CN115457127A - 基于特征观测数和imu预积分的自适应协方差方法 - Google Patents

基于特征观测数和imu预积分的自适应协方差方法 Download PDF

Info

Publication number
CN115457127A
CN115457127A CN202211063510.4A CN202211063510A CN115457127A CN 115457127 A CN115457127 A CN 115457127A CN 202211063510 A CN202211063510 A CN 202211063510A CN 115457127 A CN115457127 A CN 115457127A
Authority
CN
China
Prior art keywords
feature
feature points
integration
frame
feature point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211063510.4A
Other languages
English (en)
Inventor
潘树国
陈金晶
高旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202211063510.4A priority Critical patent/CN115457127A/zh
Publication of CN115457127A publication Critical patent/CN115457127A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/269Analysis of motion using gradient-based methods

Abstract

本发明公开了一种基于特征观测数和IMU预积分的自适应协方差方法,首先,提取特征点并将图像特征数据与IMU数据进行对齐;通过使用图像金字塔光流跟踪,实现特征匹配;再对特征点跟踪次数进行计算,在时间维度上获取当前帧中每一个特征点的观测数,通过特征点的观测数,计算当前帧中特征点观测数的均值和标准差,从而确定当前帧中特征点的静态观测权重;通过IMU预积分对逆深度不确定性进行建模,再通过特征点观测数以及IMU预积分进行自适应协方差的计算,得到自适应的协方差矩阵,最后将得到的自适应协方差矩阵与位姿求解的误差函数进行融合构建不确定性加权的重投影误差,有效缓解了动态目标的影响,并且避免过度剔除导致特征分布扭曲以及过少的视觉测量。

