CN115473020B - A multi-layer packaged three-band SIW balanced bandpass filter - Google Patents
A multi-layer packaged three-band SIW balanced bandpass filter Download PDFInfo
- Publication number
- CN115473020B CN115473020B CN202211303670.1A CN202211303670A CN115473020B CN 115473020 B CN115473020 B CN 115473020B CN 202211303670 A CN202211303670 A CN 202211303670A CN 115473020 B CN115473020 B CN 115473020B
- Authority
- CN
- China
- Prior art keywords
- dielectric substrate
- metal layer
- holes
- metal
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002184 metal Substances 0.000 claims abstract description 145
- 239000000758 substrate Substances 0.000 claims abstract description 132
- 238000010168 coupling process Methods 0.000 claims abstract description 54
- 238000005859 coupling reaction Methods 0.000 claims abstract description 54
- 230000008878 coupling Effects 0.000 claims description 53
- 230000005540 biological transmission Effects 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 12
- 238000001914 filtration Methods 0.000 abstract description 9
- 230000007613 environmental effect Effects 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 8
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/201—Filters for transverse electromagnetic waves
- H01P1/203—Strip line filters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本申请公开了一种多层封装三通带SIW平衡带通滤波器,包括第一金属层、第一介质基板、第二金属层、第二介质基板、第三金属层、第三介质基板和第四金属层,第一金属层设置有差分输入端口和输出端口;第一介质基板设置于第一金属层下表面;第二金属层设置于第一介质基板下表面;第二介质基板设置于第二金属层下表面;第三金属层设置于第二介质基板下表面;第三介质基板设置于第三金属层下表面;第四金属层设置于第三介质基板下表面。通过设置差分输入端口、差分输出端口,得到平衡电路,能够降低通信系统中的电磁干扰、环境噪声;同时,利用多层结构能够进一步减小滤波器的尺寸,此外,该结构成功构建了分列式耦合拓扑,实现了三通带滤波效果。
The present application discloses a multi-layer packaged three-passband SIW balanced bandpass filter, including a first metal layer, a first dielectric substrate, a second metal layer, a second dielectric substrate, a third metal layer, a third dielectric substrate and a fourth metal layer, wherein the first metal layer is provided with a differential input port and an output port; the first dielectric substrate is provided on the lower surface of the first metal layer; the second metal layer is provided on the lower surface of the first dielectric substrate; the second dielectric substrate is provided on the lower surface of the second metal layer; the third metal layer is provided on the lower surface of the second dielectric substrate; the third dielectric substrate is provided on the lower surface of the third metal layer; and the fourth metal layer is provided on the lower surface of the third dielectric substrate. By providing a differential input port and a differential output port, a balanced circuit is obtained, which can reduce electromagnetic interference and environmental noise in a communication system; at the same time, the multi-layer structure can further reduce the size of the filter. In addition, the structure successfully constructs a column-coupling topology and achieves a three-passband filtering effect.
Description
技术领域Technical Field
本申请涉及微波无源器件领域,特别是一种多层封装三通带SIW平衡带通滤波器。The present application relates to the field of microwave passive devices, and in particular to a multi-layer packaged three-passband SIW balanced bandpass filter.
背景技术Background technique
随着现代无线通信系统的飞速发展,基片集成波导(SIW)滤波电路被广泛关注,它有低损耗、低成本、高功率容量和高品质因数等诸多优点。同时,基于SIW的平衡滤波电路能够有效抑制噪声、以及抗电磁干扰。利用多层封装SIW设计的多通带平衡带通滤波器可以使所设计的滤波器具有更紧凑的尺寸,而且更适应当今无线通信系统多频段、多标准、多应用的工作需求。With the rapid development of modern wireless communication systems, substrate integrated waveguide (SIW) filter circuits have attracted extensive attention. They have many advantages such as low loss, low cost, high power capacity and high quality factor. At the same time, the balanced filter circuit based on SIW can effectively suppress noise and resist electromagnetic interference. The multi-passband balanced bandpass filter designed by multi-layer package SIW can make the designed filter have a more compact size and better adapt to the multi-band, multi-standard and multi-application working requirements of today's wireless communication systems.
发明内容Summary of the invention
本申请的目的是为了设计一种平衡功能、三通带滤波功能于一体的新型射频器件,其中所述器件包括介质基板、金属面、金属通孔、微扰金属通孔、能量耦合孔等。因此本申请设计了一种多层封装三通带SIW平衡带通滤波器,其基于多模谐振腔、分裂式耦合拓扑以及多层物理结构,这种设计能使滤波器尺寸更小,灵活性更高,集成度更高,并能减少通信系统中电磁干扰,抑制环境噪声。The purpose of this application is to design a new type of radio frequency device with a balancing function and a three-passband filtering function, wherein the device includes a dielectric substrate, a metal surface, a metal through hole, a perturbation metal through hole, an energy coupling hole, etc. Therefore, this application designs a multi-layer packaged three-passband SIW balanced bandpass filter, which is based on a multi-mode resonant cavity, a split coupling topology, and a multi-layer physical structure. This design can make the filter smaller in size, more flexible, and more integrated, and can reduce electromagnetic interference in communication systems and suppress environmental noise.
为了实现上述目的,本发明的技术方案如下:多层封装三通带SIW平衡带通滤波器,包括:第一金属层,所述第一金属层上设置有差分输入端口和差分输出端口,用于实现能量传输;第一介质基板,所述第一介质基板在所述第一金属层的下表面设置;第二金属层,所述第二金属层在所述第一介质基板的下表面设置;第二介质基板,所述第二介质基板在所述第二金属层的下表面设置;第三金属层,所述第三金属层在所述第二介质基板的下表面设置;第三介质基板,所述第三介质基板在所述第三金属层的下表面设置;第四金属层,所述第四金属层在所述第三介质基板的下表面设置;所述第一金属层、第一介质基板、第二金属层、第二介质基板,第三金属层、第三介质基板和第四金属层以多层形式、中心堆叠设置。In order to achieve the above-mentioned purpose, the technical scheme of the present invention is as follows: a multi-layer packaged three-passband SIW balanced bandpass filter, comprising: a first metal layer, on which a differential input port and a differential output port are arranged for realizing energy transmission; a first dielectric substrate, on which the first dielectric substrate is arranged on the lower surface of the first metal layer; a second metal layer, on which the second metal layer is arranged on the lower surface of the first dielectric substrate; a second dielectric substrate, on which the second dielectric substrate is arranged on the lower surface of the second metal layer; a third metal layer, on which the third metal layer is arranged on the lower surface of the second dielectric substrate; a third dielectric substrate, on which the third dielectric substrate is arranged on the lower surface of the third metal layer; a fourth metal layer, on which the fourth metal layer is arranged on the lower surface of the third dielectric substrate; the first metal layer, the first dielectric substrate, the second metal layer, the second dielectric substrate, the third metal layer, the third dielectric substrate and the fourth metal layer are arranged in a multi-layer form and centrally stacked.
按照本申请的实施方式,所述多层封装三通带SIW平衡带通滤波器至少有以下有益效果:将差分输入端口,差分输出端口布置于第一金属层上,获得平衡滤波功能电路,因此可以减小通信系统中电磁干扰,抑制环境噪声,并利用多模特性及多层结构对滤波器进一步小型化,此外,所形成的分裂式耦合拓扑可实现三通带滤波响应。According to the implementation mode of the present application, the multi-layer packaged three-band SIW balanced bandpass filter has at least the following beneficial effects: the differential input port and the differential output port are arranged on the first metal layer to obtain a balanced filtering functional circuit, thereby reducing electromagnetic interference in the communication system, suppressing environmental noise, and further miniaturizing the filter by utilizing multi-mode characteristics and a multi-layer structure. In addition, the split coupling topology formed can achieve a three-band filtering response.
根据本申请的一些实施例,所述第二金属层上设置有两个第一能量耦合孔,所述第一能量耦合孔关于轴线A1A2对称布置,且均设置在轴线B1B2上,以实现能量从第一介质基板向第二介质基板的传输;所述第三金属层上设置有两个第二能量耦合孔,所述第二能量耦合孔关于轴线A1A2对称布置,且均设置在轴线B1B2上,以实现能量从第二介质基板向第三介质基板的传输。此外,为了实现能量的最大化耦合和传输,所述第一能量耦合孔和第二能量耦合孔的形状均设置为矩形且位于谐振模式磁场最强处以实现磁耦合。According to some embodiments of the present application, two first energy coupling holes are provided on the second metal layer, and the first energy coupling holes are arranged symmetrically about the axis A1A2, and are both arranged on the axis B1B2, so as to realize the transmission of energy from the first dielectric substrate to the second dielectric substrate; two second energy coupling holes are provided on the third metal layer, and the second energy coupling holes are arranged symmetrically about the axis A1A2, and are both arranged on the axis B1B2, so as to realize the transmission of energy from the second dielectric substrate to the third dielectric substrate. In addition, in order to realize the maximum coupling and transmission of energy, the shapes of the first energy coupling hole and the second energy coupling hole are both set to be rectangular and are located at the strongest magnetic field of the resonant mode to realize magnetic coupling.
根据本申请的一些实施例,所述第一能量耦合孔的孔长为3.9mm,孔宽为0.8mm,所述第二能量耦合孔的孔长为3.2mm,孔宽为0.8mm;该能量耦合孔是为了使两层相邻的谐振器耦合。通过仿真优化,对于本设计来说这样的尺寸耦合效果最好。According to some embodiments of the present application, the first energy coupling hole has a hole length of 3.9 mm and a hole width of 0.8 mm, and the second energy coupling hole has a hole length of 3.2 mm and a hole width of 0.8 mm; the energy coupling hole is used to couple two adjacent layers of resonators. Through simulation optimization, such a size coupling effect is the best for this design.
根据本申请的一些实施例,所述第一介质基板、第二介质基板、第三介质基板均设置有多个金属通孔,分别设置在第一介质基板、第二介质基板、第三介质基板四周,呈矩形排列。金属通孔呈矩形排列,能够限制介质基板里的电磁波向周围扩散,即防止电磁波泄露。According to some embodiments of the present application, the first dielectric substrate, the second dielectric substrate, and the third dielectric substrate are all provided with a plurality of metal through holes, which are respectively arranged around the first dielectric substrate, the second dielectric substrate, and the third dielectric substrate in a rectangular arrangement. The metal through holes are arranged in a rectangular shape, which can limit the electromagnetic waves in the dielectric substrate from spreading to the surroundings, that is, prevent the electromagnetic waves from leaking.
根据本申请的一些实施例,所述第一介质基板开设有四个第一微扰金属通孔。所述第二介质基板开设有六个第二微扰金属通孔。所述第三介质基板开设有六个第三微扰金属通孔,所述微扰金属通孔均设置在轴线A1A2上。TE201模式与TE202模式的谐振频率不同,通过设置微扰金属通孔,能够使TE201模式的谐振频率增加的同时保证TE202模式的谐振频率保持不变。According to some embodiments of the present application, the first dielectric substrate is provided with four first perturbation metal through holes. The second dielectric substrate is provided with six second perturbation metal through holes. The third dielectric substrate is provided with six third perturbation metal through holes, and the perturbation metal through holes are all arranged on the axis A1A2. The resonant frequencies of the TE201 mode and the TE202 mode are different. By providing the perturbation metal through holes, the resonant frequency of the TE201 mode can be increased while the resonant frequency of the TE202 mode is kept unchanged.
根据本申请的一些实施例,所述第一微扰金属通孔直径为0.6mm,所述第二微扰金属通孔、第三微扰金属通孔的直径均为1.2mm。According to some embodiments of the present application, the diameter of the first perturbation metal via is 0.6 mm, and the diameters of the second perturbation metal via and the third perturbation metal via are both 1.2 mm.
根据本申请的一些实施例,所述差分输入端口和所述差分输出端口的数量为两个,均设置于所述第一金属层轴线A1A2的同一侧,同时关于第一金属层轴线B1B2对称;所述差分输入端口与所述差分输出端口关于所述第一金属层的轴线A1A2对称。为了实现平衡功能,并结合谐振模式的相位特性,这是差分输入/输出端口最合适的设置方式。According to some embodiments of the present application, the number of the differential input port and the differential output port is two, both of which are arranged on the same side of the axis A1A2 of the first metal layer and symmetrical about the axis B1B2 of the first metal layer; the differential input port and the differential output port are symmetrical about the axis A1A2 of the first metal layer. In order to achieve a balancing function and combine the phase characteristics of the resonant mode, this is the most appropriate setting method for the differential input/output port.
根据本申请的一些实施例,所述差分输入端口由差分输入馈线以及共面波导结构组成,所述差分输出端口由差分输出馈线以及共面波转换结构组成,其中差分输入馈线用于将能量从差分输入端口传输到SIW谐振腔,差分输出馈线用于将能量从SIW谐振腔传输到差分输出端口。此外,共面波导结构用于连接差分馈线和SIW谐振腔,以获得二者的匹配,差分馈线具有50欧姆的阻抗,SIW谐振腔也具有一定的阻抗,使用共面波导结构连接差分馈线和SIW谐振腔可以实现它们之间的阻抗匹配。According to some embodiments of the present application, the differential input port is composed of a differential input feeder and a coplanar waveguide structure, and the differential output port is composed of a differential output feeder and a coplanar wave conversion structure, wherein the differential input feeder is used to transfer energy from the differential input port to the SIW resonant cavity, and the differential output feeder is used to transfer energy from the SIW resonant cavity to the differential output port. In addition, the coplanar waveguide structure is used to connect the differential feeder and the SIW resonant cavity to obtain matching between the two, the differential feeder has an impedance of 50 ohms, and the SIW resonant cavity also has a certain impedance. Using the coplanar waveguide structure to connect the differential feeder and the SIW resonant cavity can achieve impedance matching between them.
根据本申请的一些实施例,所述差分输入馈线与所述差分输出馈线的宽度相等,均为1.55mm。这个1.55mm是常规设置。测量仪器的端口阻抗是50欧姆,为了使差分馈线阻抗也为50欧姆,需把馈线宽度设置为1.55mm。According to some embodiments of the present application, the width of the differential input feeder is equal to that of the differential output feeder, both of which are 1.55 mm. This 1.55 mm is a conventional setting. The port impedance of the measuring instrument is 50 ohms. In order to make the differential feeder impedance also 50 ohms, the feeder width needs to be set to 1.55 mm.
根据本申请的一些实施例,所述第一介质基板、第一介质基板、所述第三介质基板的材料均为Rogers 5880基板;其中,所述基板的相对介电常数为2.2,所述基板的厚度为0.508mm。According to some embodiments of the present application, the materials of the first dielectric substrate, the second dielectric substrate, and the third dielectric substrate are all Rogers 5880 substrates; wherein the relative dielectric constant of the substrate is 2.2, and the thickness of the substrate is 0.508 mm.
相对于现有技术,本发明的优点如下:1)该方案通过设置差分输入端口、差分输出端口,得到平衡电路,从而能够降低通信系统中的电磁干扰、环境噪声;同时,利用多层结构能够进一步减小滤波器的尺寸,2)该结构成功构建了分列式耦合拓扑,实现了三通带滤波效果,更加符合当今无线通信系统多频段、多标准、多应用的工作需求;3)该方案采用多层结构:能够有效缩减器件尺寸,符合无线通信系统小型化的需求;4)平衡功能植入:通过设置差分输入、输出端口能够实现平衡功能,进而能够有效降低通信系统中的电磁干扰、环境噪声;5)多通带滤波性能:现代无线通信系统具有多频段、多标准、多应用的工作特点,本专利所实现的三通带滤波效果更符合现代无线通信系统的应用场景。Compared with the prior art, the advantages of the present invention are as follows: 1) The scheme obtains a balanced circuit by setting a differential input port and a differential output port, thereby reducing electromagnetic interference and environmental noise in the communication system; at the same time, the use of a multi-layer structure can further reduce the size of the filter; 2) The structure successfully constructs a column-type coupling topology and realizes a three-band filtering effect, which is more in line with the multi-band, multi-standard, and multi-application working requirements of today's wireless communication systems; 3) The scheme adopts a multi-layer structure: it can effectively reduce the size of the device and meet the needs of miniaturization of wireless communication systems; 4) Balancing function implantation: by setting differential input and output ports, the balancing function can be achieved, thereby effectively reducing electromagnetic interference and environmental noise in the communication system; 5) Multi-band filtering performance: modern wireless communication systems have the working characteristics of multi-band, multi-standard, and multi-application. The three-band filtering effect achieved by this patent is more in line with the application scenarios of modern wireless communication systems.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
下面结合附图和实施例对本申请做进一步的说明,其中:The present application is further described below with reference to the accompanying drawings and embodiments, wherein:
图1为本申请实施例一种多层封装三通带SIW平衡带通滤波器的结构示意图;FIG1 is a schematic structural diagram of a multi-layer packaged three-band SIW balanced bandpass filter according to an embodiment of the present application;
图2为图1中第一金属层和第一介质基板的结构示意图;FIG2 is a schematic structural diagram of the first metal layer and the first dielectric substrate in FIG1 ;
图3为图1中第二金属层的结构示意图;FIG3 is a schematic structural diagram of the second metal layer in FIG1 ;
图4为图1中第二介质基板的结构示意图;FIG4 is a schematic structural diagram of the second dielectric substrate in FIG1 ;
图5为图1中第三金属层的结构示意图;FIG5 is a schematic diagram of the structure of the third metal layer in FIG1 ;
图6为图1中第三介质基板的结构示意图;FIG6 is a schematic structural diagram of the third dielectric substrate in FIG1 ;
图7为图1中第四金属层的结构示意图;FIG7 is a schematic structural diagram of the fourth metal layer in FIG1 ;
图8为该实施例的仿真S参数曲线图。FIG. 8 is a simulation S parameter curve diagram of this embodiment.
附图标记:Reference numerals:
第一金属层100、差分输入端口111和112、第一差分输入馈线1111、第二差分输入馈线1112、差分输出端口113和114、第一差分输出馈线1113、第二差分输出馈线1114、第一介质基板200、第一金属通孔201、第一微扰金属通孔202、第二金属层300、第一能量耦合孔301、第二介质基板400、第二金属通孔401、第二微扰金属通孔402、第三金属层500、第二能量耦合孔501、第三介质基板600、第三金属通孔601、第三微扰金属通孔602、第四金属层700、共面波导结构800。A first metal layer 100, differential input ports 111 and 112, a first differential input feed line 1111, a second differential input feed line 1112, differential output ports 113 and 114, a first differential output feed line 1113, a second differential output feed line 1114, a first dielectric substrate 200, a first metal via 201, a first perturbation metal via 202, a second metal layer 300, a first energy coupling hole 301, a second dielectric substrate 400, a second metal via 401, a second perturbation metal via 402, a third metal layer 500, a second energy coupling hole 501, a third dielectric substrate 600, a third metal via 601, a third perturbation metal via 602, a fourth metal layer 700, and a coplanar waveguide structure 800.
具体实施方式Detailed ways
为了加深对本发明的认识和理解,下面结合附图和具体实施方式进一步介绍该方案。In order to deepen the recognition and understanding of the present invention, the scheme is further introduced below in conjunction with the accompanying drawings and specific implementation methods.
实施例1:下面参考图1描述根据本申请实施例的多层封装三通带SIW平衡带通滤波器。Embodiment 1: The following describes a multi-layer packaged three-band SIW balanced bandpass filter according to an embodiment of the present application with reference to FIG. 1 .
如图1所示,根据本申请实施例的多层封装三通带SIW平衡带通滤波器,包括第一金属层100、第一介质基板200、第二金属层300、第二介质基板400、第三金属层500、第三介质基板600和第四金属层700。As shown in FIG. 1 , the multi-layer packaged three-band SIW balanced bandpass filter according to an embodiment of the present application includes a first metal layer 100 , a first dielectric substrate 200 , a second metal layer 300 , a second dielectric substrate 400 , a third metal layer 500 , a third dielectric substrate 600 and a fourth metal layer 700 .
第一金属层100设置有差分输入端口111和112,差分输出端口113和114,差分输入端口用以实现接收输入信号的功能,查分输出端口用以实现传出输出信号的功能;第一介质基板200设置于第一金属层100的下表面;第二金属层300设置于第一介质基板200的下表面;第二介质基板400设置于第二金属层300的下表面;第三金属层500设置于第二介质基板400的下表面;第三介质基板600设置于第三金属层500的下表面;第四金属层700设置于第三介质基板600的下表面;其中,第一金属层100、第一介质基板200、第二金属层300、第二介质基板400,第三金属层500、第三介质基板600和第四金属层700以多层形式、中心堆叠设置。The first metal layer 100 is provided with differential input ports 111 and 112, and differential output ports 113 and 114. The differential input ports are used to realize the function of receiving input signals, and the differential output ports are used to realize the function of transmitting output signals. The first dielectric substrate 200 is provided on the lower surface of the first metal layer 100; the second metal layer 300 is provided on the lower surface of the first dielectric substrate 200; the second dielectric substrate 400 is provided on the lower surface of the second metal layer 300; the third metal layer 500 is provided on the lower surface of the second dielectric substrate 400; the third dielectric substrate 600 is provided on the lower surface of the third metal layer 500; and the fourth metal layer 700 is provided on the lower surface of the third dielectric substrate 600; wherein the first metal layer 100, the first dielectric substrate 200, the second metal layer 300, the second dielectric substrate 400, the third metal layer 500, the third dielectric substrate 600 and the fourth metal layer 700 are provided in a multi-layer form and centrally stacked.
根据本申请实施例的多层封装三通带SIW平衡带通滤波器,通过在第一金属层100设置差分输入端口111和112、差分输出端口113和114,得到平衡电路,从而减小通信系统中电磁干扰,抑制环境噪声,并利用多模特性及多层结构对滤波器进一步小型化。According to the multi-layer packaged three-band SIW balanced bandpass filter of the embodiment of the present application, a balanced circuit is obtained by setting differential input ports 111 and 112 and differential output ports 113 and 114 on the first metal layer 100, thereby reducing electromagnetic interference in the communication system, suppressing environmental noise, and further miniaturizing the filter by utilizing multi-mode characteristics and a multi-layer structure.
在本申请的一些实施例中,如图1所示,第二金属层300设置有两个第一能量耦合孔301。所述两个第一能量耦合孔301关于轴线A1A2对称,此外,所述两个第一能量耦合孔301设置在轴线B1B2上,所述第一能量耦合孔实现能量从第一介质基板200向第二介质基板400的传输;所述第三金属层500设置有两条第二能量耦合孔501。所述第二能量耦合孔501关于轴线A1A2对称,此外,所述两个第二能量耦合孔501设置在轴线B1B2上,所述第二能量耦合孔实现能量从第二介质基板400向第三介质基板600的传输。其中,第一能量耦合孔301和第二能量耦合孔501设置于TE201模式和TE202模式磁场最强的位置,能够实现第一介质基板200、第二介质基板400以及第三介质基板600之间的磁耦合,从而实现顶层与底层之间的信号传输。此外,将第一能量耦合孔301、第二能量耦合孔501的数量均设置为两个,在实现良好信号传输功能的同时,能够降低加工的难度。In some embodiments of the present application, as shown in FIG1 , the second metal layer 300 is provided with two first energy coupling holes 301. The two first energy coupling holes 301 are symmetrical about the axis A1A2. In addition, the two first energy coupling holes 301 are arranged on the axis B1B2, and the first energy coupling holes realize the transmission of energy from the first dielectric substrate 200 to the second dielectric substrate 400; the third metal layer 500 is provided with two second energy coupling holes 501. The second energy coupling holes 501 are symmetrical about the axis A1A2. In addition, the two second energy coupling holes 501 are arranged on the axis B1B2, and the second energy coupling holes realize the transmission of energy from the second dielectric substrate 400 to the third dielectric substrate 600. The first energy coupling holes 301 and the second energy coupling holes 501 are arranged at the positions where the magnetic fields of the TE 201 mode and the TE 202 mode are the strongest, so as to realize the magnetic coupling between the first dielectric substrate 200, the second dielectric substrate 400 and the third dielectric substrate 600, thereby realizing the signal transmission between the top layer and the bottom layer. In addition, the number of the first energy coupling hole 301 and the number of the second energy coupling hole 501 are both set to two, which can reduce the difficulty of processing while achieving a good signal transmission function.
在本申请的一些实施例中,如图3和图5所示,第一能量耦合孔301、第二能量耦合孔501包括两条矩形的能量耦合孔,第一能量耦合孔的孔长为3.9mm,孔宽为0.8mm,第二能量耦合孔的孔长为3.2mm,孔宽为0.8mm。此外,第一能量耦合孔301的内侧到轴线A1A2的距离ls为3.05mm,第二能量耦合孔501的内侧到轴线A1A2的距离lss为3.6mm。In some embodiments of the present application, as shown in FIG3 and FIG5, the first energy coupling hole 301 and the second energy coupling hole 501 include two rectangular energy coupling holes, the first energy coupling hole has a hole length of 3.9 mm and a hole width of 0.8 mm, and the second energy coupling hole has a hole length of 3.2 mm and a hole width of 0.8 mm. In addition, the distance ls from the inner side of the first energy coupling hole 301 to the axis A1A2 is 3.05 mm, and the distance lss from the inner side of the second energy coupling hole 501 to the axis A1A2 is 3.6 mm.
在本申请的一些实施例中,如图1、图2、图4和图6所示,第一介质基板200开设有多个第一金属通孔201和四个第一微扰金属通孔202,多个第一金属通孔201均设置在第一介质基板200的四周,呈矩形分布,四个微扰金属通孔设置在轴线A1A2上,相对于轴线B1B2两边各两个分布;第二介质基板400开设有多个第二金属通孔401和六个第二微扰金属通孔402,多个第二金属通孔401均设置在第二介质基板400的四周,呈矩形分布,六个微扰金属通孔设置在轴线A1A2上,相对于轴线B1B2两边各三个分布;第三介质基板600开设有多个第三金属通孔601和六个第三微扰金属通孔602,多个第三金属孔601均设置在第三介质基板600的四周,呈矩形分布,六个微扰金属通孔设置在轴线A1A2上,相对于轴线B1B2两边各三个分布。通过设置第一金属通孔201、第二金属通孔401和第三金属通孔601,能够限制电磁波,第一金属通孔201、第二金属通孔401和第三金属通孔601与第一介质基板200、第二介质基板400,第三介质基板600、第一金属层100、第四金属层700之间会形成矩形基片集成波导谐振腔,从而激发谐振模式,实现滤波效果。其中,第一金属通孔201的直径d为0.6mm,相邻两个第一金属通孔201之间的距离p为1mm,第二金属通孔401和第三金属通孔601的参数与第一金属通孔201的参数相同。In some embodiments of the present application, as shown in Figures 1, 2, 4 and 6, the first dielectric substrate 200 is provided with a plurality of first metal through holes 201 and four first perturbation metal through holes 202, the plurality of first metal through holes 201 are all arranged around the first dielectric substrate 200, in a rectangular distribution, and the four perturbation metal through holes are arranged on the axis A1A2, with two distributions on each side of the axis B1B2; the second dielectric substrate 400 is provided with a plurality of second metal through holes 401 and six second perturbation metal through holes 402, the plurality of second metal through holes 401 are all arranged around the second dielectric substrate 400, in a rectangular distribution, and the six perturbation metal through holes are arranged on the axis A1A2, with three distributions on each side of the axis B1B2; the third dielectric substrate 600 is provided with a plurality of third metal through holes 601 and six third perturbation metal through holes 602, the plurality of third metal holes 601 are all arranged around the third dielectric substrate 600, in a rectangular distribution, and the six perturbation metal through holes are arranged on the axis A1A2, with three distributions on each side of the axis B1B2. By providing the first metal through hole 201, the second metal through hole 401 and the third metal through hole 601, electromagnetic waves can be limited. A rectangular substrate integrated waveguide resonant cavity is formed between the first metal through hole 201, the second metal through hole 401 and the third metal through hole 601 and the first dielectric substrate 200, the second dielectric substrate 400, the third dielectric substrate 600, the first metal layer 100 and the fourth metal layer 700, thereby exciting a resonant mode and achieving a filtering effect. Among them, the diameter d of the first metal through hole 201 is 0.6 mm, the distance p between two adjacent first metal through holes 201 is 1 mm, and the parameters of the second metal through hole 401 and the third metal through hole 601 are the same as those of the first metal through hole 201.
在本申请的一些实施例中,如图1、图2、图4和图6所示,第一微扰金属通孔202直径为0.6mm,第二微扰金属通孔402、第三微扰金属通孔602直径为1.2mm。三通带SIW平衡带通滤波器主要通过激励第一介质基板200、第二介质基板400、第三介质基板600所形成腔体内TE201和TE202模式以实现所需功能。四个第一微扰金属通孔202位于TE201模式的强电场区域,增加了TE201模式的谐振频率。同时,四个第一微扰金属通孔202位于TE202模式的弱电场区域,TE202模式的谐振频率保持不变,控制TE201和TE202模式的谐振频率以实现带通响应。六个第二微扰金属通孔402和六个第三微扰金属通孔602工作原理与第一微扰金属通孔202相同,但它们所实现的是带阻响应。带通响应和带阻响应结合以构成分裂式耦合拓扑,实现三通带滤波响应。In some embodiments of the present application, as shown in FIG. 1 , FIG. 2 , FIG. 4 and FIG. 6 , the diameter of the first perturbation metal through hole 202 is 0.6 mm, and the diameter of the second perturbation metal through hole 402 and the third perturbation metal through hole 602 is 1.2 mm. The three-band SIW balanced bandpass filter mainly realizes the desired function by exciting the TE 201 and TE 202 modes in the cavity formed by the first dielectric substrate 200 , the second dielectric substrate 400 and the third dielectric substrate 600 . The four first perturbation metal through holes 202 are located in the strong electric field region of the TE 201 mode, which increases the resonant frequency of the TE 201 mode. At the same time, the four first perturbation metal through holes 202 are located in the weak electric field region of the TE 202 mode, and the resonant frequency of the TE 202 mode remains unchanged, and the resonant frequencies of the TE 201 and TE 202 modes are controlled to achieve a bandpass response. The working principle of the six second perturbation metal through holes 402 and the six third perturbation metal through holes 602 is the same as that of the first perturbation metal through hole 202, but what they realize is a band-stop response. The passband response and the stopband response are combined to form a split-coupled topology to achieve a three-passband filtering response.
在本申请的一些实施例中,如图1和图2所示,差分输入端口111和112设置于第一金属层100轴线A1A2的同一侧;差分输出端口113和114设置于第一金属层100轴线A1A2的同一侧;其中,差分输入端口111和112与差分输出端口113和114关于第一金属层100的轴线A1A2对称。In some embodiments of the present application, as shown in Figures 1 and 2, differential input ports 111 and 112 are arranged on the same side of the axis A1A2 of the first metal layer 100; differential output ports 113 and 114 are arranged on the same side of the axis A1A2 of the first metal layer 100; wherein the differential input ports 111 and 112 are symmetrical with the differential output ports 113 and 114 about the axis A1A2 of the first metal layer 100.
在本申请的一些实施例中,如图1、图2所示,所述差分输入端口111和112包括差分输入馈线1111、1112和共面波导结构800,差分输出端口113和114包括差分输出馈线1113、1114和共面波导结构800,所述差分输入端口111和112用于接收信号,所述差分输入馈线1111和1112用于将能量从差分输入端口111和112传输到第一介质基板200,所述差分输出端口113和114用于将所述信号传出,所述差分输出馈线1113和1114用于将能量从第一介质基板200传输到差分输出端口113和114。此外,所述共面波导结构800用于连接差分馈线1111、1112、1113、1114和由第一金属层100、第一介质基板200、第二金属层300、第一金属通孔201结合形成的SIW谐振腔,以获得二者的匹配。In some embodiments of the present application, as shown in Figures 1 and 2, the differential input ports 111 and 112 include differential input feeders 1111, 1112 and a coplanar waveguide structure 800, and the differential output ports 113 and 114 include differential output feeders 1113, 1114 and a coplanar waveguide structure 800. The differential input ports 111 and 112 are used to receive signals, and the differential input feeders 1111 and 1112 are used to transfer energy from the differential input ports 111 and 112 to the first dielectric substrate 200. The differential output ports 113 and 114 are used to transmit the signals, and the differential output feeders 1113 and 1114 are used to transfer energy from the first dielectric substrate 200 to the differential output ports 113 and 114. In addition, the coplanar waveguide structure 800 is used to connect the differential feed lines 1111, 1112, 1113, 1114 and the SIW resonant cavity formed by the first metal layer 100, the first dielectric substrate 200, the second metal layer 300 and the first metal through hole 201 to achieve matching between the two.
当差分输入端口111和112被加载差分信号时,第一介质基板200中激励起TE201和TE202模式,并由差分输出端口113和114输出,形成一个宽通带,同时差分信号通过第一能量耦合孔301传输到第二介质基板400,并激励起TE201和TE202模式,第二介质基板400被视为带阻谐振腔,第一介质基板200和第二介质基板400的配合使用能够将上述形成的宽通带分裂为两个窄通带,之后差分信号通过第二能量耦合孔501传输到第三介质基板600,并激励起TE201和TE202模式,第三介质基板600被视为带阻谐振腔,第一介质基板200、第二介质基板400、第三介质基板600的配合使用能够使宽通带分裂为三个窄通带,故本设计最终能够实现三个通带。When the differential input ports 111 and 112 are loaded with differential signals, TE 201 and TE 202 modes are excited in the first dielectric substrate 200 and output from the differential output ports 113 and 114 to form a wide passband. At the same time, the differential signal is transmitted to the second dielectric substrate 400 through the first energy coupling hole 301 and TE 201 and TE 202 modes are excited. The second dielectric substrate 400 is regarded as a band-stop resonant cavity. The first dielectric substrate 200 and the second dielectric substrate 400 are used in combination to split the wide passband formed above into two narrow passbands. Then, the differential signal is transmitted to the third dielectric substrate 600 through the second energy coupling hole 501 and TE 201 and TE 202 modes are excited. The third dielectric substrate 600 is regarded as a band-stop resonant cavity. The first dielectric substrate 200, the second dielectric substrate 400, and the third dielectric substrate 600 are used in combination to split the wide passband into three narrow passbands. Therefore, the design can finally achieve three passbands.
在本申请的一些实施例中,如图2所示,差分输入馈线1111、1112与差分输出馈线1113、1114的宽度相等,且均为1.55mm。In some embodiments of the present application, as shown in FIG. 2 , the widths of the differential input feed lines 1111 , 1112 and the differential output feed lines 1113 , 1114 are equal and are both 1.55 mm.
在本申请的一些实施例中,第一介质基板200、第二介质基板400、第三介质基板600的材料均为Rogers 5880;其中,基板的相对介电常数为2.2,基板的厚度为0.508mm,基板的损耗正切值为0.0009。In some embodiments of the present application, the materials of the first dielectric substrate 200, the second dielectric substrate 400, and the third dielectric substrate 600 are all Rogers 5880; wherein the relative dielectric constant of the substrate is 2.2, the thickness of the substrate is 0.508 mm, and the loss tangent value of the substrate is 0.0009.
在本申请的一些实施例中,如图8所示,多层封装SIW三通带平衡带通滤波器在传输通道(差分输入馈线1111和1112组合激励等幅反相的输入信号、差分输出馈线1113和1114组合激励等幅反相的输出信号)中的工作频率为13.3GHz、13.7GHz、14.2GHz;3-dB通频带相对带宽为2%、1.1%、1.2%。这三个通带内的模拟回波损耗均优于17dB,通带内的插入损耗分别小于0.78dB、1.25dB、1.09dB。第一个通带的共模抑制优于23.5dB,第二个通带的共模抑制优于24.1dB,第三个通带的共模抑制优于24dB。In some embodiments of the present application, as shown in FIG8 , the operating frequencies of the multilayer packaged SIW three-passband balanced bandpass filter in the transmission channel (differential input feed lines 1111 and 1112 combined to excite equal-amplitude inverted input signals, differential output feed lines 1113 and 1114 combined to excite equal-amplitude inverted output signals) are 13.3 GHz, 13.7 GHz, and 14.2 GHz; the 3-dB passband relative bandwidth is 2%, 1.1%, and 1.2%. The simulated return loss in these three passbands is better than 17 dB, and the insertion loss in the passband is less than 0.78 dB, 1.25 dB, and 1.09 dB, respectively. The common-mode rejection of the first passband is better than 23.5 dB, the common-mode rejection of the second passband is better than 24.1 dB, and the common-mode rejection of the third passband is better than 24 dB.
需要说明的是上述实施例,并非用来限定本发明的保护范围,在上述技术方案的基础上所作出的等同变换或替代均落入本发明权利要求所保护的范围。It should be noted that the above embodiments are not intended to limit the protection scope of the present invention, and equivalent changes or substitutions made on the basis of the above technical solutions all fall within the protection scope of the claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211303670.1A CN115473020B (en) | 2022-10-24 | 2022-10-24 | A multi-layer packaged three-band SIW balanced bandpass filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211303670.1A CN115473020B (en) | 2022-10-24 | 2022-10-24 | A multi-layer packaged three-band SIW balanced bandpass filter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115473020A CN115473020A (en) | 2022-12-13 |
CN115473020B true CN115473020B (en) | 2024-05-17 |
Family
ID=84336493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211303670.1A Active CN115473020B (en) | 2022-10-24 | 2022-10-24 | A multi-layer packaged three-band SIW balanced bandpass filter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115473020B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107819180A (en) * | 2017-09-27 | 2018-03-20 | 广东曼克维通信科技有限公司 | Substrate integration wave-guide device and substrate integral wave guide filter |
CN113381140A (en) * | 2021-06-07 | 2021-09-10 | 南京智能高端装备产业研究院有限公司 | Balanced band-pass filter based on single-disturbance one-cavity multi-mode SIW |
CN114388998A (en) * | 2021-12-03 | 2022-04-22 | 广东盛路通信科技股份有限公司 | Balanced Filter Jumpers |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109818142A (en) * | 2018-12-31 | 2019-05-28 | 瑞声科技(南京)有限公司 | A kind of filter antenna |
-
2022
- 2022-10-24 CN CN202211303670.1A patent/CN115473020B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107819180A (en) * | 2017-09-27 | 2018-03-20 | 广东曼克维通信科技有限公司 | Substrate integration wave-guide device and substrate integral wave guide filter |
CN113381140A (en) * | 2021-06-07 | 2021-09-10 | 南京智能高端装备产业研究院有限公司 | Balanced band-pass filter based on single-disturbance one-cavity multi-mode SIW |
CN114388998A (en) * | 2021-12-03 | 2022-04-22 | 广东盛路通信科技股份有限公司 | Balanced Filter Jumpers |
Also Published As
Publication number | Publication date |
---|---|
CN115473020A (en) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109462000B (en) | Multi-layer substrate integrated waveguide third-order filtering power divider | |
CN109301416B (en) | Suspended Substrate Integrated Waveguide Transmission Line | |
CN112290182A (en) | Double-frequency power divider based on substrate integrated coaxial line | |
CN109830789B (en) | Broadband band-pass filter based on folded substrate integrated waveguide and complementary split ring resonator | |
CN108183293A (en) | Plane micro-strip duplexer | |
CN108879043B (en) | Three-mode balance filter adopting coupling branch loading slot line resonance structure | |
CN114597622B (en) | Dual passband balanced filter coupler | |
CN112928409A (en) | Microstrip band-pass filter with wide stop band and high selectivity | |
CN114843773B (en) | An integrated millimeter-wave end-fire filter antenna | |
CN107946710A (en) | Ultra-compact double-frequency bandpass filtering device based on RQMSIW | |
CN111403861B (en) | UIR loaded three-order dual-passband substrate integrated waveguide filter | |
CN111293390B (en) | UIR loaded three-order double-passband substrate integrated waveguide filter | |
CN115473020B (en) | A multi-layer packaged three-band SIW balanced bandpass filter | |
CN114843729B (en) | An unbalanced to balanced millimeter wave substrate integrated waveguide filter power splitter | |
CN114464974B (en) | Circulator with filtering characteristic | |
CN211238454U (en) | UIR loaded three-order dual-passband substrate integrated waveguide filter | |
CN211980841U (en) | An ultra-wideband filter with curved T-shaped structure loaded with double branches | |
CN110137644B (en) | High-selectivity wide-stop-band balance filter based on slot line | |
CN114389002A (en) | SIW filter power divider loaded with complementary stepped folded split ring and design method | |
CN112086717A (en) | Capacitive patch loaded dual-mode substrate integrated waveguide band-pass filter | |
CN112310583A (en) | Three-pass band filter based on T-type dual-mode resonator | |
CN218827755U (en) | A high-selectivity planar dual-cavity dual-mode chip filter | |
CN118137091B (en) | A dual-frequency balanced filter based on a four-mode rectangular resonant cavity | |
CN109728386A (en) | Quad-bandpass filter based on pseudo-interdigital coupling | |
CN116259940B (en) | A dual-passband filter composed of semi-lumped elements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |