CN115468327A - A Self-cascading Refrigeration System with Staged Partial Condenser - Google Patents
A Self-cascading Refrigeration System with Staged Partial Condenser Download PDFInfo
- Publication number
- CN115468327A CN115468327A CN202211145868.1A CN202211145868A CN115468327A CN 115468327 A CN115468327 A CN 115468327A CN 202211145868 A CN202211145868 A CN 202211145868A CN 115468327 A CN115468327 A CN 115468327A
- Authority
- CN
- China
- Prior art keywords
- condenser
- gas
- refrigerant
- working medium
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 36
- 239000003507 refrigerant Substances 0.000 claims abstract description 154
- 239000007788 liquid Substances 0.000 claims abstract description 120
- 238000007906 compression Methods 0.000 claims abstract description 37
- 238000000926 separation method Methods 0.000 claims abstract description 13
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 238000009835 boiling Methods 0.000 claims description 54
- 239000012530 fluid Substances 0.000 claims description 40
- 239000012071 phase Substances 0.000 claims description 30
- 230000006835 compression Effects 0.000 claims description 19
- 239000007791 liquid phase Substances 0.000 claims description 16
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 238000001704 evaporation Methods 0.000 abstract description 14
- 230000008020 evaporation Effects 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 238000000746 purification Methods 0.000 description 12
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 238000005265 energy consumption Methods 0.000 description 6
- 239000010687 lubricating oil Substances 0.000 description 6
- 238000013021 overheating Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000004781 supercooling Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000011555 saturated liquid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B7/00—Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
- F25B40/06—Superheaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/006—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
本发明提供一种带分级分凝器的自复叠制冷系统,包括压缩机,采用分级压缩机,具有一级吸气口a、二级吸气口b和排气口c;冷凝器,其制冷剂工质通道的进口与压缩机的排气口c相连,用于将压缩机排出的高温高压气态混合制冷剂工质冷凝为气液两相混合制冷剂工质;气液分离器,气液分离器的进口与冷凝器的制冷剂工质通道出口相连,用于对冷凝器排出的气液两相混合制冷剂工质进行闪蒸分离;在气液分离器内部上方设置有分级分凝器组件,用于对气液分离器内闪蒸后的气态混合制冷剂工质进行精馏提纯,可以有效降低富含高组分支路的混合工质经历压缩过程的压比,实现低温冷量梯级利用,获得更低制冷温度;本方案结构简单,节能效果显著,运行可靠稳定。
The invention provides a self-cascading refrigeration system with a staged subcondenser, including a compressor, which adopts a staged compressor, has a primary suction port a, a secondary suction port b, and an exhaust port c; a condenser, which The inlet of the refrigerant channel is connected to the exhaust port c of the compressor, which is used to condense the high-temperature and high-pressure gaseous mixed refrigerant discharged from the compressor into a gas-liquid two-phase mixed refrigerant; the gas-liquid separator, the gas The inlet of the liquid separator is connected to the outlet of the refrigerant channel of the condenser, which is used for flash separation of the gas-liquid two-phase mixed refrigerant discharged from the condenser; The device assembly is used to rectify and purify the gaseous mixed refrigerant working medium after flash evaporation in the gas-liquid separator, which can effectively reduce the pressure ratio of the mixed working medium rich in high-composition branches undergoing the compression process, and realize low-temperature cooling capacity Cascade utilization can obtain lower refrigeration temperature; this scheme has simple structure, remarkable energy-saving effect, and reliable and stable operation.
Description
技术领域technical field
本发明属于混合工质低温节流制冷技术,具体涉及一种带分级分凝器的自复叠制冷系统。The invention belongs to the low-temperature throttling refrigeration technology of mixed working medium, and in particular relates to a self-cascading refrigeration system with a graded separator.
背景技术Background technique
自复叠制冷系统是一种使用非共沸混合工质并通过单台压缩机实现多级复叠,获得-60℃以下低温的制冷系统,其系统具有结构简单、运行可靠、成本低等优点,广泛应用于各低温制冷等领域。因此,自复叠制冷系统对于节约能源、保护环境具有重要意义。传统单级自复叠制冷循环因采用单级压缩且具有低温性能需求使得从气液分离器底部流出的富含高沸点组分支路的工质压缩比偏高,压缩机总能耗高,从而导致传统单级压缩循环所获得制冷效率偏低和制冷温度有限。传统的自复叠技术还具有采用一个相分离器来分离混合制冷剂,分离效率低等问题,为解决此问题,一方面,采用两级或多级分离自复叠制冷循环有效分离的二元非共沸混合工质,提高低沸点组分纯度,能够实现较低的蒸发温度,但其压比较大使得系统的能耗偏高,另一方面,采用精馏装置改进自复叠制冷循环实现混合工质的高效分离,但存在当环境温度升高时,精馏效果变差等问题。The self-cascading refrigeration system is a refrigeration system that uses non-azeotropic mixed working fluid and realizes multi-stage cascade through a single compressor to obtain a low temperature below -60°C. The system has the advantages of simple structure, reliable operation, and low cost. , Widely used in various low-temperature refrigeration and other fields. Therefore, the self-cascading refrigeration system is of great significance for saving energy and protecting the environment. The traditional single-stage self-cascading refrigeration cycle adopts single-stage compression and has low-temperature performance requirements, so that the working fluid flowing out from the bottom of the gas-liquid separator rich in high-boiling point components has a high compression ratio, and the total energy consumption of the compressor is high. As a result, the refrigeration efficiency obtained by the traditional single-stage compression cycle is low and the refrigeration temperature is limited. The traditional self-cascade technology also has the problem of using a phase separator to separate the mixed refrigerant, and the separation efficiency is low. Non-azeotropic mixed working fluid can improve the purity of low boiling point components and achieve lower evaporation temperature, but its high pressure ratio makes the energy consumption of the system relatively high. On the other hand, a rectification device is used to improve the self-cascading refrigeration cycle Efficient separation of mixed working fluids, but there are problems such as poor rectification effect when the ambient temperature rises.
现有技术中以两台压缩机串联方式的制冷系统为例,使高沸点工质在低温级冷凝器中吸收热量后直接与一级压缩机出口工质混合后再进入二级压缩机,能够降低二级压缩机的吸气温度,从而降低二级压缩机排气温度。然而,该系统由于需要设置两台串联的压缩机,造成系统复杂性与成本增加,而且系统中的气液分离器由于没有设置有效组分分离装置,使分凝器分离高低沸点组分的分离效率低,不能有效地提升低沸点组分纯度,导致该系统可以制取的制冷温度有限。尤其,采用两台串联压缩机串联方式的制冷系统还存在的不足是富含高沸点组分工质所携带的润滑油仅进入二级压缩机,而进入一级压缩机的低沸点组分工质经过气液分离作用而未携带润滑油,致使一级压缩机的内部运动部件无法得到润滑,出现压缩机干烧和油封不足等故障,加剧一级压缩机的损坏。In the prior art, the refrigeration system with two compressors connected in series is taken as an example, so that the high-boiling-point working fluid absorbs heat in the low-temperature stage condenser and directly mixes with the outlet working medium of the first-stage compressor before entering the second-stage compressor. Reduce the suction temperature of the secondary compressor, thereby reducing the discharge temperature of the secondary compressor. However, because the system needs to be equipped with two compressors in series, the complexity and cost of the system increase, and the gas-liquid separator in the system is not equipped with an effective component separation device, so that the separation of high and low boiling point components in the partial condenser The efficiency is low, and the purity of low-boiling components cannot be effectively improved, resulting in a limited refrigeration temperature that the system can produce. In particular, the disadvantage of the refrigeration system using two series compressors in series is that the lubricating oil carried by the working medium rich in high boiling point components only enters the secondary compressor, while the low boiling point working medium entering the primary compressor passes through The gas-liquid separation effect does not carry lubricating oil, so that the internal moving parts of the first-stage compressor cannot be lubricated, and failures such as dry burning of the compressor and insufficient oil seal occur, which aggravate the damage of the first-stage compressor.
发明内容Contents of the invention
本发明的目的是为了解决上述现有技术上存在的问题,提供一种带分级分凝器的自复叠制冷系统,应用于特定场所的低温节流制冷,可实现高低沸点高效分离和低温制冷。The purpose of the present invention is to solve the above-mentioned problems in the prior art, and provide a self-cascading refrigeration system with a fractional condenser, which is applied to low-temperature throttling refrigeration in specific places, and can realize high-efficiency separation of high and low boiling points and low-temperature refrigeration .
为实现上述目的,本发明采用如下技术方案:一种带分级分凝器的自复叠制冷系统,包括压缩机,具有一级吸气口a、二级吸气口b和排气口c,采用分级压缩机;冷凝器,其制冷剂工质通道的进口与压缩机的排气口c相连,用于将压缩机排出的高温高压气态混合制冷剂工质冷凝为气液两相混合制冷剂工质;气液分离器,其进口与所述冷凝器的制冷剂工质通道的出口相连,用于对冷凝器排出的气液两相混合制冷剂工质进行闪蒸分离;在气液分离器的内部上方设置有分级分凝器组件,用于对气液分离器内部闪蒸后的气态混合制冷剂工质进行精馏提纯;所述气液分离器顶部流出的精馏提纯后的气相制冷剂工质与气液分离器底部出口排出的一部分液相制冷剂工质混合,最终经过分级分凝器组件的第一制冷剂工质管道进入压缩机的一级吸气口a;气液分离器底部出口排出的另一部分液相制冷剂工质,最终经过分级分凝器组件的第二制冷剂工质管道进入压缩机的二级吸气口b,从而实现分级压缩。In order to achieve the above object, the present invention adopts the following technical scheme: a self-cascading refrigeration system with a step-by-step decondenser, including a compressor, with a primary suction port a, a secondary suction port b and an exhaust port c, A staged compressor is used; the condenser, the inlet of the refrigerant channel is connected to the exhaust port c of the compressor, and is used to condense the high-temperature and high-pressure gaseous mixed refrigerant discharged from the compressor into a gas-liquid two-phase mixed refrigerant working fluid; a gas-liquid separator, the inlet of which is connected to the outlet of the refrigerant working medium channel of the condenser, and is used for flash separation of the gas-liquid two-phase mixed refrigerant working medium discharged from the condenser; A fractional condenser assembly is arranged above the interior of the gas-liquid separator, which is used to rectify and purify the gaseous mixed refrigerant working medium after flashing inside the gas-liquid separator; The refrigerant working medium is mixed with a part of the liquid-phase refrigerant working medium discharged from the bottom outlet of the gas-liquid separator, and finally enters the first-stage suction port a of the compressor through the first refrigerant working medium pipeline of the fractional condenser assembly; the gas-liquid Another part of the liquid-phase refrigerant working medium discharged from the outlet at the bottom of the separator finally enters the secondary suction port b of the compressor through the second refrigerant working medium pipeline of the staged partial condenser assembly, thereby realizing staged compression.
作为优选方案,所述分级分凝器组件包括第一分冷凝器和第二分冷凝器,所述第一分冷凝器位于第二分冷凝器的下方;气液分离器顶部流出的气相制冷剂工质与气液分离器底部出口排出的一部分液相制冷剂工质混合后;通过第二分冷凝器的制冷剂工质管道后进入所述压缩机的一级吸气口a;所述气液分离器底部排出的另一部分液相制冷剂工质,通过第一分冷凝器的制冷剂工质管道进入压缩机的二级吸气口b。As a preferred solution, the graded subcondenser assembly includes a first subcondenser and a second subcondenser, and the first subcondenser is located below the second subcondenser; the gas-phase refrigerant flowing out from the top of the gas-liquid separator After the working medium is mixed with a part of the liquid-phase refrigerant working medium discharged from the bottom outlet of the gas-liquid separator; after passing through the refrigerant working medium pipeline of the second sub-condenser, it enters the first-stage suction port a of the compressor; the gas Another part of the liquid-phase refrigerant working fluid discharged from the bottom of the liquid separator enters the secondary suction port b of the compressor through the refrigerant working medium pipeline of the first sub-condenser.
作为优选方案,还包括第一回热器,用于将通过第二分冷凝器制冷剂工质通道的制冷剂工质过热后,最终进入压缩机的一级吸气口a。As a preferred solution, it also includes a first regenerator, which is used to superheat the refrigerant working fluid passing through the refrigerant working medium channel of the second sub-condenser, and finally enter the first-stage suction port a of the compressor.
作为优选方案,第一回热器包括低温侧通道和高温侧通道,所述第二分冷凝器的制冷剂工质通道出口与第一回热器低温侧通道入口相连,第一回热器低温侧通道的出口与压缩机的一级吸气口a相连,从而使得第二分冷凝器排出的制冷剂工质经过第一回热器过热后进入所述压缩机的一级吸气口a;所述第一回热器的高温侧通道进口与所述气液分离器的底部出口相连。As a preferred solution, the first regenerator includes a low-temperature side channel and a high-temperature side channel, the outlet of the refrigerant working medium channel of the second sub-condenser is connected to the inlet of the low-temperature side channel of the first regenerator, and the low-temperature side channel of the first regenerator The outlet of the side channel is connected to the first-stage suction port a of the compressor, so that the refrigerant working medium discharged from the second sub-condenser enters the first-stage suction port a of the compressor after being overheated by the first regenerator; The high temperature side channel inlet of the first regenerator is connected with the bottom outlet of the gas-liquid separator.
作为优选方案,所述第一回热器的高温侧通道出口分为两个支路,其中第一支路流出的制冷剂工质进入第一分冷凝器制冷剂工质通道,第二支路流出的制冷剂工质与来自气液分离器顶部出口流出的制冷剂工质混合后进入第二分冷凝器的制冷剂工质通道。As a preferred solution, the outlet of the high-temperature side channel of the first regenerator is divided into two branches, wherein the refrigerant working fluid flowing out of the first branch enters the refrigerant working medium channel of the first sub-condenser, and the second branch The refrigerant working medium flowing out is mixed with the refrigerant working medium flowing out from the top outlet of the gas-liquid separator, and then enters the refrigerant working medium channel of the second sub-condenser.
作为优选方案,所述第一支路上依次设置有第一节流部件和蒸发冷凝器,所述第一节流部件的入口与所述第一回热器的高温侧通道出口相连,第一节流部件的出口与所述蒸发冷凝器的低温侧通道入口相连,所述蒸发冷凝器的低温侧通道出口与所述第一分冷凝器的制冷剂工质通道入口相连。As a preferred solution, a first throttling component and an evaporative condenser are sequentially arranged on the first branch, and the inlet of the first throttling component is connected to the outlet of the high-temperature side channel of the first regenerator, and the first throttling component The outlet of the flow component is connected with the low-temperature side channel inlet of the evaporative condenser, and the low-temperature side channel outlet of the evaporative condenser is connected with the refrigerant working medium channel inlet of the first sub-condenser.
作为优选方案,所述蒸发冷凝器的高温侧通道入口与所述气液分离器的顶部出口相连,蒸发冷凝器的高温侧通道出口与第二回热器的高温侧通道入口相连, 第二回热器的高温侧通道出口通过第三节流部件与蒸发器的制冷剂工质通道进口相连,蒸发器的制冷剂工质通道出口与第二回热器的低温侧通道入口相连,第二回热器低温侧通道出口的制冷剂工质与气液分离器的底部出口排出的部分液相制冷剂工质经节流后混合进入第二分冷凝器的制冷剂工质通道内。As a preferred solution, the high temperature side channel inlet of the evaporative condenser is connected with the top outlet of the gas-liquid separator, the high temperature side channel outlet of the evaporative condenser is connected with the high temperature side channel inlet of the second regenerator, and the second circuit The outlet of the high-temperature side channel of the heater is connected with the inlet of the refrigerant working medium channel of the evaporator through the third throttling part, and the outlet of the refrigerant working medium channel of the evaporator is connected with the inlet of the low-temperature side channel of the second regenerator. The refrigerant working medium at the outlet of the low-temperature side channel of the heater and part of the liquid-phase refrigerant working medium discharged from the bottom outlet of the gas-liquid separator are throttled and mixed into the refrigerant working medium channel of the second sub-condenser.
作为优选方案,所述制冷剂工质为高沸点制冷剂工质和低沸点制冷剂工质混合组成的二元或二元以上的非共沸混合制冷剂工质,所述低沸点制冷剂工质采用HC或HFC类制冷剂工质,低沸点制冷剂工质为R1150、R50或R23 中的一种或多种;所述高沸点制冷剂工质采用HC或HFC类制冷剂工质,高沸点制冷剂工质为R134a、R152a、R600、R600a中的一种或多种。As a preferred solution, the refrigerant working medium is a binary or higher non-azeotropic mixed refrigerant working medium composed of a mixture of a high-boiling point refrigerant working medium and a low-boiling point refrigerant working medium, and the low-boiling point refrigerant working medium The refrigerant is HC or HFC refrigerant, and the low boiling point refrigerant is one or more of R1150, R50 or R23; the high boiling point refrigerant is HC or HFC refrigerant. The boiling point refrigerant is one or more of R134a, R152a, R600, and R600a.
有益效果Beneficial effect
其一、本发明可实现高低沸点高效分离和低温制冷,且与现有技术中的常用技术路线不同,本方案通过采用特定的技术路线,利用一台具有两级吸气口的分级压缩机,使来自气液分离器底部的大部分富含高沸点组分的混合工质只通过压缩机的中压吸气口流入分级压缩机实现低压缩比的压缩过程,且使全部来自气液分离器顶部的富含低沸点组分的混合工质以及少部分来自气液分离器底部的富含高沸点组分混合工质只通过压缩机的低压吸气口流入分级压缩机实现高压缩比的压缩过程,从而实现混合工质的梯级压缩过程,降低压缩机压缩比,从而显著降低压缩机总能耗。First, the present invention can achieve high-efficiency separation of high and low boiling points and low-temperature refrigeration, and is different from the common technical route in the prior art. This solution adopts a specific technical route and utilizes a staged compressor with two-stage suction ports, Most of the mixed working medium rich in high boiling point components from the bottom of the gas-liquid separator flows into the staged compressor through the medium-pressure suction port of the compressor to achieve a low compression ratio compression process, and all of it comes from the gas-liquid separator The mixed working medium rich in low boiling point components at the top and a small part of the mixed working medium rich in high boiling point components from the bottom of the gas-liquid separator only flow into the staged compressor through the low-pressure suction port of the compressor to achieve high compression ratio compression process, so as to realize the cascade compression process of the mixed working fluid, reduce the compression ratio of the compressor, and thus significantly reduce the total energy consumption of the compressor.
其二、本方案,采用高低叠放的第一分冷凝器和第二分冷凝器结构设计思想,实现对气液分离器内的气态混合工质的低沸点组分的梯级精馏提纯过程以及对不同温度位的低温冷量梯级利用,从而获得更低制冷温度,并提升制冷效率。Second, this scheme adopts the structural design concept of the first sub-condenser and the second sub-condenser stacked high and low to realize the stepwise rectification and purification process of the low-boiling point components of the gaseous mixed working medium in the gas-liquid separator and The low-temperature cooling capacity at different temperature levels is used in stages to obtain lower cooling temperatures and improve cooling efficiency.
其三、本方案,还通过在气液分离器底部出口处设置第一回热器增加气液分离器底部出口的液态混合工质的过冷度,并确保进入分级压缩机的第一吸气口的混合工质处于过热或饱和蒸汽状态,起到提高制冷效率和确保压缩机干压缩过程的作用。Third, this program also increases the subcooling degree of the liquid mixed working medium at the bottom outlet of the gas-liquid separator by setting the first regenerator at the bottom outlet of the gas-liquid separator, and ensures that the first suction gas entering the stage compressor The mixed working medium at the port is in a superheated or saturated vapor state, which plays a role in improving the refrigeration efficiency and ensuring the dry compression process of the compressor.
附图说明Description of drawings
为了更清楚地说明发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only For some embodiments of the invention, those skilled in the art can also obtain other drawings based on these drawings without creative effort.
图1为本发明带分级分凝器的自复叠制冷系统的示意图;Fig. 1 is the schematic diagram of the self-cascading refrigerating system of the present invention band fractional condenser;
图中标记:1、压缩机,2、冷凝器,3、气液分离器,4、第一节流部件,5、蒸发冷凝器,6、第二回热器,7、第三节流部件,8、蒸发器,9、第二分冷凝器,10、第一分冷凝器,11、 第一回热器,12、第二节流部件;a、一级吸气口,b、二级吸气口,c、排气口。Marks in the figure: 1. Compressor, 2. Condenser, 3. Gas-liquid separator, 4. First throttling part, 5. Evaporation condenser, 6. Second regenerator, 7. Third throttling part , 8, evaporator, 9, the second sub-condenser, 10, the first sub-condenser, 11, the first regenerator, 12, the second throttling part; a, the primary suction port, b, the secondary Suction port, c, exhaust port.
具体实施方式detailed description
以下通过示例性的实施方式对本发明进行具体描述。然而应当理解,在没有进一步叙述的情况下,一个实施方式中的元件、结构和特征也可以有益的结合到其它实施方式中。The present invention will be specifically described through exemplary embodiments below. It should be understood, however, that elements, structures and characteristics of one embodiment may be beneficially incorporated in other embodiments without further recitation.
需要说明的是:除非另做定义,本文所使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中所使用的“一个”、“一”或者“该”等类似词语不表述数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,但并不排除其他具有相同功能的元件或者物件。It should be noted that unless otherwise defined, the technical terms or scientific terms used herein shall have the usual meanings understood by those with ordinary skill in the field of the present invention. Words such as "a", "an" or "the" used in the specification and claims of the patent application of the present invention do not express a limitation on quantity, but mean that there is at least one. Words such as "comprises" or "comprises" and similar terms indicate that the elements or items preceded by "comprises" or "comprises" include the elements or items listed after "comprises" or "comprises" and their equivalents, but do not exclude other Components or objects with the same function.
本实施例提供一种带分级分凝器的自复叠制冷系统,包括压缩机1、冷凝器2、气液分离器3、第一节流部件4、蒸发冷凝器5、第二回热器6、第三节流部件7、蒸发器8、第二分冷凝器9、第一分冷凝器10、第一回热器11和第二节流部件12。This embodiment provides a self-cascading refrigeration system with a fractional condenser, including a compressor 1, a condenser 2, a gas-
本实施例,压缩机1,采用分级压缩机,具有一级吸气口a、二级吸气口b和高压排气口c;其中一级吸气口a为低压吸气口,二级吸气口b为中压吸气口,压缩机1所设置的一级吸气口a和二级吸气口b可实现气液分离器3底部和顶部所流出的工质分别进入压缩机1内的梯级压缩过程,压缩机1的排气口c经冷凝器2与气液分离器3的入口连接,气液分离器3还设置顶部出口与底部出口,气液分离器3的顶部出口、蒸发冷凝器5的高温侧通道、第二回热器6的高温侧通道、第三节流部件7、蒸发器8的入口依次串接,蒸发器8出口经第二回热器6的低温侧通道与第二节流部件12的出口管道相连;气液分离器3的底部出口与第一回热器11的高温侧通道入口相连,第一回热器11的高温侧通道出口分为两支路;一支路与第一节流部件4的入口相连,第一节流部件4的出口与蒸发冷凝器5低温侧通道的入口相连,蒸发冷凝器5低温侧通道的出口与第一分冷凝器10的入口相连,第一分冷凝器10的出口连接到压缩机1的二级吸气口b;第一回热器11的高温侧通道出口的另一支路与第二节流部件12的入口相连,第二节流部件12的出口与第二分冷凝器9的入口相连,第二分冷凝器9的出口与第一回热器11的低温侧通道入口相连,第一回热器11的低温侧通道出口连接到压缩机1的一级吸气口a。其中第二回热器6的低温通道出口连接到第二节流部件12出口与第二分冷凝器9的入口之间的管道。第一节流部件4设置在气液分离器3和蒸发冷凝器5之间的管道上,第二节流部件12设置在在气液分离器3和第二分冷凝器9之间的管道上,第三节流部件7设置在蒸发器8和第二回热器6的高温侧管道之间的连接管道上。In this embodiment, the compressor 1 adopts a step-by-step compressor, which has a primary suction port a, a secondary suction port b, and a high-pressure exhaust port c; wherein the primary suction port a is a low-pressure suction port, and the secondary suction port a is a low-pressure suction port. Gas port b is a medium-pressure suction port. The first-stage suction port a and the second-stage suction port b provided by compressor 1 can realize the working fluid flowing out of the bottom and top of gas-
本方案中,压缩机1的排气口c通过冷凝器2与气液分离器3的入口连接,使从压缩机1排气口c出来的高温高压气态混合制冷剂工质经冷凝器2冷凝放热成较高温高压的气液两相混合制冷剂工质从而进入气液分离器3进行闪蒸分离,压缩机1二级吸气口b通过第一分冷凝器10与蒸发冷凝器5的低温侧通道连接,使来自气液分离器3底部流出的部分液态混合制冷剂工质与来自气液分离器3顶部流出的气态混合制冷剂工质经蒸发冷凝器5换热后,最后经压缩机1的二级吸气口b流入压缩机1内完成低压缩比的压缩过程,压缩机1的一级吸气口a通过第一回热器11与第二分冷凝器9连接,使来自第二回热器6的气态制冷剂工质与来自第二节流部件12节流后的液态制冷剂工质混合后,通过第二分冷凝器9最终进入压缩机1一级吸气口a完成高压缩比的压缩过程,从而在压缩机1内最终完成分级压缩。冷凝器2,其制冷剂工质通道的进口与压缩机1的排气口c相连,用于将压缩机1排出的高温高压气态混合制冷剂工质冷凝为气液两相混合制冷剂工质。In this solution, the exhaust port c of the compressor 1 is connected to the inlet of the gas-
本方案,压缩机1利用非共沸混合工质在气液分离器3中闪蒸分离成气相和液相混合工质的特点,富含高沸点组分支路的工质经节流后蒸发温度高,其蒸发压力也高,使得进入压缩机1二级吸气口b的气相混合工质具有更高的纯度,富含低沸点组分支路的工质经节流后蒸发温度低,其蒸发压力也低,使得只流入压缩机1一级吸气口a,从而这两支路工质在压缩机1内完成分级压缩,降低压缩机能耗、制取更低的制冷温度。In this scheme, the compressor 1 utilizes the characteristic that the non-azeotropic mixed working fluid is flashed and separated into a gas phase and a liquid phase mixed working medium in the gas-
气液分离器3的作用是:使来自冷凝器2的高温高压气液两相混合工质分离为富含低沸点组分的气相混合工质从其顶部工质出口流出和富含高沸点组分的液相混合工质从其底部工质出口流出,同时该气液分离器3是带分凝结构的,该分凝结构即为分级分凝器组件使气液分离器3分离出的富含低沸点组分气相工质实现部分冷凝,从而得到富含更高纯度的低沸点组分的饱和气相制冷剂工质从气液分离器3顶部流出,其中冷凝下来的液态制冷剂工质回流到气液分离器3底部,与闪蒸分离出的富含高沸点组分的液相制冷剂工质一起从气液分离器3底部流出。The function of the gas-
本实施例,气液分离器3的制冷剂工质入口通过冷凝器2与压缩机1排气口c连接,使来自冷凝器2的高温高压气液两相混合制冷剂工质在气液分离器3中闪蒸分离成富含高沸点组分的液相混合制冷剂工质和富含低沸点组分的气相混合制冷剂工质,在气液分离器3内部上方设置有分级分凝器组件,用于对气液分离器3内闪蒸后的气态混合制冷剂工质进行精馏提纯。气液分离器3闪蒸分离出的富含低沸点组分的气相制冷剂工质在分级分凝器组件的作用下实现部分冷凝,所得到更高纯度的低沸点组分的气相制冷剂工质从气液分离器3的顶部出口流出;经过分级分凝器组件冷凝下来的液态制冷剂工质回流到气液分离器3底部与气液分离器3闪蒸分离出的富含高沸点组分的液相制冷剂工质混合,经过气液分离器3的底部出口排出。In this embodiment, the refrigerant working medium inlet of the gas-
本方案中,分级分凝器组件包括第一分冷凝器10和第二分冷凝器9,第一分冷凝器10位于第二分冷凝器9的下方。第二分冷凝器9的作用是:可以使从气液分离器3顶部工质出口流出的富含低沸点组分的气相混合工质流经第二回热器6过热后继续再经第二分冷凝器9过热,得到低压过热蒸汽进入压缩机1的一级吸气口a,第一分冷凝器10的作用:是使从气液分离器3底部工质出口流出的富含高沸点组分的液态混合工质经蒸发冷凝器5蒸发侧蒸发吸热后继续过热,随后得到的中压过热蒸汽进入压缩机1的二级吸气口b,从而实现这两支路工质的分级压缩过程,进而降低压缩机1能耗。In this solution, the graded subcondenser assembly includes a
在一个具体的实施例中:第一分冷凝器10和第二分凝器9均设置在气液分离器3内的上部空间之中,且气液分离器3的工质蒸汽自下而上先流过第一分冷凝器10外部经历第一级精馏提纯过程,再流经第二分冷凝器9的外部经历第二级精馏提纯过程;气液分离器3内所设置的第一分冷凝器10和第二分冷凝器9实现对气液分离器3内的气态混合工质的低沸点组分的梯级精馏提纯作用,并实现对不同温度位的低温冷量的梯级利用。In a specific embodiment: the
本实施例,第一回热器11设置在气液分离器3和第二节流部件12之间,使来自气液分离器3底部富含高沸点组分的液态混合制冷剂工质经第一回热器11高温侧过冷后,一部分流入第二节流部件12与来自经第二回热器6过热的富含低沸点组分制冷剂工质混合后流入第二分冷凝器9,从而实现第二分冷凝器9的精馏要求,第一回热器11设置在第二分冷凝器9和压缩机1之间,设置第一回热器11目的在于:用于回收第二分冷凝器9出口的混合制冷剂工质的低温冷量,同时确保进入压缩机1的吸气口a之前的混合制冷剂工质为饱和蒸汽状态或过热状态,避免压缩机1内的压缩过程存在湿压缩过程。使来自气液分离器3顶部出口的富含低沸点组分的气态制冷剂工质经第二分冷凝器9吸热降温后,同时保证第二分冷凝器9内的制冷剂工质过热,从而确保压缩机1压缩过程的干度要求。In this embodiment, the
本方案,在一个具体的实施例中,第一回热器11流出的富含高沸点组分的液态工质分为两个支路:其中第一支路的液态工质经第一节流部件4节流降温后进入蒸发冷凝器5,吸收来自气液分离器3的富含低沸点组分的气态制冷剂工质的冷凝热,再进入第一分冷凝器10实现对气液分离器3内气态混合制冷剂工质的第一级精馏提纯后,进入压缩机1的二级吸气口b完成低压缩比的压缩过程;第二支路液态制冷剂工质经第二节流部件12节流降温降压后,与来自第二回热器6的制冷剂工质混合并进入第二分冷凝器9实现对气液分离器3内气态混合工质的第二级精馏提纯,再经第一回热器11吸热后,最后经压缩机1的一级吸气口a流入压缩机1内完成高压缩比的压缩过程。In this scheme, in a specific embodiment, the liquid working medium rich in high boiling point components flowing out of the
本实施例,从气液分离器3顶部工质出口流出的富含低沸点组分的气相混合制冷剂工质,经蒸发冷凝器5冷凝后进入第二回热器6高温侧过冷和第三节流部件7节流后,得到低压两相态制冷剂工质流入蒸发器8蒸发吸热,得到的饱和气态制冷剂工质进入第二回热器6低温侧过热后与来自第二节流部件12节流降压后的工质进行混合,混合后的气液两相制冷剂工质进入第二分冷凝器9过热和第一回热器11低温侧过热后进入压缩机1一级吸气口a,气液分离器3底部制冷剂工质出口流出的富含高沸点组分的液相混合制冷剂工质经第一回热器11高温侧过冷后分为两支,其中一支流入第一节流部件4节流后得到中压两相态制冷剂工质,随后进入蒸发冷凝器5蒸发吸热、第一分冷凝器10过热后,得到的中压过热蒸汽进入压缩机1的二级吸气口b,被压缩成高温高压的气体,与此同时,从第一回热器11流出的另一支路流入第二节流部件12节流降压后与来自第二回热器6的过热蒸汽混合后,进入第二分冷凝器9过热后被吸入压缩机1一级吸气口a。与现有技术相比,采用分级压缩机并采用如此的制冷剂工质流向,能够保证压缩机润滑充足。(现有技术中对于两台串联压缩机的制冷系统,在系统运行的过程中,系统的润滑油往往被冷媒裹挟而排出压缩机,经过循环又被制冷剂带回到压缩机,冷媒在系统循环过程中存在两相,即液态冷媒和汽态冷媒,而润滑油基本上处于液态,当冷媒在气液分离器中从液态转变为汽态时,润滑油会与汽态冷媒分离,不再随汽态冷媒流动,若分离出的液态制冷剂工质所携带的润滑油仅进入二级压缩机,未进入一级压缩机,使用过程中会致使一级压缩机的内部运动部件润滑不足,出现压缩机干烧和油封不足等故障,从而会加剧一级压缩机的损坏。)In this embodiment, the gas-phase mixed refrigerant working medium rich in low-boiling components flowing out from the outlet of the working medium at the top of the gas-
本方案的工作原理如下:从压缩机1的排气口c流出的过热蒸汽经冷凝器2部分冷凝后,进入带双级分凝器结构的气液分离器3进行闪蒸分离和提纯,进入气液分离器3的制冷剂工质蒸汽自下而上先流过第一分冷凝器10外部经历第一级精馏提纯过程,再流经第二分冷凝器9的外部经历第二级精馏提纯过程,从而得到富含更高纯度的低沸点组分的饱和气相制冷剂工质从气液分离器3顶部流出,其中冷凝下来的液态制冷剂工质回流到气液分离器3底部,与闪蒸分离出的富含高沸点组分的液态工质一起从气液分离器3底部流出。从而混合制冷剂工质被分成两个分支,其中一支工质流向为:从气液分离器3顶部流出的富含更高纯度的低沸点组分的饱和气态制冷剂工质,该气态制冷剂工质先进入冷凝蒸发器5的高温侧通道被部分冷凝成气液两相工质,再进入第二回热器6的高温侧通道过冷后进入第三节流部件7节流降压得到低压两相态制冷剂工质后,进入蒸发器8蒸发吸热后实现低温制冷,从蒸发器8流出的饱和气态制冷剂工质经第二回热器6低温侧通道过热后,与来自第二节流部件12节流后的液态工质混合,随后进入第二分冷凝器9过热和第一回热器11低温侧通道过热,从第一回热器11流出的低压气态制冷剂工质被压缩机1第一吸气口a吸入在压缩机1完成高压缩比的压缩过程。The working principle of this scheme is as follows: the superheated steam flowing out from the exhaust port c of the compressor 1 is partially condensed by the condenser 2, and then enters the gas-
与此同时,从气液分离器3底部流出的另一支路的富含高沸点组分的饱和液态工质流入第一回热器11的高温侧通道过冷后,得到的富含高沸点组分的液态工质分为两个支路,其中一支流向第一节流部件4节流降压,流出的中压两相态制冷剂工质经蒸发冷凝器5低温侧通道换热后,进入第一分冷凝器10换热后得到的中压过热蒸汽进入压缩机1的二级吸气口b,与此同时,另一支路液态制冷剂工质流向第二节流部件12节流降温降压后,与来自第二回热器6的气态制冷剂工质混合并进入第二分冷凝器9,实现对气液分离器3内气态混合工质的第二级精馏提纯,再经第一回热器11低温侧通道吸热后流入压缩机1的一级吸气口a完成高压缩比的压缩过程,从而实现压缩机1内的梯级压缩过程,至此完成一个循环。上述制冷循环系统可以有效降低富含高组分支路的混合工质经历压缩过程的压缩机压比 。At the same time, the saturated liquid working medium rich in high boiling point components flowing out from the bottom of the gas-
本方案通过一台分级压缩机实现工质梯级压缩作用,降低压缩机压缩比,降低压缩机能耗及排气温度;通过设置双级分冷凝器实现气态混合工质的梯级精馏提纯,实现低温冷量梯级利用,提升低沸点组分纯度,获得更低制冷温度;通过设置第一回热器11增加混合工质过冷度和避免混合工质出现湿压缩过程。该系统结构简单,节能效果显著,运行可靠稳定,应用前景广阔。This scheme realizes the cascade compression of the working fluid through a staged compressor, reduces the compression ratio of the compressor, reduces the energy consumption of the compressor and the exhaust temperature; realizes the cascade rectification and purification of the gaseous mixed working medium by setting a two-stage condenser, and realizes low temperature The cascade utilization of cooling capacity improves the purity of low boiling point components and obtains lower refrigeration temperature; by setting the
本方案中,采用的工质为高沸点工质和低沸点工质混合组成的二元或二元以上的非共沸混合工质,低沸点工质为R1150、R50、R23等HC或HFC类工质,高沸点工质为R134a、R152a、R600、R600a等HC或HFC类工质。In this scheme, the working fluid used is a binary or higher non-azeotropic mixed working fluid composed of a mixture of high boiling point working medium and low boiling point working medium, and the low boiling point working medium is HC or HFC such as R1150, R50, R23, etc. Working fluid, high boiling point working fluid is R134a, R152a, R600, R600a and other HC or HFC working fluid.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above description is only a preferred embodiment of the present invention, and does not limit the present invention in any form. Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone familiar with this field Those skilled in the art, without departing from the scope of the technical solution of the present invention, may use the technical content disclosed above to make some changes or modify them into equivalent embodiments with equivalent changes, but as long as they do not depart from the technical solution of the present invention, the Technical Essence Any simple modifications, equivalent changes and modifications made to the above embodiments still fall within the scope of the technical solution of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211145868.1A CN115468327B (en) | 2022-09-20 | 2022-09-20 | A self-cascading refrigeration system with graded decondenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211145868.1A CN115468327B (en) | 2022-09-20 | 2022-09-20 | A self-cascading refrigeration system with graded decondenser |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115468327A true CN115468327A (en) | 2022-12-13 |
CN115468327B CN115468327B (en) | 2023-09-15 |
Family
ID=84332579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211145868.1A Active CN115468327B (en) | 2022-09-20 | 2022-09-20 | A self-cascading refrigeration system with graded decondenser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115468327B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116202248A (en) * | 2023-03-13 | 2023-06-02 | 河南科技大学 | Low-temperature refrigeration system and circulation method for multi-stage separation of mixed working medium |
CN116294319A (en) * | 2023-03-13 | 2023-06-23 | 河南科技大学 | A multi-stage mixed working medium refrigeration system and circulation method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0868567A (en) * | 1994-08-30 | 1996-03-12 | Mitsubishi Denki Bill Techno Service Kk | Low-temperature generator |
CN1152218C (en) * | 2002-01-25 | 2004-06-02 | 浙江大学 | Deep refrigerating method and equipment |
CN101275798A (en) * | 2007-12-27 | 2008-10-01 | 浙江大学 | Rectification type mixed refrigerant self-cascade gas liquefaction system |
CN101776358A (en) * | 2010-03-02 | 2010-07-14 | 浙江大学 | Varied concentration mixed working medium auto-cascade refrigerator |
CN102147162A (en) * | 2011-03-16 | 2011-08-10 | 浙江大学 | Rectifying type variation-concentration self-overlaying gas liquefaction system |
WO2017107591A1 (en) * | 2015-12-24 | 2017-06-29 | 大连理工大学 | Auto-cascade refrigeration system using phase-change wave rotor and operation method thereof |
CN108413638A (en) * | 2018-03-16 | 2018-08-17 | 珠海格力电器股份有限公司 | Self-cascade refrigeration system with double-stage compression |
CN108679867A (en) * | 2018-05-23 | 2018-10-19 | 西安交通大学 | A kind of auto-cascading refrigeration system and its control method |
CN111043785A (en) * | 2019-12-31 | 2020-04-21 | 浙江大学 | A rectification type self-cascading refrigeration system with precooling |
CN113915787A (en) * | 2021-09-27 | 2022-01-11 | 河南科技大学 | A low-temperature mixed refrigerant refrigeration system with dual evaporation temperature levels |
-
2022
- 2022-09-20 CN CN202211145868.1A patent/CN115468327B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0868567A (en) * | 1994-08-30 | 1996-03-12 | Mitsubishi Denki Bill Techno Service Kk | Low-temperature generator |
CN1152218C (en) * | 2002-01-25 | 2004-06-02 | 浙江大学 | Deep refrigerating method and equipment |
CN101275798A (en) * | 2007-12-27 | 2008-10-01 | 浙江大学 | Rectification type mixed refrigerant self-cascade gas liquefaction system |
CN101776358A (en) * | 2010-03-02 | 2010-07-14 | 浙江大学 | Varied concentration mixed working medium auto-cascade refrigerator |
CN102147162A (en) * | 2011-03-16 | 2011-08-10 | 浙江大学 | Rectifying type variation-concentration self-overlaying gas liquefaction system |
WO2017107591A1 (en) * | 2015-12-24 | 2017-06-29 | 大连理工大学 | Auto-cascade refrigeration system using phase-change wave rotor and operation method thereof |
CN108413638A (en) * | 2018-03-16 | 2018-08-17 | 珠海格力电器股份有限公司 | Self-cascade refrigeration system with double-stage compression |
CN108679867A (en) * | 2018-05-23 | 2018-10-19 | 西安交通大学 | A kind of auto-cascading refrigeration system and its control method |
CN111043785A (en) * | 2019-12-31 | 2020-04-21 | 浙江大学 | A rectification type self-cascading refrigeration system with precooling |
CN113915787A (en) * | 2021-09-27 | 2022-01-11 | 河南科技大学 | A low-temperature mixed refrigerant refrigeration system with dual evaporation temperature levels |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116202248A (en) * | 2023-03-13 | 2023-06-02 | 河南科技大学 | Low-temperature refrigeration system and circulation method for multi-stage separation of mixed working medium |
CN116294319A (en) * | 2023-03-13 | 2023-06-23 | 河南科技大学 | A multi-stage mixed working medium refrigeration system and circulation method |
CN116294319B (en) * | 2023-03-13 | 2024-06-11 | 河南科技大学 | Multistage mixed working medium refrigerating system and circulating method |
CN116202248B (en) * | 2023-03-13 | 2024-06-11 | 河南科技大学 | Mixed working medium multistage separation low-temperature refrigerating system and circulating method |
Also Published As
Publication number | Publication date |
---|---|
CN115468327B (en) | 2023-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105737427B (en) | A kind of one-level Auto-cascade cycle low-temperature refrigeration circulating device using twin-stage gas-liquid separator | |
CN100434832C (en) | A self-cascade refrigeration cycle system with ejector | |
CN105546864B (en) | A kind of Auto-cascade cycle steam compressed refrigerating circulating system of band evaporation subcooler | |
CN101576329B (en) | Self-overlapping refrigeration system | |
CN115468327B (en) | A self-cascading refrigeration system with graded decondenser | |
CN103743150B (en) | Absorption-compression self-cascading refrigeration system and method of use | |
CN102287949A (en) | Self-cascade system with vortex tube | |
CN110173913A (en) | A kind of steam compressed high temperature heat pump unit of very large super cooling degree | |
CN109737622B (en) | Two-stage auto-cascade low-temperature refrigeration cycle system and circulation method for enhancing efficiency of two-stage ejector | |
CN106225319A (en) | A kind of double evaporating temperatures refrigeration and heat pump air conditioner unit and the method for back-heating type non-azeotropic mixed working medium | |
CN113915787B (en) | Low-temperature mixed working medium refrigerating system with double evaporation temperature positions | |
CN113776215A (en) | Circulating system applied to cascade refrigeration or heat pump system and supercooling method | |
CN108679867A (en) | A kind of auto-cascading refrigeration system and its control method | |
CN104792052B (en) | Novel ultralow-temperature compression refrigerating system | |
CN102853578B (en) | Mixed working medium two-stage jet type refrigerating machine | |
CN104236159B (en) | A kind of multiple-energy-source driving refrigeration system and refrigerating method | |
CN110793230B (en) | Large-temperature span high-temperature heat pump system | |
CN105157269B (en) | A kind of auto-cascading refrigeration system with low temperature functional | |
CN111288679A (en) | Single-stage and double-stage switching evaporation supercooling ejector refrigeration heat pump circulation system | |
CN109442804B (en) | Double-stage compression heat pump circulation system for deep condensation of exhaust steam | |
CN109307377B (en) | Two-stage self-cascade refrigeration cycle system and circulation method adopting ejector to increase efficiency | |
CN116447779A (en) | Solar-driven mixed working medium two-stage separation cryogenic refrigeration method and refrigeration system | |
CN111288675A (en) | A mixed refrigerant refrigeration system and air conditioner | |
CN116294319B (en) | Multistage mixed working medium refrigerating system and circulating method | |
CN116202248B (en) | Mixed working medium multistage separation low-temperature refrigerating system and circulating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |