使得破裂部分在取向步骤期间保持完整。使多个磨料颗粒破裂发生在首次使用磨料制品期间。
该方法可被实施成使得多个磨料颗粒在干燥步骤期间破裂。
该方法可被实施成使得破裂部分在颗粒部分的多边形形状的角处从颗粒部分延伸。
该方法可被实施成使得破裂部分从制品部分的多边形形状的周边延伸。
该方法可被实施成使得破裂部分比颗粒部分更远地延伸到模具中。
该方法可被实施成使得多个模腔中的每一个模腔具有深度。
该方法可被实施成使得深度为可变的。
提出了一种成形磨料颗粒前体,该成形磨料颗粒前体包括第一部分,该第一部分包括第一表面和第二表面。第一表面和第二表面大致彼此平行并且被一定厚度隔开。该成形磨料颗粒前体还包括:第二部分,该第二部分从第一部分延伸;以及位于第一部分和第二部分之间的破裂点。第二部分被构造成响应于应力事件而在破裂点处从第一部分断裂开。破裂点变成为成形磨料颗粒的切削点。
该成形磨料颗粒前体可被实施成使得应力事件是干燥步骤。
该成形磨料颗粒前体可被实施成使得应力事件是冷却步骤。
该成形磨料颗粒前体可被实施成使得应力事件是烧制步骤。
该成形磨料颗粒前体可被实施成使得应力事件是烧结步骤。
该成形磨料颗粒前体可被实施成使得应力事件是与工作表面的初始接触。
该成形磨料颗粒前体可被实施成使得使第二部分破裂所需的力小于使第一部分破裂至一半高度所需的破裂力的50%。
该成形磨料颗粒前体可被实施成使得它还包括磁响应涂层。该磁响应涂层使该成形磨料颗粒对磁场作出响应。该成形磨料颗粒在暴露于磁场时经受比规则部分独自的扭矩更大的净扭矩,该净扭矩使成形磨料颗粒相对于磁场取向以使得第一表面和第二表面中的每一者大致垂直于背衬。
该成形磨料颗粒可被实施成使得第二部分从第一表面延伸。
该成形磨料颗粒前体可被实施成使得第二部分从厚度延伸。
该成形磨料颗粒前体可被实施成使得第一表面和第二表面各自包括表面轮廓。表面轮廓具有边和角。
该成形磨料颗粒前体可被实施成使得第二部分从边延伸。
该成形磨料颗粒前体可被实施成使得第二部分与边共线。
该成形磨料颗粒前体可被实施成使得第二部分相对于边成角度。
该成形磨料颗粒前体可被实施成使得第二部分从角延伸。
该成形磨料颗粒前体可被实施成使得第二部分具有与第一表面共面的表面。
该成形磨料颗粒前体可被实施成使得第二部分具有与第一表面成角度的表面。
该成形磨料颗粒前体可被实施成使得第一部分大致为三角形形状。第二部分从三角形的不是斜边的边延伸。
该成形磨料颗粒前体可被实施成使得第二部分具有长度,该长度为三角形的斜边的至少10%。
该成形磨料颗粒前体可被实施成使得第二部分长度为斜边的至少20%。
该成形磨料颗粒前体可被实施成使得第一部分为杆形状,并且牺牲部分从杆的端部延伸。
该成形磨料颗粒前体可被实施成使得第二部分以一定角度从杆的端部延伸。
该成形磨料颗粒前体可被实施成使得第二部分从第一部分的第一表面延伸。
该成形磨料颗粒前体可被实施成使得第二部分和第一部分由连续材料形成。
该成形磨料颗粒前体可被实施成使得磨料颗粒具有切削面,该切削面具有边长和厚度。边长与厚度的纵横比至少为2。
该成形磨料颗粒前体可被实施成使得高度与厚度的纵横比小于10。
该成形磨料颗粒前体可被实施成使得磁场为至少100高斯。
该成形磨料颗粒前体可被实施成使得磁场为至少1000高斯。
一种使用磨料制品的方法包括使磨料制品与工件接触。磨料制品包括背衬和固定到背衬的多个磁响应颗粒。多个磁响应颗粒中的每一个沿基部边缘固定到背衬,使得多个颗粒中的基部边缘大致彼此平行,并且使得多个磁性颗粒中的一些的切削面彼此平行。颗粒中的每一个包括牺牲部分。该方法还包括:使磨料制品相对于工件移动以使得工件的表面被研磨。使磨料制品移动使得牺牲部分在比研磨载荷更低的载荷下破裂。
该方法可被实施成使得载荷小于使磁响应颗粒中的一个破裂至颗粒高度的一半的力的50%。颗粒高度是颗粒的从背衬测量的高度。
该方法可被实施成使得破裂包括使多个颗粒中的每一个的牺牲部分断裂。
该方法可被实施成使得磨料制品具有涂层。牺牲部分至少部分地在涂层上方延伸。
该方法可被实施成使得多个磁性颗粒中的每一个的切削面具有在研磨期间接触工件的切削刃。
该方法可被实施成使得多个磁响应颗粒具有前角。前角介于-29°和90°之间。
该方法可被实施成使得多个磁响应颗粒中的每一个具有切削部分和基部部分。切削部分具有介于2和10之间的纵横比。基部部分具有介于1.5和10之间的纵横比。
该方法可被实施成使得多个颗粒的一部分的基部边缘大致彼此平行以使得多个磁性颗粒的一部分的切削面彼此平行。该一部分是比随机出现的百分比更大的百分比。
该方法可被实施成使得多个颗粒的大部分的基部边缘大致彼此平行以使得多个磁性颗粒的大部分的切削面彼此平行。
实施例
通过参考以举例说明的方式提供的以下实施例,可更好地理解本公开的各种实施方案。本公开不限于本文给出的实施例。
勃姆石溶胶-凝胶的制备
使用以下配方制备的勃姆石溶胶-凝胶样品:通过将含水(2400份)和70%硝酸水溶液(72份)的溶液高剪切混合11分钟,分散商标为“DISPERAL”的氧化铝一水合物粉末(1600份)。在涂覆前将所得溶胶-凝胶老化3小时。
模具(工具)的制备
将包含具有图16A至图16C所示的几何形状的相等间隔的突出部的压印板(EP1)的打印文件装载到立体光照型技术3D打印机(ProJet 7000HD,3D Systems,Littleton,CO)机器中。机器使用Accura 25树脂(3D Systems,Littleton,CO)印刷EP1。将EP1压制到聚丙烯膜的薄片中,该聚丙烯膜的薄片被加热到400*F,以在膜中形成腔,形成TOOL1。使TOOL1在室温下冷却60分钟。使用脱模剂、1%的花生油甲醇溶液来涂覆模具,约0.5mg/sqin的花生油被施加于TOOL1。通过将模具的薄片置于空气对流烘箱中在45℃下持续5分钟而移除过量的甲醇。
将包含具有图17A至图17C所示的几何形状的相等间隔的突出部的压印板(EP2)的打印文件装载到立体光照型技术3D打印机(ProJet 7000HD,3D Systems,Littleton,CO)机器中。机器使用Accura 25树脂(3D Systems,Littleton,CO)印刷EP2。将EP2压制到聚丙烯膜片材中,该聚丙烯膜片材被加热到400*F,以在膜中形成腔,形成TOOL2。使TOOL2在室温下冷却60分钟。使用脱模剂、1%的花生油甲醇溶液来涂覆模具,约0.5mg/sqin的花生油被施加于TOOL2。通过将模具的薄片置于空气对流烘箱中在45℃下持续5分钟而移除过量的甲醇。
比较例A
用油灰刀迫使过量的勃姆石溶胶-凝胶进入TOOL1的腔,使得完全填充腔。使填充的模具在70F下干燥24小时。然后将颗粒从模具移除,并且在箱式炉中将其烧制在650*C下持续30分钟,然后将其置于另一箱式炉中在1400*C下持续30分钟。用扫描电镜(来自JeolUSA,Peabody,MA的JSM-7600F)分析颗粒样品。通过用峰的曲率拟合圆来确定尖端的曲率半径(ROC)。将拟合的圆半径测量结果记录在表1中。
实施例1
用油灰刀迫使过量的勃姆石溶胶-凝胶进入TOOL2的腔,使得完全填充腔。使填充的模具在70F下干燥24小时。摄影结果在图12A和图12B中示出。然后将颗粒从模具移除,并且在箱式炉中将其烧制在650*C下持续30分钟,然后将其置于另一箱式炉中在1400*C下持续30分钟。用扫描电镜(来自Jeol USA,Peabody,MA的JSM-7600F)分析所得破裂尖端颗粒样品。通过拟合具有峰的曲率的圆来确定每一个尖端的最锋利点的曲率半径(ROC)值。将拟合的圆半径测量结果记录在表1中。
以微米为单位测量的ROC值
Figure BDA0003904340680000441
Figure BDA0003904340680000451
表1

Claims (82)

1.一种用于制备磨料颗粒的模具,所述模具包括:
表面;
多个腔,所述多个腔从所述表面向下延伸,每一个腔包括:
颗粒形状部分,所述颗粒形状部分具有多边形形状;和
破裂部分,所述破裂部分与所述颗粒形状部分连接;并且
其中所述破裂部分被构造成在应力事件期间从所述颗粒形状部分断裂,从而得到破裂形状的磨料颗粒。
2.根据权利要求1所述的模具,其中所述破裂部分具有破裂形状。
3.根据权利要求2所述的模具,其中所述破裂形状从所述多边形形状的边延伸。
4.根据权利要求2所述的模具,其中所述破裂形状从所述多边形形状的角延伸。
5.根据权利要求2所述的模具,其中所述破裂形状比所述颗粒形状部分更远地延伸到所述表面中。
6.根据权利要求2所述的模具,其中所述破裂形状相对于所述多边形形状的边成角度。
7.根据权利要求6所述的模具,其中所述角度是锐角。
8.根据权利要求6所述的模具,其中所述角度是直角。
9.根据权利要求6所述的模具,其中所述角度是钝角。
10.根据权利要求2所述的模具,其中所述破裂部分是第二颗粒形状部分。
11.根据权利要求1至10中任一项所述的模具,其中所述破裂形状与所述多边形形状至少约90%相似。
12.根据权利要求1至11中任一项所述的模具,其中所述应力事件是在磨料颗粒前体处于所述模具中时发生的干燥阶段。
13.根据权利要求1至11中任一项所述的模具,其中所述应力事件是第一研磨操作。
14.根据权利要求1至11中任一项所述的模具,其中所述应力事件是烧制事件。
15.根据权利要求1至11中任一项所述的模具,其中所述应力事件是烧结步骤。
16.根据权利要求1至11中任一项所述的模具,其中所述应力事件是冷却步骤。
17.一种成形磨料颗粒,包括:
第一面和第二面,其中所述第一面大致平行于所述第二面,所述第一面和所述第二面被所述成形磨料颗粒的厚度隔开;
其中所述第一面包括第一模制边缘和第二模制边缘以及位于所述第一模制边缘和所述第二模制边缘的交点处的破裂顶点;
并且其中所述破裂顶点的尖端具有第一曲率半径,所述第一曲率半径小于与所述第一边缘相关联的第二曲率半径。
18.根据权利要求17所述的成形磨料颗粒,其中所述第一面和所述第二面为大致三角形形状,并且其中所述破裂顶点位于所述大致三角形形状的第一角处。
19.根据权利要求18所述的成形磨料颗粒,其中所述大致三角形形状包括位于第二角处的第二破裂顶点。
20.根据权利要求19所述的成形磨料颗粒,其中所述大致三角形形状包括位于第三角处的第三破裂顶点。
21.根据权利要求17至20中任一项所述的成形磨料颗粒,其中所述破裂顶点形成在成形磨料颗粒前体的破裂点处,其中在应力事件期间在所述破裂点处发生破裂,并且其中所述应力事件选自由干燥、冷却、烧制、烧结、磨料制品制造和与工件的初始接触组成的群组。
22.根据权利要求21所述的成形磨料颗粒,其中所述破裂顶点与所述成形磨料颗粒前体的预破裂顶点相比具有更小的曲率半径。
23.一种制造磨料制品的方法,所述方法包括:
用磨料颗粒前体混合物填充模腔,其中所述模腔包括:
颗粒形状部分;
破裂部分,所述破裂部分从所述颗粒形状部分延伸;并且
其中所述颗粒形状部分和所述破裂部分在应力点处连接在一起;以及
使所述模腔中的所述磨料颗粒前体混合物干燥以形成磨料颗粒前体,其中所述干燥使所述破裂部分在所述应力点附近从所述颗粒形状部分断裂。
24.根据权利要求23所述的方法,其中所述颗粒形状部分具有规则多边形。
25.根据权利要求23或24所述的方法,其中所述颗粒形状部分具有不规则多边形。
26.根据权利要求25所述的方法,其中所述破裂部分沿所述颗粒形状部分的边从所述颗粒形状部分延伸。
27.根据权利要求25所述的方法,其中所述破裂部分具有第二颗粒形状。
28.根据权利要求26所述的方法,其中所述破裂部分在所述颗粒形状部分的角处从所述颗粒形状部分延伸。
29.根据权利要求26所述的方法,其中所述破裂部分从所述颗粒形状部分的面延伸。
30.根据权利要求23至29中任一项所述的方法,其中所述颗粒形状部分包括第一面和第二面,并且其中所述第一面平行于所述第二面。
31.根据权利要求23至30中任一项所述的方法,其中所述模腔具有深度。
32.根据权利要求31所述的方法,其中所述深度为可变深度。
33.根据权利要求23至32中任一项所述的方法,其中所述破裂部分是从所述颗粒形状部分的第一点延伸的第一破裂部分,并且还包括在所述颗粒形状部分的第二点处从所述颗粒形状部分延伸的第二破裂部分。
34.根据权利要求23至33中任一项所述的方法,其中在干燥之后,所述磨料颗粒前体的颗粒形状与所述模腔的所述颗粒形状部分约90%相似。
35.根据权利要求34所述的方法,其中使所述破裂部分从所述颗粒形状部分破裂所需的力小于使所述颗粒部分破裂至所述颗粒部分的一半高度的力的50%。
36.一种制备磨料制品的方法,所述方法包括:
提供多个磨料颗粒,通过以下方式形成所述多个磨料颗粒:
用磨料颗粒前体混合物填充多个模腔,其中所述多个模腔中的每一个包括颗粒部分和破裂部分;
使所述磨料颗粒前体混合物干燥以形成磨料颗粒前体;以及
从所述模具移除所述多个磨料颗粒前体;
烧制所述多个磨料颗粒前体以形成成形磨料颗粒;将烧制成的所述多个成形磨料颗粒嵌入位于所述磨料制品的背衬上的底胶层内;以及
使所述多个成形磨料颗粒破裂以使得所述破裂部分在所述磨料制品的寿命期间基本上不提供研磨功效。
37.根据权利要求36所述的方法,其中所述颗粒部分具有多边形形状,并且其中在所述牺牲部分破裂开之后,所述磨料颗粒中的75%与所述多边形形状具有至少约90%的相似度。
38.根据权利要求36或37所述的方法,还包括:
用磁响应材料涂覆所述磨料颗粒;以及
通过提供磁场使所述磨料颗粒在所述背衬上取向以使得所述磨料颗粒中的大部分各自取向而使切削面朝向同一方向。
39.根据权利要求38所述的方法,其中所述破裂部分在所述取向步骤期间保持完整,并且其中使所述多个磨料颗粒破裂发生在首次使用所述磨料制品期间。
40.根据权利要求36至39中任一项所述的方法,其中所述多个磨料颗粒在所述干燥步骤期间破裂。
41.根据权利要求40所述的方法,其中所述破裂部分在所述颗粒部分的多边形形状的角处从所述颗粒部分延伸。
42.根据权利要求40所述的方法,其中所述破裂部分从所述制品部分的多边形形状的周边延伸。
43.根据权利要求40所述的方法,其中所述破裂部分比所述颗粒部分更远地延伸到模具中。
44.根据权利要求36至43中任一项所述的方法,其中所述多个模腔中的每一个具有深度。
45.根据权利要求44所述的方法,其中所述深度是可变的。
46.一种成形磨料颗粒前体,包括:
第一部分,所述第一部分包括第一表面和第二表面,其中所述第一表面和所述第二表面大致彼此平行并且被一定厚度隔开;
第二部分,所述第二部分从所述第一部分延伸;以及
位于所述第一部分和所述第二部分之间的破裂点,其中所述第二部分被构造成响应于应力事件而在所述破裂点处从所述第一部分断裂开,其中所述破裂点变成为所述成形磨料颗粒的切削点。
47.根据权利要求46所述的成形磨料颗粒前体,其中所述应力事件是干燥步骤。
48.根据权利要求46所述的成形磨料颗粒前体,其中所述应力事件是冷却步骤。
49.根据权利要求46所述的成形磨料颗粒前体,其中所述应力事件是烧制步骤。
50.根据权利要求46所述的成形磨料颗粒前体,其中所述应力事件是烧结步骤。
51.根据权利要求46所述的成形磨料颗粒前体,其中所述应力事件是与工作表面的初始接触。
52.根据权利要求46至50中任一项所述的成形磨料颗粒前体,其中使所述第二部分破裂所需的力小于使所述第一部分破裂至一半高度所需的破裂力的50%。
53.根据权利要求46至52中任一项所述的成形磨料颗粒前体,还包括磁响应涂层,其中所述磁响应涂层使所述成形磨料颗粒对磁场作出响应,并且其中所述成形磨料颗粒在暴露于所述磁场时经受比所述规则部分独自的扭矩更大的净扭矩,所述净扭矩使所述成形磨料颗粒相对于所述磁场取向以使得所述第一表面和所述第二表面中的每一者大致垂直于背衬。
54.根据权利要求46至53中任一项所述的成形磨料颗粒,其中所述第二部分从所述第一表面延伸。
55.根据权利要求46至54中任一项所述的成形磨料颗粒前体,其中所述第二部分从所述厚度延伸。
56.根据权利要求46至55中任一项所述的成形磨料颗粒前体,其中所述第一表面和所述第二表面各自包括表面轮廓,并且其中所述表面轮廓具有边和角。
57.根据权利要求56所述的成形磨料颗粒前体,其中所述第二部分从所述边延伸。
58.根据权利要求57所述的成形磨料颗粒前体,其中所述第二部分与所述边共线。
59.根据权利要求57所述的成形磨料颗粒前体,其中所述第二部分相对于所述边成角度。
60.根据权利要求56所述的成形磨料颗粒前体,其中所述第二部分从所述角延伸。
61.根据权利要求60所述的成形磨料颗粒前体,其中所述第二部分具有与所述第一表面共面的表面。
62.根据权利要求60所述的成形磨料颗粒前体,其中所述第二部分具有与所述第一表面成角度的表面。
63.根据权利要求46至62中任一项所述的成形磨料颗粒,其中所述第一部分大致为三角形形状,并且其中所述第二部分从所述三角形的不是斜边的边延伸。
64.根据权利要求63所述的成形磨料颗粒,其中所述第二部分具有长度,所述长度为所述三角形的斜边的至少10%。
65.根据权利要求64所述的成形磨料颗粒,其中所述第二部分长度为所述斜边的至少20%。
66.根据权利要求46至65中任一项所述的成形磨料颗粒,其中所述第一部分为杆形状,并且其中所述牺牲部分从所述杆的端部延伸。
67.根据权利要求66所述的成形磨料颗粒,其中所述第二部分以一定角度从所述杆的所述端部延伸。
68.根据权利要求46至67中任一项所述的成形磨料颗粒,其中所述第二部分从所述第一部分的所述第一表面延伸。
69.根据权利要求46至68中任一项所述的成形磨料颗粒,其中所述第二部分和所述第一部分由连续材料形成。
70.根据权利要求46至69中任一项所述的成形磨料颗粒,其中所述磨料颗粒具有切削面,所述切削面具有边长和厚度,并且其中所述边长与所述厚度的纵横比为至少2。
71.根据权利要求70所述的成形磨料颗粒,其中高度与所述厚度的纵横比小于10。
72.根据权利要求47所述的成形磨料颗粒,其中所述磁场为至少100高斯。
73.根据权利要求47所述的成形磨料颗粒,其中所述磁场为至少1000高斯。
74.一种使用磨料制品的方法,所述方法包括:
使所述磨料制品与工件接触,其中所述磨料制品包括:
背衬;
多个磁响应颗粒,所述多个磁响应颗粒固定到所述背衬,其中所述多个磁响应颗粒中的每一个沿基部边缘固定到所述背衬,使得所述多个颗粒的所述基部边缘大致彼此平行,并且使得所述多个磁性颗粒中的一些的切削面彼此平行,并且其中所述颗粒中的每一个包括牺牲部分;以及
使所述磨料制品相对于所述工件移动以使得所述工件的表面被研磨,并且其中使所述磨料制品移动使得所述牺牲部分在比研磨载荷更低的载荷下破裂。
75.根据权利要求74所述的方法,其中所述载荷小于使所述磁响应颗粒中的一个破裂至颗粒高度的一半的力的50%,其中所述颗粒高度是颗粒的从所述背衬测量的高度。
76.根据权利要求74或75所述的方法,其中所述破裂包括使所述多个颗粒中的每一个的所述牺牲部分断裂。
77.根据权利要求74至76中任一项所述的方法,其中所述磨料制品具有涂层,并且其中所述牺牲部分至少部分地在所述涂层上方延伸。
78.根据权利要求74至77中任一项所述的方法,其中所述多个磁性颗粒中的每一个的所述切削面具有在研磨期间接触所述工件的切削刃。
79.根据权利要求74至78中任一项所述的方法,其中所述多个磁响应颗粒具有前角,并且其中所述前角介于-29°和90°之间。
80.根据权利要求74至79中任一项所述的方法,其中所述多个磁响应颗粒中的每一个具有切削部分和基部部分,其中所述切削部分具有介于2和10之间的纵横比,并且其中所述基部部分具有介于1.5和10之间的纵横比。
81.根据权利要求74至80中任一项所述的方法,其中所述多个颗粒的一部分的所述基部边缘大致彼此平行以使得所述多个磁性颗粒的一部分的切削面彼此平行,并且其中所述一部分是比将会随机出现的百分比更大的百分比。
82.根据权利要求74至81中任一项所述的方法,其中所述多个颗粒的大部分的所述基部边缘大致彼此平行以使得所述多个磁性颗粒的大部分的切削面彼此平行。
CN202180030730.4A 2020-04-23 2021-04-15 成形磨料颗粒 Pending CN115485100A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063014357P 2020-04-23 2020-04-23
US63/014,357 2020-04-23
PCT/IB2021/053105 WO2021214605A1 (en) 2020-04-23 2021-04-15 Shaped abrasive particles

Publications (1)

Publication Number Publication Date
CN115485100A true CN115485100A (zh) 2022-12-16

Family

ID=75639932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180030730.4A Pending CN115485100A (zh) 2020-04-23 2021-04-15 成形磨料颗粒

Country Status (4)

Country Link
US (1) US20230211470A1 (zh)
EP (1) EP4139088A1 (zh)
CN (1) CN115485100A (zh)
WO (1) WO2021214605A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6033886B2 (ja) 2011-12-30 2016-11-30 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 成形研磨粒子および同粒子を形成する方法
RU2602581C2 (ru) 2012-01-10 2016-11-20 Сэнт - Гобэйн Керамикс Энд Пластик,Инк. Абразивные частицы, имеющие сложные формы, и способы их формования
MX2015013831A (es) 2013-03-29 2016-03-01 Saint Gobain Abrasives Inc Particulas abrasivas con formas particulares y metodos para elaborar las particulas.
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
CN106457522B (zh) 2014-04-14 2020-03-24 圣戈本陶瓷及塑料股份有限公司 包括成形磨粒的研磨制品
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
TWI634200B (zh) 2015-03-31 2018-09-01 聖高拜磨料有限公司 固定磨料物品及其形成方法
WO2016161157A1 (en) 2015-03-31 2016-10-06 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
CA3118239A1 (en) 2015-06-11 2016-12-15 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
SI3455321T1 (sl) 2016-05-10 2022-10-28 Saint-Gobain Ceramics & Plastics, Inc. Metode oblikovanja abrazivnih delcev
KR102313436B1 (ko) 2016-05-10 2021-10-19 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 연마 입자들 및 그 형성 방법
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
WO2021133901A1 (en) 2019-12-27 2021-07-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
WO2023248201A1 (en) * 2022-06-24 2023-12-28 3M Innovative Properties Company Non-scratch abrasive composite and abrasive cleaning article

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994002559A1 (en) * 1992-07-23 1994-02-03 Minnesota Mining And Manufacturing Company Shaped abrasive particles and method of making same
CN1081948A (zh) * 1992-07-23 1994-02-16 明尼苏达矿产制造公司 定型磨粒及其制造方法
US5984988A (en) * 1992-07-23 1999-11-16 Minnesota Minning & Manufacturing Company Shaped abrasive particles and method of making same
US20020026752A1 (en) * 1996-09-11 2002-03-07 Minnesota Mining And Manufacturing Company Abrasive article and method of making
CN102281992A (zh) * 2008-12-17 2011-12-14 3M创新有限公司 制造磨料碎片、带开口的成形磨粒或碟形磨粒的方法
CN103189164A (zh) * 2010-11-01 2013-07-03 3M创新有限公司 用于制备成形陶瓷磨粒的激光法、成形陶瓷磨粒以及磨料制品
US20160186028A1 (en) * 2014-12-24 2016-06-30 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
WO2018136268A1 (en) * 2017-01-19 2018-07-26 3M Innovative Properties Company Manipulation of magnetizable abrasive particles with modulation of magnetic field angle or strength
CN109863568A (zh) * 2016-10-25 2019-06-07 3M创新有限公司 制备可磁化磨料颗粒的方法
CN110582377A (zh) * 2016-12-21 2019-12-17 3M创新有限公司 用于分配不同的多个磨料颗粒以制备磨料制品的系统、方法和工具

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2370636A (en) 1933-03-23 1945-03-06 Minnesota Mining & Mfg Manufacture of abrasives
US2857879A (en) 1955-09-01 1958-10-28 Abrasive Company Of America Apparatus for preparing abrasive articles
GB1209139A (en) 1968-06-19 1970-10-21 Ind Distributors 1946 Ltd Abrasive article manufacture
ZA741474B (en) 1974-03-07 1975-10-29 Edenvale Eng Works Abrasive tools
ZA746013B (en) 1974-09-23 1976-05-26 Edenvale Eng Works Abrasive tools
US4314827A (en) 1979-06-29 1982-02-09 Minnesota Mining And Manufacturing Company Non-fused aluminum oxide-based abrasive mineral
US4623364A (en) 1984-03-23 1986-11-18 Norton Company Abrasive material and method for preparing the same
CA1254238A (en) 1985-04-30 1989-05-16 Alvin P. Gerk Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products
US4770671A (en) 1985-12-30 1988-09-13 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic containing oxides of aluminum and yttrium, method of making and using the same and products made therewith
US4881951A (en) 1987-05-27 1989-11-21 Minnesota Mining And Manufacturing Co. Abrasive grits formed of ceramic containing oxides of aluminum and rare earth metal, method of making and products made therewith
US5181939A (en) 1989-12-20 1993-01-26 Charles Neff Article and a method for producing an article having a high friction surface
US5152917B1 (en) 1991-02-06 1998-01-13 Minnesota Mining & Mfg Structured abrasive article
US5213591A (en) 1992-07-28 1993-05-25 Ahmet Celikkaya Abrasive grain, method of making same and abrasive products
US5435816A (en) 1993-01-14 1995-07-25 Minnesota Mining And Manufacturing Company Method of making an abrasive article
DE69419764T2 (de) 1993-09-13 1999-12-23 Minnesota Mining & Mfg Schleifartikel, verfahren zur herstellung desselben, verfahren zur verwendung desselben zum endbearbeiten, und herstellungswerkzeug
US5975987A (en) 1995-10-05 1999-11-02 3M Innovative Properties Company Method and apparatus for knurling a workpiece, method of molding an article with such workpiece, and such molded article
US5946991A (en) 1997-09-03 1999-09-07 3M Innovative Properties Company Method for knurling a workpiece
CN100563935C (zh) 2007-05-23 2009-12-02 江苏天一超细金属粉末有限公司 一种使磨料颗粒均匀分布/有序排列/择优取向的方法和装置
WO2009085841A2 (en) 2007-12-27 2009-07-09 3M Innovative Properties Company Shaped, fractured abrasive particle, abrasive article using same and method of making
US8142532B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with an opening
KR101691240B1 (ko) 2008-12-17 2016-12-29 쓰리엠 이노베이티브 프로퍼티즈 컴파니 홈을 갖는 성형된 연마 입자
US8142531B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with a sloping sidewall
US8142891B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Dish-shaped abrasive particles with a recessed surface
US10137556B2 (en) 2009-06-22 2018-11-27 3M Innovative Properties Company Shaped abrasive particles with low roundness factor
US9447311B2 (en) 2009-12-02 2016-09-20 3M Innovative Properties Company Dual tapered shaped abrasive particles
CN103025490B (zh) * 2010-08-04 2016-05-11 3M创新有限公司 相交平板成形磨粒
BR112013019401B1 (pt) 2011-02-16 2021-09-28 3M Innovative Properties Company Artigos abrasivos revestidos
CN109890930B (zh) 2016-10-25 2021-03-16 3M创新有限公司 可磁化磨料颗粒及其制备方法
US11072732B2 (en) 2016-10-25 2021-07-27 3M Innovative Properties Company Magnetizable abrasive particles and abrasive articles including them
EP3559142A4 (en) 2016-10-25 2020-12-09 3M Innovative Properties Company AGGLOMERATED MAGNETISABLE ABRASIVE PARTICLES, ABRASIVE ARTICLES AND THEIR MANUFACTURING PROCESSES
US11484990B2 (en) 2016-10-25 2022-11-01 3M Innovative Properties Company Bonded abrasive wheel and method of making the same
US20190262973A1 (en) 2016-10-25 2019-08-29 3M Innovative Properties Company Bonded abrasive wheel and method of making the same
US10774251B2 (en) 2016-10-25 2020-09-15 3M Innovative Properties Company Functional abrasive particles, abrasive articles, and methods of making the same
WO2018080765A1 (en) 2016-10-25 2018-05-03 3M Innovative Properties Company Structured abrasive articles and methods of making the same
CN110198810A (zh) 2017-01-19 2019-09-03 3M创新有限公司 可磁化磨料颗粒的磁性辅助转移及其相关的方法、装置和系统
US20190344403A1 (en) 2017-01-19 2019-11-14 3M Innovative Properties Company Use of magnetics with magnetizable abrasive particles, methods, apparatuses and systems using magnetics to make abrasive articles
WO2018136269A1 (en) 2017-01-23 2018-07-26 3M Innovative Properties Company Magnetically assisted disposition of magnetizable abrasive particles
CN112020407A (zh) 2018-04-24 2020-12-01 3M创新有限公司 带涂层磨料制品及其制造方法
EP3784435B1 (en) 2018-04-24 2023-08-23 3M Innovative Properties Company Method of making a coated abrasive article
US20210046612A1 (en) 2018-04-24 2021-02-18 3M Innovative Properties Company Method of making a coated abrasive article

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994002559A1 (en) * 1992-07-23 1994-02-03 Minnesota Mining And Manufacturing Company Shaped abrasive particles and method of making same
CN1081948A (zh) * 1992-07-23 1994-02-16 明尼苏达矿产制造公司 定型磨粒及其制造方法
US5984988A (en) * 1992-07-23 1999-11-16 Minnesota Minning & Manufacturing Company Shaped abrasive particles and method of making same
US20020026752A1 (en) * 1996-09-11 2002-03-07 Minnesota Mining And Manufacturing Company Abrasive article and method of making
CN102281992A (zh) * 2008-12-17 2011-12-14 3M创新有限公司 制造磨料碎片、带开口的成形磨粒或碟形磨粒的方法
CN103189164A (zh) * 2010-11-01 2013-07-03 3M创新有限公司 用于制备成形陶瓷磨粒的激光法、成形陶瓷磨粒以及磨料制品
US20160186028A1 (en) * 2014-12-24 2016-06-30 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
CN109863568A (zh) * 2016-10-25 2019-06-07 3M创新有限公司 制备可磁化磨料颗粒的方法
CN110582377A (zh) * 2016-12-21 2019-12-17 3M创新有限公司 用于分配不同的多个磨料颗粒以制备磨料制品的系统、方法和工具
WO2018136268A1 (en) * 2017-01-19 2018-07-26 3M Innovative Properties Company Manipulation of magnetizable abrasive particles with modulation of magnetic field angle or strength

Also Published As

Publication number Publication date
EP4139088A1 (en) 2023-03-01
WO2021214605A1 (en) 2021-10-28
US20230211470A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
CN115485100A (zh) 成形磨料颗粒
US20220396722A1 (en) Shaped abrasive particles with concave void within one of the plurality of edges
CN112969769B (zh) 具有预定倾角的四面体成形磨料颗粒
CN112041120B (zh) 包含具有预定倾角的成形磨料颗粒的磨料制品
CN113195163B (zh) 具有经微粒涂覆的磨粒的磨料制品
CN113710767B (zh) 部分成形磨料颗粒、制造方法和包含该部分成形磨料颗粒的制品
US20220315820A1 (en) Shaped abrasive particles with sharp edges, methods of manufacturing and articles containing the same
US10137556B2 (en) Shaped abrasive particles with low roundness factor
US20220055185A1 (en) Coated abrasive article having spacer particles, making method and apparatus therefor
CN113226650A (zh) 带有锯齿的成形磨料颗粒及其制造方法
US20220033699A1 (en) Self-orienting shaped abrasive particles
US20230294247A1 (en) Shaped abrasive particles and methods of manufacture the same
US20230220255A1 (en) Incomplete polygonal shaped abrasive particles, methods of manufacture and articles containing the same
US20230332029A1 (en) Abrasive particles
CN113227308A (zh) 回填以固定磨料结构的取向
WO2020128857A1 (en) Staggered linear pattern for abrasive articles
WO2023209518A1 (en) Abrasive articles, methods of manufacture and use thereof
WO2022221646A1 (en) Lineal aligned abrasive particle structures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination