CN115469227B - 一种集合变分自编码器与动态规整的锂电池异常检测方法 - Google Patents
一种集合变分自编码器与动态规整的锂电池异常检测方法 Download PDFInfo
- Publication number
- CN115469227B CN115469227B CN202211115206.XA CN202211115206A CN115469227B CN 115469227 B CN115469227 B CN 115469227B CN 202211115206 A CN202211115206 A CN 202211115206A CN 115469227 B CN115469227 B CN 115469227B
- Authority
- CN
- China
- Prior art keywords
- data
- model
- reconstruction
- battery
- dtw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 85
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 43
- 230000005856 abnormality Effects 0.000 title claims description 9
- 238000004220 aggregation Methods 0.000 title 1
- 230000002776 aggregation Effects 0.000 title 1
- 230000002159 abnormal effect Effects 0.000 claims abstract description 95
- 238000012549 training Methods 0.000 claims abstract description 80
- 238000012360 testing method Methods 0.000 claims abstract description 28
- 238000013210 evaluation model Methods 0.000 claims abstract description 27
- 238000010277 constant-current charging Methods 0.000 claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 claims abstract description 17
- 238000007781 pre-processing Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 43
- 238000007600 charging Methods 0.000 claims description 30
- 239000013598 vector Substances 0.000 claims description 30
- 230000008569 process Effects 0.000 claims description 20
- 238000009826 distribution Methods 0.000 claims description 19
- 239000011159 matrix material Substances 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 10
- 238000000605 extraction Methods 0.000 claims description 9
- 230000015654 memory Effects 0.000 claims description 8
- 230000006872 improvement Effects 0.000 claims description 5
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 3
- 230000001976 improved effect Effects 0.000 abstract description 16
- 230000006403 short-term memory Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 238000010801 machine learning Methods 0.000 description 8
- 230000000877 morphologic effect Effects 0.000 description 7
- 238000013528 artificial neural network Methods 0.000 description 5
- 238000013135 deep learning Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000012706 support-vector machine Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000013480 data collection Methods 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000007787 long-term memory Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000013450 outlier detection Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Secondary Cells (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211115206.XA CN115469227B (zh) | 2022-09-14 | 2022-09-14 | 一种集合变分自编码器与动态规整的锂电池异常检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211115206.XA CN115469227B (zh) | 2022-09-14 | 2022-09-14 | 一种集合变分自编码器与动态规整的锂电池异常检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115469227A CN115469227A (zh) | 2022-12-13 |
CN115469227B true CN115469227B (zh) | 2024-04-12 |
Family
ID=84333630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211115206.XA Active CN115469227B (zh) | 2022-09-14 | 2022-09-14 | 一种集合变分自编码器与动态规整的锂电池异常检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115469227B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022134464B4 (de) * | 2022-12-22 | 2024-11-14 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Computerimplementiertes Verfahren zur Detektion anomaler Ladezyklen einer wiederaufladbaren Batterie |
CN115964636B (zh) * | 2022-12-23 | 2023-11-07 | 浙江苍南仪表集团股份有限公司 | 基于机器学习和动态阈值的燃气流量异常检测方法及系统 |
WO2024183009A1 (zh) * | 2023-03-07 | 2024-09-12 | 宁德时代新能源科技股份有限公司 | 检测电池的方法和装置 |
CN116522086B (zh) * | 2023-04-25 | 2024-09-24 | 中国长江三峡集团有限公司 | 一种基于变分自编码器的数据恢复和水质检测方法、装置 |
CN116933195A (zh) * | 2023-07-31 | 2023-10-24 | 浙江大学 | 一种基于深度学习的加密流量异常检测方法及装置 |
CN117150401A (zh) * | 2023-08-01 | 2023-12-01 | 清华大学 | 异常检测方法、装置、计算机设备、存储介质和程序产品 |
CN118033434B (zh) * | 2024-04-15 | 2024-08-16 | 东莞市嘉佰达电子科技有限公司 | 一种基于bms的电池储能安全管理系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106093796A (zh) * | 2016-08-09 | 2016-11-09 | 北京航空航天大学 | 基于拟合残差频域重构的有容量再生情况下锂电池容量及寿命预测方法 |
WO2020191800A1 (zh) * | 2019-03-27 | 2020-10-01 | 东北大学 | 基于wde优化lstm网络的锂离子电池剩余寿命预测方法 |
CN113449660A (zh) * | 2021-07-05 | 2021-09-28 | 西安交通大学 | 基于自注意增强的时空变分自编码网络的异常事件检测方法 |
GB202113180D0 (en) * | 2021-09-15 | 2021-10-27 | Bae Systems Plc | System and method for training an autoencoder to detect anomalous system behaviour |
CN114565008A (zh) * | 2022-01-12 | 2022-05-31 | 西安理工大学 | 基于长短时记忆自编码器的锂电池异常检测方法 |
WO2022160902A1 (zh) * | 2021-01-28 | 2022-08-04 | 广西大学 | 面向云环境下大规模多元时间序列数据异常检测方法 |
-
2022
- 2022-09-14 CN CN202211115206.XA patent/CN115469227B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106093796A (zh) * | 2016-08-09 | 2016-11-09 | 北京航空航天大学 | 基于拟合残差频域重构的有容量再生情况下锂电池容量及寿命预测方法 |
WO2020191800A1 (zh) * | 2019-03-27 | 2020-10-01 | 东北大学 | 基于wde优化lstm网络的锂离子电池剩余寿命预测方法 |
WO2022160902A1 (zh) * | 2021-01-28 | 2022-08-04 | 广西大学 | 面向云环境下大规模多元时间序列数据异常检测方法 |
CN113449660A (zh) * | 2021-07-05 | 2021-09-28 | 西安交通大学 | 基于自注意增强的时空变分自编码网络的异常事件检测方法 |
GB202113180D0 (en) * | 2021-09-15 | 2021-10-27 | Bae Systems Plc | System and method for training an autoencoder to detect anomalous system behaviour |
CN114565008A (zh) * | 2022-01-12 | 2022-05-31 | 西安理工大学 | 基于长短时记忆自编码器的锂电池异常检测方法 |
Non-Patent Citations (3)
Title |
---|
A new method for estimating lithium-ion battery capacity using genetic programming combined model;Hang Yao 等;2019 Prognostics & System Health Management Conference—Qingdao (PHM-2019 Qingdao);20191231;全文 * |
基于动态规整与改进变分自编码器的异常电池在线检测方法;郭铁峰 等;电子与信息学报;20230630;全文 * |
深度自编码器在数据异常检测中的应用研究;张常华;周雄图;张永爱;姚剑敏;郭太良;严群;;计算机工程与应用;20201231(第17期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN115469227A (zh) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115469227B (zh) | 一种集合变分自编码器与动态规整的锂电池异常检测方法 | |
CN109991542B (zh) | 基于wde优化lstm网络的锂离子电池剩余寿命预测方法 | |
CN110687452B (zh) | 基于K均值聚类与Elman神经网络的锂电池容量在线预测方法 | |
CN111999649A (zh) | 一种基于XGBoost算法的锂电池剩余寿命预测方法 | |
CN110879377B (zh) | 基于深度信念网络的计量装置故障溯源方法 | |
CN103954913A (zh) | 电动汽车动力电池寿命预测方法 | |
CN116774086B (zh) | 一种基于多传感器数据融合的锂电池健康状态估计方法 | |
CN101894185A (zh) | 一种基于动态双极mpnn的小样本数据对象的寿命预测方法 | |
Wang et al. | Deep learning model for state of health estimation of lithium batteries based on relaxation voltage | |
CN117368784A (zh) | 一种基于特征压缩的电池健康状态预测方法 | |
Wang et al. | Lithium-Ion Battery Screening by K-Means with DBSCAN for Denoising. | |
CN115221942A (zh) | 一种基于时序融合和神经网络的设备缺陷预测方法及系统 | |
Ma et al. | A Battery Prognostics and Health Management Technique Based on Knee Critical Interval and Linear Complexity Self-Attention Transformer in Electric Vehicles | |
Wang et al. | Remaining useful life prediction of lithium-ion battery based on cycle-consistency learning | |
CN115201692A (zh) | 一种锂电池剩余寿命分析预测方法 | |
Hou et al. | Early prediction of battery lifetime for lithium-ion batteries based on a hybrid clustered CNN model | |
CN118731709A (zh) | 基于多元经验模态分解和支持向量机的电池故障诊断方法 | |
CN118731751A (zh) | 融合注意力机制和深度卷积的锂电池soh估计方法 | |
CN118761311A (zh) | 一种用于优化电池管理系统的更新方法 | |
CN112232570A (zh) | 一种正向有功总电量预测方法、装置及可读存储介质 | |
Cui et al. | An Online State of Health Estimation Method for Lithium-Ion Battery Based on ICA and TPA-LSTM | |
CN116879672A (zh) | 一种基于时间卷积网络的台区总表故障智能辨识方法 | |
CN114896865A (zh) | 一种面向数字孪生的自适应演化神经网络健康状态在线预测方法 | |
CN117236381B (zh) | 一种基于三元组长短时记忆神经网络的刀具磨损监测方法 | |
CN118820966B (zh) | 一种锂电池故障的联邦协同智能诊断方法和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: He Jianjun Inventor after: Wang Xiang Inventor after: Guo Tiefeng Inventor after: Zhang Tianren Inventor after: Yu Shunwei Inventor after: Zhang Xin Inventor after: Zhang Binhan Inventor after: Guo Tieshan Inventor after: Zhang Xiaoxia Inventor before: He Jianjun Inventor before: Guo Tiefeng Inventor before: Wang Xiang Inventor before: Zhang Tianren Inventor before: Yu Shunwei Inventor before: Zhang Xin Inventor before: Zhang Binhan Inventor before: Guo Tieshan Inventor before: Zhang Xiaoxia |
|
GR01 | Patent grant | ||
GR01 | Patent grant |