Description

基于特征观测数和IMU预积分的自适应协方差方法
技术领域
本发明属于人工智能及计算机视觉测量技术领域,具体涉及一种基于特征观测数和IMU预积分的自适应协方差方法。
背景技术
在过去的几十年里,计算机视觉方向得到了广泛的研究,为自主定位系统提供了精确和低成本的解决方案。传统的基于视觉的定位方案都是基于一个理想的静态环境中,这样对于特征点匹配计算出来的运动仅是由相机运动造成的,从而可以得到相机的位姿估计。但是实际场景中可能存在动态目标,这些动态目标将会导致错误的特征匹配,错误地使用动态特征点的信息进行相机运动估计,这对于基于特征匹配的视觉定位系统是致命的。因而,研究适用于动态环境下的视觉定位系统一直是一个热点问题。
目前动态环境下SLAM问题较多地聚焦于如何将动态区域与静态区域区分开,将动态区域剔除,仅使用静态背景中的特征点进行相机位姿的计算。通过剔除动态物体从而减少动态物体对相机位姿求解的影响。然而,与RANSAC失效的场景一样,当场景中存在大量动态物体中,直接去除动态物体上的特征会导致过度的特征剔除,不仅会严重影响特征分布的几何形状,并且会严重减少参与视觉定位的特征点对,导致有限的视觉测量,影响定位精度。此外,大多数VIO系统都没有考虑到用于相对姿态估计的特征的不确定度,在从特征匹配剔除异常值之后,假定所有特征点具有相同的噪声分布,即每对匹配的特征点对位姿的贡献相等,然而,真实环境中,各个点的噪声分布情况会因为位置不同、环境不同而具有不同的类型,因此不同的二维特征应该具有不同的贡献度。图4展示了不同的特征点具有不同不确定性的情况,其中图4a为各向同性且独立同分布的协方差矩阵图、图4b为各向异性且非独立同分布的协方差矩阵图,特征点的不确定度越高,对优化函数的贡献就要越小,反之则应该越大。
发明内容
本发明正是针对现有技术中存在的问题,提供一种基于特征观测数和IMU预积分的自适应协方差方法,将动态物体上的特征点作为视觉约束信息进行相机位姿求解,以提高视觉定位系统的性能。首先,提取特征点并将图像特征数据与IMU数据进行对齐;通过使用图像金字塔光流跟踪,实现特征匹配;再对特征点跟踪次数进行计算,在时间维度上获取当前帧中每一个特征点的观测数,通过计算特征点的观测数,计算当前帧中特征点观测数的均值和标准差,从而确定当前帧中的特征点的静态观测权重;通过IMU预积分对逆深度不确定性进行建模,再通过特征点观测数以及IMU预积分进行自适应协方差的计算,得到自适应的协方差矩阵,最后将特征点的协方差矩阵与位姿求解的误差函数进行融合构建不确定性加权的重投影误差,实现基于特征观测数和IMU预积分的自适应协方差方法,有效缓解了动态目标的影响,并且避免过度剔除导致特征分布扭曲以及过少的视觉测量。
为了实现上述目的,本发明采取的技术方案是:基于特征观测数和IMU预积分的自适应协方差方法,包括如下步骤:
S1:提取特征点并将图像特征数据与IMU数据进行对齐,所述对齐策略为:第一个IMU数据的时间戳小于上一帧图像结束的时间戳,最后一个IMU数据的时间戳是第一个大于当前帧图像结束的时间戳;
S2:通过使用图像金字塔光流跟踪,实现特征匹配;
S3:对特征点跟踪次数进行计算,在时间维度上获取当前帧中每一个特征点的观测数,通过计算特征点的观测数,计算当前帧中特征点观测数的均值和标准差,从而确定当前帧中的特征点的静态观测权重;
S4:通过IMU预积分对逆深度不确定性进行建模,所述特征点的逆深度不确定性与该特征点在相机帧下归一化坐标和帧间平移向量的叉乘成反比,与特征匹配不确定性δx成正比,用IMU的预积分项表示逆深度不确定性具体如下:
Figure BDA0003827289890000031
其中,xi=K-1pi,pi是特征点在图像平面上的齐次坐标,
Figure BDA0003827289890000032
表示xi的斜对称矩阵,
Figure BDA0003827289890000033
为第i帧图像与第j帧图像之间IMU预积分得到的平移向量,δx=f-1δp为归一化平面上不确定度形成的圆的半径,f为相机的焦距,δp为特征点特征匹配时产生的误差,δd表示第j帧中特征点的不确定性;
S5:通过步骤S3获得的特征点观测数以及步骤S4获得的IMU预积分进行自适应协方差的计算,得到自适应的协方差矩阵,对于第l个特征点,其静态观测权重为W(pl),其逆深度不确定性为δdl,其自适应协方差矩阵Ql为:
Ql=WcW(pl)δdlI2×2
其中,Wc为特征点原始协方差矩阵,I2×2为单位矩阵;
S6:将上述计算出的特征点的协方差矩阵与位姿求解的误差函数进行融合构建不确定性加权的重投影误差,所述不确定性加权重投影误差为:
Figure BDA0003827289890000034
pl为第l个特征点在当前帧图像上的二维坐标,n为特征点总个数,将特征点的协方差矩阵进行分解可以得到Q-1=U∑-1UT,其中,
Figure BDA0003827289890000035
Figure BDA0003827289890000036
与现有技术相比,本发明在对动态物体的处理上做了部分改进,不再拘泥于剔除动态物体,提出了一种基于特征观测数和IMU预积分的自适应协方差方法,将动态物体上的特征点作为视觉约束信息进行相机位姿求解,以提高视觉定位系统的性能。在进行相机位姿求解时,通过在时间维度上对特征点的观测数进行统计建模得到每个特征点的特征观测权重,并且通过IMU预积分得到特征点逆深度的不确定性,联合上述二项因子对协方差进行改进,根据特征观测数以及IMU预积分生成的平移与旋转约束来建模每一个特征点的不确定性,并且将这种不确定性传播为相对姿态不确定性,该方法有效缓解了动态目标的影响,并且避免过度剔除导致特征分布扭曲以及过少的视觉测量,准确度更高。
附图说明
图1是本发明基于特征观测数和IMU预积分的自适应协方差方法的流程图;
图2是对极几何约束原理图;
图3是特征匹配误差图;
图4是不同分布的协方差矩阵图,其中
图4a为各向同性且独立同分布的协方差矩阵图;
图4b为各向异性且非独立同分布的协方差矩阵图;
图5是本发明实验结果对比图,其中
图5a为原vins-fusion实验结果图;
图5b为改进后的vins-fusion实验结果图。
具体实施方式
下面结合附图和具体实施方式,进一步阐明本发明,应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。
实施例1
一种基于特征观测数和IMU预积分的自适应协方差技术,如图1所示,具体方法如下:
步骤S1:提取特征点并将图像特征数据与IMU数据进行对齐;
本方法中,提取Shi-Tomasi角点,并且使用掩码策略使提取到的特征点分布均匀,定义如下的对齐策略:第一个IMU数据的时间戳小于上一帧图像结束的时间戳,最后一个IMU数据的时间戳是第一个大于当前帧图像结束的时间戳;
步骤S2:对点云进行分类使用图像金字塔光流跟踪,进而实现特征匹配;
使用金字塔光流跟踪实现特征点的匹配,对每一帧图像建立图像金字塔,实现尺度空间里进行光流跟踪,具有空间尺度不变性,并且速度快,不必提取特征点的描述子进行匹配;
步骤S3:对特征点的跟踪次数进行计算;
如果一个特征点是静态特征点,那么该特征点被判断为静态特征点的次数会非常多,特征跟踪的次数决定特征跟踪质量,特征点在帧间跟踪的次数越多,特征点的质量越好,因此我们在时间维度上统计当前帧中每一个特征点的观测数。假设第k帧图像中的第i个特征点用
Figure BDA0003827289890000051
表示,
Figure BDA0003827289890000052
从第一帧到当前帧,如果特征点pi被第k帧观察到,则pi的观测数;
Nk(pi)=Nk-1(pi)+1
其中,Nk(pi)是特征点pi在第k帧的观测数,特征点提取之后第一次被光流跟踪到,此时该特征点已经经历了两帧图像,因此设置初始值为1;
如果没有观测到特征点pi,则Nk(pi)=Nk-1(pi),在当前帧特征观测数计算完成后,清除该特征点的观测数信息,并令Nk(pi)=0;
如果Nk(pi)大于观测数阈值Tv,则Nk(pi)=Tv;
计算当前帧的特征点观测数的均值μk和标准差σk,具体如下式:
Figure BDA0003827289890000053
Figure BDA0003827289890000054
其中,nk为第k帧特征点数量,使用特征点观测数的均值μk和标准差σk,可以计算当前帧的每个特征点的静态观测权重,即
Figure BDA0003827289890000055
其中α为大于零的实数。
特征点跟踪的次数越少,其属于动态特征点的概率越大,该特征点的不确定性越高;
步骤S4:通过IMU预积分对逆深度不确定性进行建模:
对于基于特征法的视觉定位而言,相对姿态估计最广泛使用的策略就是使用基础矩阵进行求解,这种方法非常依赖于特征点之间的准确的对应关系,很多的视觉定位系统中,都没有考虑特征点的不确定性,在从特征匹配中删除异常之后,剩下的特征匹配结果对目标函数具有相同的贡献。然后,不同的二维特征点应具有不同的误差分布,这与图像质量、特征点是否具有稳定深度信息有关。特征点的深度估计在数值上是不稳定的,同时,姿态估计的不确定性也会增加,同时由于逆深度信息比深度信息具有更好的数值稳定性,因此本发明采用基于IMU预积分的不确定性估计方法估计这种深度不确定性;
假设已知空间点P在世界坐标系下的位置信息Pw=[X Y Z]T,假设空间点P在第i帧中投影特征点的位置为pi,在第j帧中投影特征点的位置为pj,根据如图2所示对极几何约束,可以得到下式:
Figure BDA0003827289890000061
Figure BDA0003827289890000062
Figure BDA0003827289890000063
其中,Zi是第i帧中Pw的深度,pi=[ui vi 1]T是特征点在图像平面上的齐次坐标,K是相机内参,
Figure BDA0003827289890000064
为世界坐标系下第i帧的旋转矩阵和平移向量。
Figure BDA0003827289890000065
根据推导可得:
Figure BDA0003827289890000066
Figure BDA0003827289890000067
可以得到:
Figure BDA0003827289890000068
上式两边同时乘以
Figure BDA0003827289890000069
表示xi的斜对称矩阵。
得到:
Figure BDA0003827289890000071
Figure BDA0003827289890000072
Figure BDA0003827289890000073
通过上式可以看出,特征点逆深度的不确定性与特征匹配的误差有关,与第i帧到第j帧之间的位姿变换有关。假设特征匹配时产生的不确定性呈各向同性且均匀分布,即所有特征点特征匹配时都会产生一个不确定性为δp的误差项,在归一化平面上,不确定度会形成半径为δx=f-1δp的圆,其中f为相机的焦距。下式给出了逆深度δd的不确定度;
Figure BDA0003827289890000074
根据外积的性质可以得到:
Figure BDA0003827289890000075
已知||δxj||≤δx,RRT=I;
可得特征点逆深度不确定性与该特征点在相机帧下归一化坐标和帧间平移向量的关系,具体为:
Figure BDA0003827289890000076
由上式中可以得出,特征点的逆深度不确定性与该特征点在相机帧下归一化坐标和帧间平移向量的叉乘成反比,与特征匹配不确定性δx成正比,特征匹配的不确定性如图3所示,对于帧间的旋转矩阵和平移向量,本发明使用IMU预积分来得到的帧间旋转矩阵和平移向量,特征匹配的不确定性取决于不同的特征提取方法和特征匹配方法,本发明假设此时特征匹配的不确定性为一个恒定的经验值,因此可以通过IMU的预积分项表示逆深度不确定性;
步骤S5:通过特征点跟踪质量以及IMU预积分进行自适应协方差的计算;
由上述两个方面对特征的不确定性进行度量,自适应协方差矩阵可推导为:
Figure BDA0003827289890000081
步骤S6:基于自适应协方差的位姿估计方法;
将上述计算出的二维特征点不确定性与位姿求解的误差函数进行融合构建不确定性加权的重投影误差,以体现具有不同不确定性的特征点在求解过程中对解的贡献应该是不同的;
用Q来表示自适应协方差矩阵,二维特征点的协方差矩阵是一个半正定对称矩阵,将协方差矩阵进行奇异值分解可以得到:
Q-1=U∑-1UT
其中,
Figure BDA0003827289890000082
根据上式得到仿射矩阵H2×2
Figure BDA0003827289890000083
通过仿射矩阵矩阵H2×2将原始数据空间中的二维测量点和重投影点坐标变换到不确定性加权协方差数据空间中的坐标,
Figure BDA0003827289890000084
是特征不确定性对目标函数贡献大小的度量,特征不确定性越小的特征点对目标函数有更大的贡献度,UT是一个旋转矩阵,将协方差得到的各异椭圆进行旋转得到正向椭圆,通过结合
Figure BDA0003827289890000085
将椭圆进行缩放得到圆,在原始数据空间中,特征点处的噪声各向异性且非独立同分布,通过仿射矩阵H2×2将数据转换到加权协方差数据空间中,噪声就变成各向同性且独立同分布。根据变换后的数据构造出不确定性加权重投影误差如下式所示:
Figure BDA0003827289890000086
通过变换矩阵H2×2将特征点不确定性分配到测量点和重投影点中,使每个特征点的不确定性对目标函数作出不同的贡献,从而适应于不同特征不确定性下的位姿求解;通过上述步骤完成特征观测数和IMU预积分的自适应协方差技术。
应用本发明的方法在VINS-FUSION中进行了测试,在KITTI00数据集总轨迹长度为3724.2m下进行了多次测试,并使用GNSS定位结果作为真值,评估轨迹精度,实验结果如图5所示,图5a为原vins-fusion实验结果图,图5b为改进后的vins-fusion实验结果图,从左到右依次为三维轨迹对比图、三轴位置对比图、三轴姿态角对比图,结果表明轨迹的均方根误差由4.52m减小为3.46m,大大提高了视觉定位系统的性能,准确度更高。
需要说明的是,以上内容仅仅说明了本发明的技术思想,不能以此限定本发明的保护范围,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰均落入本发明权利要求书的保护范围之内。

Claims (5)

1.基于特征观测数和IMU预积分的自适应协方差方法,其特征在于,包括如下步骤:
S1:提取特征点并将图像特征数据与IMU数据进行对齐,所述对齐策略为:第一个IMU数据的时间戳小于上一帧图像结束的时间戳,最后一个IMU数据的时间戳是第一个大于当前帧图像结束的时间戳;
S2:通过使用图像金字塔光流跟踪,实现特征匹配;
S3:对特征点跟踪次数进行计算,在时间维度上获取当前帧中每一个特征点的观测数,通过计算特征点的观测数,计算当前帧中特征点观测数的均值和标准差,从而确定当前帧中的特征点的静态观测权重W(pi);
S4:通过IMU预积分对逆深度不确定性进行建模,所述特征点的逆深度不确定性与该特征点在相机帧下归一向量的叉乘化坐标和帧间平移成反比,与特征匹配不确定性δx成正比,用IMU的预积分项表示逆深度不确定性具体如下:
Figure FDA0003827289880000011
其中,xi=K-1pi,pi是特征点在图像平面上的齐次坐标,
Figure FDA0003827289880000012
表示xi的斜对称矩阵,
Figure FDA0003827289880000013
为第i帧图像与第j帧图像之间IMU预积分得到的平移向量,δx=f-1δp为归一化平面上不确定度形成的圆的半径,f为相机的焦距,δp为特征点特征匹配时产生的误差,δd表示第j帧中特征点的逆深度的不确定性;
S5:通过步骤S3获得的特征点观测数以及步骤S4获得的IMU预积分进行自适应协方差的计算,得到自适应的协方差矩阵,对于第l个特征点,其静态观测权重为W(pl),其逆深度不确定性为δdl,其自适应协方差矩阵Ql为:
Ql=WcW(pl)δdlI2×2
其中,Wc为特征点原始协方差矩阵,I2×2为单位矩阵;
S6:将上述计算出的特征点的协方差矩阵与位姿求解的误差函数进行融合构建不确定性加权的重投影误差,所述不确定性加权重投影误差为:
Figure FDA0003827289880000021
其中,pl为第l个特征点在当前帧图像上的二维坐标,n为特征点总个数,将特征点的协方差矩阵进行分解可以得到Q-1=U∑-1UT,其中,
Figure FDA0003827289880000022
Figure FDA0003827289880000023
2.如权利要求1所述的基于特征观测数和IMU预积分的自适应协方差方法,其特征在于,所述步骤S1中,提取Shi-Tomasi角点,使用掩码策略使提取到的特征点分布均匀,所述掩码策略为:将已提取的特征点为圆心,r为半径的圆作为掩码,剩余提取到的特征点坐标不落在掩码区域内。
3.如权利要求1或2所述的基于特征观测数和IMU预积分的自适应协方差方法,其特征在于,所述步骤S2进一步包括:
S21:在时间维度上获取当前帧中每一个特征点的观测数;假设第k帧图像中的第i个特征点用
Figure FDA0003827289880000024
表示,
Figure FDA0003827289880000025
从第一帧到当前帧,如果特征点pi被第k帧观察到,则pi的观测数;
Nk(pi)=Nk-1(pi)+1
其中,Nk(pi)是特征点pi在第k帧的观测数,特征点提取之后第一次被光流跟踪到;
如果Nk(pi)大于观测数阈值Tv,则Nk(pi)=Tv;
S22:计算当前帧中特征点观测数的均值μk和标准差σk,具体为:
Figure FDA0003827289880000031
Figure FDA0003827289880000032
其中,nk为第k帧特征点数量;
S23:根据步骤S22的计算结果,计算当前帧的每个特征点的静态观测权重,具体为:
Figure FDA0003827289880000033
其中,α为大于零的实数。
4.如权利要求3所述的基于特征观测数和IMU预积分的自适应协方差方法,,其特征在于:所述步骤S21中,如果特征点pi被观察到,则特征点pi提取之后第一次被光流跟踪到,此时该特征点pi已经经历了两帧图像,设置初始值为1;
如果特征点pi没有观测到,则Nk(pi)=Nk-1(pi),在当前帧特征观测数计算完成后,清除该特征点的观测数信息,并令Nk(pi)=0。
5.如权利要求4所述的基于特征观测数和IMU预积分的自适应协方差方法,其特征在于:所述步骤S3中,特征跟踪的次数决定特征跟踪质量,特征点在帧间跟踪的次数越多,特征点的质量越好。
CN202211063510.4A 2022-09-01 2022-09-01 基于特征观测数和imu预积分的自适应协方差方法 Pending CN115457127A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211063510.4A CN115457127A (zh) 2022-09-01 2022-09-01 基于特征观测数和imu预积分的自适应协方差方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211063510.4A CN115457127A (zh) 2022-09-01 2022-09-01 基于特征观测数和imu预积分的自适应协方差方法

Publications (1)

Publication Number Publication Date
CN115457127A true CN115457127A (zh) 2022-12-09

Family

ID=84300886

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211063510.4A Pending CN115457127A (zh) 2022-09-01 2022-09-01 基于特征观测数和imu预积分的自适应协方差方法

Country Status (1)

Country Link
CN (1) CN115457127A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117237417A (zh) * 2023-11-13 2023-12-15 南京耀宇视芯科技有限公司 一种基于图像和imu数据的硬件实现光流跟踪的系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117237417A (zh) * 2023-11-13 2023-12-15 南京耀宇视芯科技有限公司 一种基于图像和imu数据的硬件实现光流跟踪的系统

Similar Documents

Publication Publication Date Title
CN109345588B (zh) 一种基于Tag的六自由度姿态估计方法
He et al. Sparse template-based 6-D pose estimation of metal parts using a monocular camera
US11763485B1 (en) Deep learning based robot target recognition and motion detection method, storage medium and apparatus
CN103514441B (zh) 基于移动平台的人脸特征点定位跟踪方法
Assa et al. A robust vision-based sensor fusion approach for real-time pose estimation
CN107481284A (zh) 目标物跟踪轨迹精度测量的方法、装置、终端及系统
CN108229416B (zh) 基于语义分割技术的机器人slam方法
US11392787B2 (en) Method for grasping texture-less metal parts based on bold image matching
CN107358629B (zh) 一种基于目标识别的室内建图与定位方法
Knorr et al. Online extrinsic multi-camera calibration using ground plane induced homographies
CN107704813B (zh) 一种人脸活体识别方法及系统
Shao et al. Robust height estimation of moving objects from uncalibrated videos
CN111583342B (zh) 一种基于双目视觉的目标快速定位方法及装置
Lee et al. RS-SLAM: RANSAC sampling for visual FastSLAM
CN115457127A (zh) 基于特征观测数和imu预积分的自适应协方差方法
CN114549549A (zh) 一种动态环境下基于实例分割的动态目标建模跟踪方法
Yoon et al. A new approach to the use of edge extremities for model-based object tracking
CN116630423A (zh) 一种基于orb特征的微小型机器人多目标双目定位方法及系统
Gaschler et al. Epipolar-based stereo tracking without explicit 3d reconstruction
CN108694348B (zh) 一种基于自然特征的跟踪注册方法及装置
JP3476710B2 (ja) ユークリッド的な3次元情報の復元方法、および3次元情報復元装置
Verma et al. Vision based object follower automated guided vehicle using compressive tracking and stereo-vision
CN114004900A (zh) 一种基于点线面特征的室内双目视觉里程计方法
Guo et al. A hybrid framework based on warped hierarchical tree for pose estimation of texture-less objects
Xin et al. Real-time dynamic system to path tracking and collision avoidance for redundant robotic arms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination