CN115453315A - Fault detection circuit, method and chip for signal transmission line - Google Patents

Fault detection circuit, method and chip for signal transmission line Download PDF

Info

Publication number
CN115453315A
CN115453315A CN202211056639.2A CN202211056639A CN115453315A CN 115453315 A CN115453315 A CN 115453315A CN 202211056639 A CN202211056639 A CN 202211056639A CN 115453315 A CN115453315 A CN 115453315A
Authority
CN
China
Prior art keywords
signal
module
transmission line
signal transmission
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211056639.2A
Other languages
Chinese (zh)
Other versions
CN115453315B (en
Inventor
谢俊
张力航
张新伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Semidrive Technology Co Ltd
Original Assignee
Nanjing Semidrive Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Semidrive Technology Co Ltd filed Critical Nanjing Semidrive Technology Co Ltd
Priority to CN202211056639.2A priority Critical patent/CN115453315B/en
Publication of CN115453315A publication Critical patent/CN115453315A/en
Application granted granted Critical
Publication of CN115453315B publication Critical patent/CN115453315B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • G01R31/2839Fault-finding or characterising using signal generators, power supplies or circuit analysers
    • G01R31/2841Signal generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc Digital Transmission (AREA)

Abstract

The invention discloses a fault detection circuit, a fault detection method, a chip, electronic equipment and a vehicle of a signal transmission line. The signal generation branch circuit is provided with a synchronizer module and a functional module which are the same as the signal transmission line, wherein the functional module is used for receiving IO signals through the synchronizer module and processing the received IO signals. The first detection branch is connected between the output end of the synchronizer circuit module of the signal transmission line and the output end of the synchronizer circuit module of the signal generation branch. Therefore, the first detection branch circuit judges the fault of the signal transmission line according to the first signal relation between the first intermediate signal at the output end of the synchronizer module of the signal transmission line and the first generated signal at the output end of the synchronizer module of the signal generation branch circuit, and monitors the signal transmitted by the signal transmission line in real time.

Description

一种信号传输线路的故障检测电路、方法及芯片Fault detection circuit, method and chip for signal transmission line

技术领域technical field

本发明涉及微处理器技术领域,尤其涉及一种信号传输线路的故障检测电路、方法、芯片、电子设备及车辆。The invention relates to the technical field of microprocessors, in particular to a fault detection circuit, method, chip, electronic equipment and vehicle of a signal transmission line.

背景技术Background technique

随着智能设备的普及,芯片的使用要求越来越高。芯片中通常设置有大量的IO(Input Output,输入输出)信号传输线路与外围设备连接,如何保证IO信号在整个芯片内传输过程中的正确性以及如何对IO信号进行有效的实时故障检测,对于一个高功能安全的芯片和使用这些芯片的系统是非常关键的一个要素。尤其是对于重要性较高的输入信号,为了保证信号传输的准确性,需要能够实时的对信号传输线路进行监测,以在信号路径出现任何电路故障或者信号干扰时,都能够实时检测并上报。With the popularity of smart devices, the requirements for the use of chips are getting higher and higher. There are usually a large number of IO (Input Output, input and output) signal transmission lines connected to peripheral devices in the chip. How to ensure the correctness of the IO signal during the transmission process in the entire chip and how to perform effective real-time fault detection on the IO signal, for A highly functionally safe chip and the systems that use it are a critical element. Especially for input signals with high importance, in order to ensure the accuracy of signal transmission, it is necessary to monitor the signal transmission line in real time, so that any circuit failure or signal interference in the signal path can be detected and reported in real time.

发明内容Contents of the invention

本发明实施例为了解决上述问题,提供一种信号传输线路的故障检测电路、方法、芯片、电子设备及车辆。In order to solve the above problems, embodiments of the present invention provide a fault detection circuit, method, chip, electronic device and vehicle of a signal transmission line.

根据本发明第一方面,提供了一种信号传输线路的故障检测电路,所述故障检测电路设置于系统级芯片中,包括:信号发生支路,具有与信号传输线路相同的同步器模块和功能模块,所述功能模块用于通过所述同步器模块接收IO信号并对所接收的IO信号进行处理;第一检测支路,连接于所述信号传输线路的同步器电路模块输出端与信号发生支路的同步器电路模块输出端之间,包括:第一检测模块,用于判断所述信号传输线路的同步器模块输出端的第一中间信号和所述信号发生支路的同步器模块输出端的第一发生信号之间的第一信号关系,以及基于所述第一信号关系对所述信号传输线路进行故障判断;第一注错模块,用于判断所述第一检测模块的工作状态。According to the first aspect of the present invention, a fault detection circuit of a signal transmission line is provided, the fault detection circuit is arranged in a system-on-a-chip, including: a signal generation branch, having the same synchronizer module and function as the signal transmission line module, the functional module is used to receive the IO signal through the synchronizer module and process the received IO signal; the first detection branch is connected to the output terminal of the synchronizer circuit module of the signal transmission line and the signal generation Between the output terminals of the synchronizer circuit module of the branch, it includes: a first detection module, which is used to judge the first intermediate signal of the output terminal of the synchronizer module of the signal transmission line and the output terminal of the synchronizer module of the signal generation branch. A first signal relationship among the first generated signals, and a fault judgment is performed on the signal transmission line based on the first signal relationship; a first error injection module is used to judge the working state of the first detection module.

根据本发明一实施方式,所述第一检测模块为不等比较模块;相应的,第一检测模块在所述第一信号关系为所述第一中间信号和所述第一发生信号不相等时,判定所述信号传输线路发生故障,输出第一中断信号。According to an embodiment of the present invention, the first detection module is an inequality comparison module; correspondingly, when the first signal relationship is that the first intermediate signal and the first occurrence signal are not equal , determining that the signal transmission line is faulty, and outputting a first interruption signal.

根据本发明一实施方式,所述信号发生支路和所述信号传输线路均还包括脉冲宽度过滤器模块;相应的,所述故障检测电路还包括:第二检测支路,连接于所述信号传输线路的脉冲宽度过滤器模块输出端与所述信号发生支路的脉冲宽度过滤器模块输出端之间,包括:第二检测模块,用于判断所述信号传输线路的脉冲宽度过滤器模块输出端的第二中间信号与所述信号发生支路的脉冲宽度过滤器模块输出端第二发生信号的第二信号关系,以及基于所述第二信号关系对所述信号传输线路进行故障判断;第二注错模块,用于判断所述第二检测模块的工作状态。According to an embodiment of the present invention, both the signal generation branch and the signal transmission line further include a pulse width filter module; correspondingly, the fault detection circuit further includes: a second detection branch connected to the signal Between the output end of the pulse width filter module of the transmission line and the output end of the pulse width filter module of the signal generation branch, it includes: a second detection module for judging the output of the pulse width filter module of the signal transmission line The second signal relationship between the second intermediate signal at the terminal and the second generated signal at the output end of the pulse width filter module of the signal generation branch, and based on the second signal relationship, fault judgment is performed on the signal transmission line; the second An error injection module is used for judging the working state of the second detection module.

根据本发明一实施方式,所述第二检测支路还包括:选择器,输入端与所述信号传输线路的同步器模块输出端以及所述信号发生线路的同步器模块输出端相连接,输出端与所述信号发生支路的脉冲宽度过滤器模块的输入端相连接,用于选择将所述信号传输线路的同步器模块输出端信号或所述信号发生支路的输出端信号作为所述信号发生支路的脉冲宽度过滤器模块的输入信号。According to an embodiment of the present invention, the second detection branch further includes: a selector, the input end of which is connected to the output end of the synchronizer module of the signal transmission line and the output end of the synchronizer module of the signal generation line, and the output terminal is connected with the input end of the pulse width filter module of the signal generation branch, and is used to select the output signal of the synchronizer module of the signal transmission line or the output signal of the signal generation branch as the Input signal to the pulse width filter block of the signal generation branch.

根据本发明一实施方式,所述信号传输线路的脉冲宽度过滤模块和所述信号发生支路的脉冲宽度过滤模块被配置为用于过滤相同脉冲宽度相反脉冲极性的过滤配置。According to an embodiment of the present invention, the pulse width filtering module of the signal transmission line and the pulse width filtering module of the signal generation branch are configured as a filtering configuration for filtering the same pulse width but opposite pulse polarity.

根据本发明一实施方式,所述第二检测支路还包括:反向器,连接在所述信号传输线路的同步器模块输出端与所述信号发生支路的脉冲宽度过滤模块的输入端之间,用于将所述信号传输线路的同步器模块输出端信号进行反向之后输入至所述信号发生支路的脉冲宽度过滤模块;相应的,所述信号传输线路的脉冲宽度过滤模块和所述信号发生支路的脉冲宽度过滤模块被配置为用于过滤相同脉冲宽度相反脉冲极性的过滤配置。According to an embodiment of the present invention, the second detection branch further includes: an inverter connected between the output end of the synchronizer module of the signal transmission line and the input end of the pulse width filter module of the signal generation branch During the period, it is used to reverse the output signal of the synchronizer module of the signal transmission line and then input it to the pulse width filter module of the signal generation branch; correspondingly, the pulse width filter module of the signal transmission line and the The pulse width filtering module of the signal generation branch is configured as a filtering configuration for filtering the same pulse width but opposite pulse polarity.

根据本发明一实施方式,所述信号发生支路为独立设置的与所述信号传输线路相同的信号传输线路或当前处于空闲状态的与所述信号传输线路相同的其他信号传输线路。According to an embodiment of the present invention, the signal generation branch is an independently set signal transmission line that is the same as the signal transmission line or another signal transmission line that is currently idle and is the same as the signal transmission line.

根据本发明第二方面,还提供了一种信号传输线路的故障检测方法,所述方法包括:接收信号传输线路的同步器模块输出端的第一中间信号和信号发生支路的同步器模块输出端的第一发生信号;在所述第一中间信号和第一发生信号的第一信号关系满足第一设定条件时输出第一中断指令。According to the second aspect of the present invention, there is also provided a fault detection method for a signal transmission line, the method comprising: receiving the first intermediate signal at the output end of the synchronizer module of the signal transmission line and the first intermediate signal at the output end of the synchronizer module of the signal generation branch a first generation signal; outputting a first interrupt instruction when a first signal relationship between the first intermediate signal and the first generation signal satisfies a first setting condition.

根据本发明第三方面,还提供了一种芯片,所述芯片包括上述信号传输线路故障检测电路。According to the third aspect of the present invention, a chip is also provided, and the chip includes the above-mentioned signal transmission line fault detection circuit.

根据本发明第四方面,还提供了一种电子设备,所述电子设备包括上述芯片。According to a fourth aspect of the present invention, an electronic device is further provided, and the electronic device includes the above-mentioned chip.

根据本发明第五方面,还提供了一种车辆,所述车辆包括上述电子设备。According to a fifth aspect of the present invention, a vehicle is further provided, the vehicle including the above-mentioned electronic device.

本发明实施例信号传输线路的故障检测电路、方法、芯片、电子设备及车辆中,故障检测电路设置于系统级芯片中,包括信号发生支路和第一检测支路。信号发生支路具有与信号传输线路相同的同步器模块和功能模块,其中,功能模块用于通过同步器模块接收IO信号并对所接收的IO信号进行处理。第一检测支路连接于信号传输线路的同步器电路模块输出端与信号发生支路的同步器电路模块输出端之间。第一检测支路包括第一检测模块和第一注错模块。第一检测模块用于判断信号传输线路的同步器模块输出端的第一中间信号和信号发生支路的同步器模块输出端的第一发生信号之间的第一信号关系,以及基于第一信号关系对信号传输线路进行故障判断。第一注错模块用于判断第一检测模块的工作状态。由此,通过第一检测支路根据信号传输线路的同步器模块输出端的第一中间信号和信号发生支路的同步器模块输出端的第一发生信号之间的第一信号关系对信号传输线路进行故障判断,对信号传输线路所传输的信号进行实时监测,保证信号传输的正确性,在出现电路故障或信号干扰等问题时,及时判定信号传输线路发生故障,满足了对信号传输线路的具有高功能安全要求。此外,这里信号发生支路与信号传输线路具有相同的模块设置,故可以借用当前空闲的信号传输线路作为信号发生支路,有效节省电路资源。In the fault detection circuit, method, chip, electronic device and vehicle of the signal transmission line in the embodiment of the present invention, the fault detection circuit is set in the system level chip, including the signal generation branch and the first detection branch. The signal generation branch has the same synchronizer module and function module as the signal transmission line, wherein the function module is used to receive IO signals through the synchronizer module and process the received IO signals. The first detection branch is connected between the output end of the synchronizer circuit module of the signal transmission line and the output end of the synchronizer circuit module of the signal generation branch. The first detection branch includes a first detection module and a first error injection module. The first detection module is used for judging the first signal relationship between the first intermediate signal at the output end of the synchronizer module of the signal transmission line and the first generated signal at the output end of the synchronizer module of the signal generation branch, and based on the first signal relationship Signal transmission line for fault diagnosis. The first error injection module is used for judging the working state of the first detection module. Thus, the first signal relationship between the first intermediate signal at the output end of the synchronizer module of the signal transmission line and the first generated signal at the output end of the synchronizer module of the signal generation branch is performed on the signal transmission line through the first detection branch Fault judgment, real-time monitoring of the signal transmitted by the signal transmission line to ensure the correctness of signal transmission, in the event of circuit failure or signal interference, timely determine the failure of the signal transmission line, which meets the high requirements of the signal transmission line Functional safety requirements. In addition, the signal generation branch and the signal transmission line have the same module configuration, so the currently idle signal transmission line can be used as the signal generation branch, effectively saving circuit resources.

需要理解的是,本发明的教导并不需要实现上面所述的全部有益效果,而是特定的技术方案可以实现特定的技术效果,并且本发明的其他实施方式还能够实现上面未提到的有益效果。It should be understood that the teaching of the present invention does not need to realize all the beneficial effects described above, but specific technical solutions can achieve specific technical effects, and other implementations of the present invention can also achieve beneficial effects not mentioned above Effect.

附图说明Description of drawings

通过参考附图阅读下文的详细描述,本发明示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本发明的若干实施方式,其中:The above and other objects, features and advantages of exemplary embodiments of the present invention will become readily understood by reading the following detailed description with reference to the accompanying drawings. In the drawings, several embodiments of the invention are shown by way of illustration and not limitation, in which:

在附图中,相同或对应的标号表示相同或对应的部分。In the drawings, the same or corresponding reference numerals denote the same or corresponding parts.

图1示出了本发明实施例故障检测电路所检测的信号传输线路的组成结构示意图;Fig. 1 shows the composition structure diagram of the signal transmission line detected by the fault detection circuit of the embodiment of the present invention;

图2示出了本发明一实施例提供的信号传输线路的故障检测电路的组成结构示意图;Fig. 2 shows a schematic diagram of the composition and structure of a fault detection circuit of a signal transmission line provided by an embodiment of the present invention;

图3示出了本发明另一实施例提供的信号传输线路的故障检测电路的组成结构示意图;FIG. 3 shows a schematic diagram of the composition and structure of a fault detection circuit of a signal transmission line provided by another embodiment of the present invention;

图4示出了本发明再一实施例提供的信号传输线路的故障检测电路的组成结构示意图;FIG. 4 shows a schematic diagram of the composition and structure of a fault detection circuit of a signal transmission line provided by another embodiment of the present invention;

图5示出了本发明一实施例提供的信号传输线路的故障检测电路具体应用示例的组成结构示意图;FIG. 5 shows a schematic diagram of the composition and structure of a specific application example of a fault detection circuit for a signal transmission line provided by an embodiment of the present invention;

图6示出了本发明另一实施例提供的信号传输线路的故障检测电路具体应用示例的组成结构示意图;FIG. 6 shows a schematic diagram of the composition and structure of a specific application example of a fault detection circuit for a signal transmission line provided by another embodiment of the present invention;

图7示出了本发明再一实施例提供的信号传输线路的故障检测电路具体应用示例的组成结构示意图;FIG. 7 shows a schematic diagram of the composition and structure of a specific application example of a fault detection circuit for a signal transmission line provided by another embodiment of the present invention;

图8示出了本发明实施例提供的信号传输线路的故障检测方法的实现流程示意图。Fig. 8 shows a schematic flowchart of the implementation of the fault detection method for the signal transmission line provided by the embodiment of the present invention.

具体实施方式detailed description

下面将参考若干示例性实施方式来描述本发明的原理和精神。应当理解,给出这些实施方式仅仅是为使本领域技术人员能够更好地理解进而实现本发明,而并非以任何方式限制本发明的范围。相反,提供这些实施方式是为使本发明更加透彻和完整,并能够将本发明的范围完整地传达给本领域的技术人员。The principle and spirit of the present invention will be described below with reference to several exemplary embodiments. It should be understood that these embodiments are given only to enable those skilled in the art to better understand and implement the present invention, rather than to limit the scope of the present invention in any way. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.

下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。The technical solutions of the present invention will be further elaborated below in conjunction with the accompanying drawings and specific embodiments.

图1示出了本发明实施例故障检测电路所检测的信号传输线路的组成结构示意图。FIG. 1 shows a schematic diagram of the composition and structure of a signal transmission line detected by a fault detection circuit according to an embodiment of the present invention.

参考图1,以两条线路示出信号传输线路,信号传输线路主要传输IO信号,信号传输线路可以包括IO PAD(IO管脚)、同步器、脉冲宽度过滤器和功能模块。图1中的每一信号传输线路均可以示出输入信号从IO PAD到功能模块的信号走向图。Referring to FIG. 1 , two lines are used to illustrate the signal transmission line. The signal transmission line mainly transmits IO signals. The signal transmission line may include IO PAD (IO pin), synchronizer, pulse width filter and functional modules. Each signal transmission line in FIG. 1 can show the signal direction diagram of the input signal from the IO PAD to the functional module.

具体的,IO PAD为芯片的管脚处理模块,既可以将芯片管脚的接收的IO信号经过处理送给芯片内部,又可以将芯片内部输出的IO信号经过处理送到芯片管脚,并进一步传输至芯片外部。同步器可以用于对输入的IO信号进行两级采样来避免信号采样的亚稳态状态传播。脉冲宽度过滤器可以消除IO信号上指定脉冲宽度的毛刺。芯片的物理走线和驱动buffer(缓冲器)可以以图1中不同模块之间的连线示出。输入的IO信号从IO PAD输入到芯片内部,首先经过同步器对信号进行同步,然后通过脉冲宽度过滤器过滤IO信号上可能存在的毛刺,最后进入功能模块进行功能触发。Specifically, the IO PAD is the pin processing module of the chip, which can not only process the received IO signal of the chip pin and send it to the chip, but also process the IO signal output inside the chip and send it to the chip pin, and further transmitted to the outside of the chip. The synchronizer can be used to perform two-stage sampling of the input IO signal to avoid the metastable state propagation of signal sampling. The pulse width filter can remove glitches of specified pulse width on IO signals. The physical wiring of the chip and the driving buffer (buffer) can be shown as the connection between different modules in FIG. 1 . The input IO signal is input into the chip from the IO PAD. First, the signal is synchronized by the synchronizer, and then the possible burrs on the IO signal are filtered by the pulse width filter, and finally enters the function module for function triggering.

需要说明的是,脉冲宽度过滤器是优选的IO信号的信号传输线路中所配置的模块,部分信号传输线路中可以不配置脉冲宽度过滤器。由于芯片中存在大量需要与外围设备进行连接的IO信号传输线路,因此,如何保证IO信号在整个芯片内进行传输过程中的正确性和稳定性尤为关键,基于此,本申请设计了如下文所描述的信号传输线路的故障检测电路及方法。It should be noted that the pulse width filter is preferably a module configured in the signal transmission line of the IO signal, and the pulse width filter may not be configured in some signal transmission lines. Since there are a large number of IO signal transmission lines that need to be connected with peripheral devices in the chip, how to ensure the correctness and stability of the IO signal transmission process in the entire chip is particularly critical. Based on this, this application designs the following A fault detection circuit and method for a signal transmission line are described.

图2示出了本发明一实施例提供的信号传输线路的故障检测电路的组成结构示意图。FIG. 2 shows a schematic diagram of the composition and structure of a fault detection circuit for a signal transmission line provided by an embodiment of the present invention.

参考图2,本发明实施例信号传输线路的故障检测电路,设置于SOC(System onChip,系统级芯片)中,包括信号发生支路12和第一检测支路13。信号发生支路12具有与信号传输线路11相同的同步器模块111和功能模块112。其中,功能模块112用于通过同步器模块111接收IO信号并对所接收的IO信号进行处理。第一检测支路13连接于信号传输线路11的同步器电路模块111输出端与信号发生支路12的同步器电路模块111输出端之间。第一检测支路13包括第一检测模块131和第一注错模块132。第一检测模块131用于判断信号传输线路11的同步器模块111输出端的第一中间信号和信号发生支路的同步器模块输出端的第一发生信号之间的第一信号关系,以及基于第一信号关系对信号传输线路11进行故障判断。第一注错模块132用于判断第一检测模块131的工作状态。Referring to FIG. 2 , the fault detection circuit of the signal transmission line according to the embodiment of the present invention is set in a SOC (System on Chip, system-on-chip), and includes a signal generation branch 12 and a first detection branch 13 . The signal generation branch 12 has the same synchronizer module 111 and function module 112 as the signal transmission line 11 . Wherein, the function module 112 is configured to receive the IO signal through the synchronizer module 111 and process the received IO signal. The first detection branch 13 is connected between the output end of the synchronizer circuit module 111 of the signal transmission line 11 and the output end of the synchronizer circuit module 111 of the signal generation branch 12 . The first detection branch 13 includes a first detection module 131 and a first error injection module 132 . The first detection module 131 is used to judge the first signal relationship between the first intermediate signal at the output end of the synchronizer module 111 of the signal transmission line 11 and the first generated signal at the output end of the synchronizer module of the signal generation branch, and based on the first The signal relationship performs fault judgment on the signal transmission line 11 . The first error injection module 132 is used for judging the working state of the first detection module 131 .

其中,第一注错模块132用于判断第一检测模块131的工作状态可以通过以下操作实现:在设定时刻第一注错模块132向第一检测模块131输入一个预设的错误信号,该错误信号与信号传输线路11的同步器模块111的输出信号不同。由此,第一检测模块131在接收到该错误信号时需要能够识别到信号错误,并输出错误中断。若第一检测模块131在此时正常输出错误中断,则可以判定为第一检测模块131处于正常工作状态。由此,实现对第一检测模块131的逻辑自检。以下图2~图7中第一注错模块132对第一检测模块131的工作状态的判断以及第二注错模块142对第二检测模块141的工作状态的判断,均可以参考上述描述,下文不再赘述。Wherein, the first error injection module 132 is used to judge the working state of the first detection module 131 can be realized through the following operations: at the set moment, the first error injection module 132 inputs a preset error signal to the first detection module 131, the The error signal is different from the output signal of the synchronizer module 111 of the signal transmission line 11 . Therefore, when receiving the error signal, the first detection module 131 needs to be able to identify a signal error and output an error interrupt. If the first detection module 131 normally outputs an error interrupt at this time, it can be determined that the first detection module 131 is in a normal working state. In this way, the logic self-test of the first detection module 131 is realized. The judgment of the first error injection module 132 on the working state of the first detection module 131 in the following figures 2 to 7 and the judgment of the second error injection module 142 on the working state of the second detection module 141 can refer to the above description. No longer.

需要说明的是,对于如图2所示的信号传输线路的故障检测电路,信号传输线路11和信号发生电路12中可以具有脉冲宽度过滤模块也可以不具有脉冲宽度过滤模块。若信号传输线路11中具有脉冲宽度过滤模块,则信号发生支路12中也最好配置脉冲宽度过滤模块。It should be noted that, for the fault detection circuit of the signal transmission line shown in FIG. 2 , the signal transmission line 11 and the signal generation circuit 12 may or may not have a pulse width filter module. If there is a pulse width filter module in the signal transmission line 11 , it is also preferable to configure a pulse width filter module in the signal generation branch 12 .

为了进一步提升故障检测电路的故障检测及时性和准确性,在图2所示的故障检测电路的基础上,本发明提供了如图3所示另一种实施方式。In order to further improve the timeliness and accuracy of fault detection of the fault detection circuit, on the basis of the fault detection circuit shown in FIG. 2 , the present invention provides another implementation as shown in FIG. 3 .

图3示出了本发明另一实施例提供的信号传输线路的故障检测电路的组成结构示意图。Fig. 3 shows a schematic diagram of the composition and structure of a fault detection circuit of a signal transmission line provided by another embodiment of the present invention.

参考图3,在本发明这一实施方式中,信号发生支路12和信号传输线路11均还包括脉冲宽度过滤器模块113。相应的,故障检测电路还包括:第二检测支路14,连接于信号传输线路11的脉冲宽度过滤器模块113输出端与信号发生支路12的脉冲宽度过滤器模块113输出端之间。第二检测支路14包括:第二检测模块141和第二注错模块142。第二检测模块141用于判断信号传输线路11的脉冲宽度过滤器模块113输出端的第二中间信号与信号发生支路的脉冲宽度过滤器模块113输出端第二发生信号的第二信号关系,以及基于第二信号关系对信号传输线路11进行故障判断。第二注错模块142,用于判断第二检测模块141的工作状态。Referring to FIG. 3 , in this embodiment of the present invention, both the signal generation branch 12 and the signal transmission line 11 further include a pulse width filter module 113 . Correspondingly, the fault detection circuit further includes: a second detection branch 14 connected between the output end of the pulse width filter module 113 of the signal transmission line 11 and the output end of the pulse width filter module 113 of the signal generation branch 12 . The second detection branch 14 includes: a second detection module 141 and a second error injection module 142 . The second detection module 141 is used to judge the second signal relationship between the second intermediate signal at the output end of the pulse width filter module 113 of the signal transmission line 11 and the second generated signal at the output end of the pulse width filter module 113 of the signal generation branch, and A fault judgment is performed on the signal transmission line 11 based on the second signal relationship. The second error injection module 142 is used for judging the working state of the second detection module 141 .

在本发明这一实施方式中,第二检测支路14还可以包括选择器(图2和图3中未示出,图4中以IO lockstep锁同步电路示出)。选择器的输入端与信号传输线路11的同步器模块111输出端以及信号发生线路12的同步器模块输出端相连接。选择器的输出端与信号发生支路12的脉冲宽度过滤器模块113的输入端相连接,用于选择将信号传输线路11的同步器模块111输出端信号或信号发生支路12的输出端信号作为信号发生支路12的脉冲宽度过滤器模块113的输入信号。In this embodiment of the present invention, the second detection branch 14 may further include a selector (not shown in FIG. 2 and FIG. 3 , but shown as an IO lockstep lock synchronization circuit in FIG. 4 ). The input end of the selector is connected with the output end of the synchronizer module 111 of the signal transmission line 11 and the output end of the synchronizer module of the signal generation line 12 . The output end of the selector is connected with the input end of the pulse width filter module 113 of the signal generation branch 12, and is used to select the output end signal of the synchronizer module 111 of the signal transmission line 11 or the output end signal of the signal generation branch 12 As the input signal of the pulse width filter module 113 of the signal generating branch 12 .

其中,图3的其他具体实现过程与图2所示实施例中具体实现细节相类似,这里不再赘述。Wherein, other specific implementation processes in FIG. 3 are similar to the specific implementation details in the embodiment shown in FIG. 2 , and will not be repeated here.

图4示出了本发明再一实施例提供的信号传输线路的故障检测电路的组成结构示意图。Fig. 4 shows a schematic diagram of the composition and structure of a fault detection circuit of a signal transmission line provided by another embodiment of the present invention.

在本发明这一实施方式中,第二检测支路13还包括反向器N。反向器N连接在信号传输线路11的输出端与信号发生支路12的脉冲宽度过滤模块113的输入端之间,用于将信号传输线路11的同步器模块111输出端信号进行反向之后输入至信号发生支路12的脉冲宽度过滤模块113。相应的,信号传输线路11的脉冲宽度过滤模块113和信号发生支路12的脉冲宽度过滤模块113被配置为用于过滤相同脉冲宽度相反脉冲极性的过滤配置。In this embodiment of the present invention, the second detection branch 13 also includes an inverter N. The inverter N is connected between the output end of the signal transmission line 11 and the input end of the pulse width filter module 113 of the signal generation branch 12, and is used for inverting the signal at the output end of the synchronizer module 111 of the signal transmission line 11 Input to the pulse width filtering module 113 of the signal generating branch 12 . Correspondingly, the pulse width filtering module 113 of the signal transmission line 11 and the pulse width filtering module 113 of the signal generating branch 12 are configured as a filtering configuration for filtering the same pulse width and opposite pulse polarity.

需要说明的是,如上图2~图4所示的实施例中,若第二检测支路包括反相器,则信号传输线路的脉冲宽度过滤模块和信号发生支路的脉冲宽度过滤模块被配置为用于过滤相同脉冲宽度相反脉冲极性的过滤配置。若第二检测支路14不包括反相器,则信号传输线路的脉冲宽度过滤模块和信号发生支路的脉冲宽度过滤模块需要被配置为用于过滤相同脉冲宽度相反脉冲极性的过滤配置。It should be noted that, in the embodiments shown in Figures 2 to 4 above, if the second detection branch includes an inverter, the pulse width filter module of the signal transmission line and the pulse width filter module of the signal generation branch are configured Filter configuration for filtering same pulse width but opposite pulse polarity. If the second detection branch 14 does not include an inverter, the pulse width filter module of the signal transmission line and the pulse width filter module of the signal generation branch need to be configured as a filtering configuration for filtering the same pulse width and opposite pulse polarity.

在如图2~图4所示的本发明实施方式中,第一检测模块131可以采用不等比较模块(图2-图4中未示出)来实现。相应的,第一检测模块131在第一信号关系为第一中间信号和第一发生信号不相等时,判定信号传输线路11发生故障,输出第一中断信号。In the embodiments of the present invention shown in FIGS. 2-4 , the first detection module 131 may be implemented by using an inequality comparison module (not shown in FIGS. 2-4 ). Correspondingly, when the first signal relationship is that the first intermediate signal and the first occurrence signal are not equal, the first detection module 131 determines that the signal transmission line 11 is faulty, and outputs a first interrupt signal.

在如图2~图4所示的本发明实施方式中,信号发生支路12可以为独立设置的与信号传输线路相同的信号传输线路或当前处于空闲状态的与信号传输线路相同的其他信号传输线路。In the embodiments of the present invention shown in Figures 2 to 4, the signal generating branch 12 can be an independently set signal transmission line identical to the signal transmission line or other signal transmission lines that are currently in an idle state and are identical to the signal transmission line. line.

其中,图4的其他具体实现过程与图2和图3所示实施例中具体实现细节相类似,这里不再赘述。Wherein, other specific implementation processes in FIG. 4 are similar to the specific implementation details in the embodiments shown in FIG. 2 and FIG. 3 , and will not be repeated here.

以下结合如图5~图7所示的本发明实施例提供的信号传输线路的故障检测电路具体应用示例,对本发明实施例提供的信号传输线路的故障检测电路的实现逻辑进行进一步说明。The implementation logic of the fault detection circuit for the signal transmission line provided by the embodiment of the present invention will be further described below in conjunction with specific application examples of the fault detection circuit for the signal transmission line provided by the embodiment of the present invention as shown in FIGS. 5 to 7 .

图5示出了本发明一实施例提供的信号传输线路的故障检测电路具体应用示例的组成结构示意图。FIG. 5 shows a schematic diagram of the composition and structure of a specific application example of a fault detection circuit for a signal transmission line provided by an embodiment of the present invention.

参考图5,外部输入信号1同时从IO PAD1和IO PAD2输入到芯片内部。Referring to FIG. 5 , an external input signal 1 is simultaneously input into the chip from IO PAD1 and IO PAD2 .

IO信号在经过信号传输线路11的同步器模块111和信号发生支路12的同步器模块111之后,进入不等比较模块151进行实时的比较。如果信号传输线路11的同步器模块111和信号发生支路12的同步器模块111输出的信号不相等,则可以上报错误中断,例如:可以上报第一中断至CPU。After passing through the synchronizer module 111 of the signal transmission line 11 and the synchronizer module 111 of the signal generation branch 12, the IO signal enters the inequality comparison module 151 for real-time comparison. If the signals output by the synchronizer module 111 of the signal transmission line 11 and the synchronizer module 111 of the signal generating branch 12 are not equal, an error interrupt can be reported, for example, a first interrupt can be reported to the CPU.

进一步的,在通过信号发生支路12的同步器模块111将信号输入至不等比较模块151之前,增加第一注错模块132。通过第一注错模块132可以提供对不等比较模块的逻辑自检测试,以检测不等比较模块151的工作状态是否正常。Further, before the signal is input to the inequality comparison module 151 through the synchronizer module 111 of the signal generation branch 12 , a first error injection module 132 is added. The first error injection module 132 can provide a logic self-test for the inequality comparison module to detect whether the working state of the inequality comparison module 151 is normal.

这里,基于对信号通过信号传输线路11的同步器模块111和信号发生支路12的同步器模块111会有采样的偏差考虑。在物理实现上约束从信号传输线路11的IO PAD 101到同步器111的路径延迟T1与从信号发生支路12的IO PAD 101到同步器111的路径延迟T2之间差值小于一个采样时钟周期。即|T1-T2|<Tclk_period,其中,Tclk_period表示一个采样时钟周期。由此,可以保证两个同步器的采样偏差小于等于一个周期。进一步的,在进行信号比较时,需要过滤两个信号沿的信号变化,当输入的IO信号发生变化的第一个采样时钟周期,不等比较模块151不做信号比较,有效避免因为采样偏差造成的对信号传输电路的故障误报。Here, it is based on the consideration of sampling deviation between the synchronizer module 111 of the signal transmission line 11 and the synchronizer module 111 of the signal generation branch 12 . In terms of physical implementation, the difference between the path delay T1 from the IO PAD 101 of the signal transmission line 11 to the synchronizer 111 and the path delay T2 from the IO PAD 101 of the signal generation branch 12 to the synchronizer 111 is less than one sampling clock cycle . That is |T1-T2|<Tclk_period, where Tclk_period represents a sampling clock period. Thus, it can be ensured that the sampling deviation of the two synchronizers is less than or equal to one period. Further, when performing signal comparison, it is necessary to filter the signal changes of the two signal edges. When the input IO signal changes in the first sampling clock cycle, the inequality comparison module 151 does not perform signal comparison, which effectively avoids the False alarms for signal transmission circuit failures.

通过不等比较模块151可以实时对信号传输线路上从IO PAD 101传输至同步器模块111之间的信号传输路径上所有电路进行实时故障检测,保证同步器模块111的输出信号的正确性。The inequality comparison module 151 can perform real-time fault detection on all circuits on the signal transmission line from the IO PAD 101 to the synchronizer module 111 in real time to ensure the correctness of the output signal of the synchronizer module 111 .

需要说明的是,图4~图7中未具体框选信号传输线路11、信号发生支路12等。可以参考图2和图3所示的故障检测电路组成结构示意图,位于图上侧的同步器模块111和功能模块112等属于信号传输线路11,位于图下侧的同步器模块111和功能模块112等属于信号发生线路12。It should be noted that, in FIGS. 4 to 7 , the signal transmission line 11 , the signal generation branch 12 , etc. are not specifically framed. You can refer to the schematic diagrams of the composition and structure of the fault detection circuit shown in Figure 2 and Figure 3, the synchronizer module 111 and the functional module 112 on the upper side of the figure belong to the signal transmission line 11, and the synchronizer module 111 and the functional module 112 on the lower side of the figure etc. belong to the signal generation line 12.

由于信号传输线路11的同步器模块111和信号发生支路12的同步器模块111的输出一定会存在采样的偏差,因此,如果分别作为信号传输线路11的脉冲宽度过滤模块113和信号发生支路12的脉冲宽度过滤模块113的输入,则即使电路不存在故障,两个脉冲宽度过滤器113的输出也可能是不相同的,在对脉冲宽度过滤模块的输出进行检测和比较时存在较大的发生故障误报的可能性。Since the output of the synchronizer module 111 of the signal transmission line 11 and the output of the synchronizer module 111 of the signal generation branch 12 must have sampling deviations, if the pulse width filter module 113 and the signal generation branch of the signal transmission line 11 are used respectively 12 of the pulse width filter module 113 input, even if there is no fault in the circuit, the output of the two pulse width filters 113 may be different, there is a large difference when the output of the pulse width filter module is detected and compared Possibility of false positives for failures.

因此,基于不等比较模块151已经保证同步器模块111输出信号的正确性,这里,可以仅采用信号传输线路的同步器模块111的输出同时作为信号传输线路11的脉冲宽度过滤模块113和信号发生支路12的脉冲宽度过滤模块113的输入。以进一步的通过相等比较模块152对信号传输线路11的脉冲宽度过滤模块113和信号发生支路12的脉冲宽度过滤模块113进行比较。同时,可以将信号传输支路11的同步器模块111的输出经过反相器N反相之后再输入至信号发生支路的脉冲宽度过滤器模块113。如此,可以消除信号传输线路11的脉冲宽度过滤模块113和信号发生支路12的脉冲宽度过滤模块113可能出现的共因干扰。此时,信号传输线路11的脉冲宽度过滤模块113和信号发生支路12的脉冲宽度过滤模块113的软件脉冲过滤配置需要配置成相同的脉冲宽度和不同的脉冲极性过滤。例如,如果信号传输线路11的脉冲宽度过滤模块113配成3个周期的正沿脉冲过滤,则信号发生支路12的脉冲宽度过滤模块113需要配成3个周期的负沿脉冲过滤。Therefore, the correctness of the output signal of the synchronizer module 111 has been guaranteed based on the inequality comparison module 151. Here, only the output of the synchronizer module 111 of the signal transmission line can be used as the pulse width filtering module 113 and the signal generation of the signal transmission line 11 at the same time. The input of the pulse width filtering module 113 of the branch 12. The pulse width filter module 113 of the signal transmission line 11 and the pulse width filter module 113 of the signal generation branch 12 are further compared by the equality comparison module 152 . At the same time, the output of the synchronizer module 111 of the signal transmission branch 11 can be inverted by the inverter N and then input to the pulse width filter module 113 of the signal generation branch. In this way, common cause interference that may occur between the pulse width filter module 113 of the signal transmission line 11 and the pulse width filter module 113 of the signal generation branch 12 can be eliminated. At this time, the software pulse filtering configurations of the pulse width filtering module 113 of the signal transmission line 11 and the pulse width filtering module 113 of the signal generating branch 12 need to be configured to filter with the same pulse width and different pulse polarity. For example, if the pulse width filter module 113 of the signal transmission line 11 is configured to filter positive edge pulses of 3 cycles, the pulse width filter module 113 of the signal generating branch 12 needs to be configured to filter negative edge pulses of 3 cycles.

信号经过信号传输线路11的脉冲宽度过滤模块113和信号发生支路12的脉冲宽度过滤模块113之后,输入至相等比较模块152。相等比较模块152仅需对信号传输线路11的脉冲宽度过滤模块113和信号发生支路12的脉冲宽度过滤模块113输入的两个信号进行是否相等的比较,如果相等,则产生中断错误,例如:可以产生第二中断,并上报第二中断至CPU。After passing through the pulse width filter module 113 of the signal transmission line 11 and the pulse width filter module 113 of the signal generating branch 12 , the signal is input to the equality comparison module 152 . The equal comparison module 152 only needs to compare whether the two signals input by the pulse width filter module 113 of the signal transmission line 11 and the pulse width filter module 113 of the signal generation branch 12 are equal, and if they are equal, an interrupt error will be generated, for example: A second interrupt may be generated and reported to the CPU.

同样的,在将信号发生支路12的脉冲宽度过滤模块113的输出信号输入至相等比较模块152之前,增加第二注错模块142。通过第二注错模块142可以提供对相等比较模块152的逻辑自检测试。Likewise, before the output signal of the pulse width filtering module 113 of the signal generation branch 12 is input to the equality comparison module 152 , a second error injection module 142 is added. A logic self-test for the equality comparison module 152 may be provided by the second error injection module 142 .

通过相等比较模块152对信号传输线路11的脉冲宽度过滤模块113的输出进行了实时的信号监测,有效保证信号传输线路11的脉冲宽度过滤模块113的输出信号的正确性。进一步的,将信号传输线路11的脉冲宽度过滤模块113的输出信号输入至信号传输线路11的功能模块112进行功能的触发。The output of the pulse width filter module 113 of the signal transmission line 11 is monitored in real time by the equality comparison module 152 to effectively ensure the correctness of the output signal of the pulse width filter module 113 of the signal transmission line 11 . Further, the output signal of the pulse width filter module 113 of the signal transmission line 11 is input to the function module 112 of the signal transmission line 11 to trigger the function.

需要说明的是,信号发生支路12的同步器模块111和脉冲宽度过滤模块113之间也可以不加反相器N。此时,需要对电路和软件配置进行调整。具体的,可以参考图6所示的实施例。It should be noted that the inverter N may not be added between the synchronizer module 111 and the pulse width filtering module 113 of the signal generating branch 12 . At this point, the circuit and software configuration need to be adjusted. Specifically, reference may be made to the embodiment shown in FIG. 6 .

图6示出了本发明另一实施例提供的信号传输线路的故障检测电路具体应用示例的组成结构示意图。FIG. 6 shows a schematic diagram of the composition and structure of a specific application example of a fault detection circuit for a signal transmission line provided by another embodiment of the present invention.

参考图6,信号发生支路12的同步器模块111和脉冲宽度过滤模块113之间未配置反相器N。此时,需要将信号传输线路11的脉冲宽度过滤模块113和信号发生支路12的脉冲宽度过滤模块113的软件脉冲过滤配置需要配置成相同的脉冲宽度和相同的脉冲极性过滤。例如,如果信号传输线路11的脉冲宽度过滤模块113配成3个周期的正沿脉冲过滤,则信号发生支路12的脉冲宽度过滤模块113也需要配成3个周期的正沿脉冲过滤。Referring to FIG. 6 , no inverter N is arranged between the synchronizer module 111 and the pulse width filter module 113 of the signal generating branch 12 . At this time, the pulse width filter module 113 of the signal transmission line 11 and the pulse width filter module 113 of the signal generation branch 12 need to be configured to filter with the same pulse width and the same pulse polarity. For example, if the pulse width filter module 113 of the signal transmission line 11 is configured to filter positive edge pulses of 3 cycles, the pulse width filter module 113 of the signal generation branch 12 also needs to be configured to filter positive edge pulses of 3 cycles.

进一步的,图5中所示的相等比较模块152需要替换为另一个不等比较模块151。由此,不等比较模块151对信号传输线路11的脉冲宽度过滤模块113和信号发生支路12的脉冲宽度过滤模块113这两个输入信号进行不等比较。如果信号传输线路11的脉冲宽度过滤模块113和信号发生支路12的脉冲宽度过滤模块113输入的两个信号不相等,则产生中断错误,例如:可以产生第二中断,并上报第二中断至CPU。Further, the equality comparison module 152 shown in FIG. 5 needs to be replaced with another inequality comparison module 151 . Thus, the inequality comparing module 151 compares the two input signals of the pulse width filtering module 113 of the signal transmission line 11 and the pulse width filtering module 113 of the signal generating branch 12 for inequality. If the two signals input by the pulse width filter module 113 of the signal transmission line 11 and the pulse width filter module 113 of the signal generation branch 12 are not equal, an interrupt error is generated, for example: a second interrupt can be generated, and the second interrupt can be reported to CPU.

进一步的,基于图5所示的信号传输线路的故障检测电路具体应用示例,当芯片在某些功能安全需求稍低的应用领域中,可以将当前空闲的信号传输线路释放出来,作为信号发生支路。此时,需要做的一些软件配置改动。具体可以参考图7。Furthermore, based on the specific application example of the fault detection circuit of the signal transmission line shown in Figure 5, when the chip is used in some application fields with slightly lower functional safety requirements, the currently idle signal transmission line can be released as a signal generation support road. At this point, some software configuration changes need to be made. For details, please refer to FIG. 7 .

图7示出了本发明再一实施例提供的信号传输线路的故障检测电路具体应用示例的组成结构示意图。Fig. 7 shows a schematic composition structure diagram of a specific application example of a fault detection circuit for a signal transmission line provided by another embodiment of the present invention.

参考图7所示,可以通过软件将IO lockstep(IO锁同步电路)的输入端使能信号io_lockstep_en设置为0,则可以将当前空闲的信号传输线路的同步器模块111的输出端信号输入至不等比较模块151,与当前需要进行故障检测的信号传输线路的同步器模块111的输出端信号进行比较,实现当前需要进行故障检测的信号传输线路的故障检测。As shown in FIG. 7 , the input enable signal io_lockstep_en of the IO lockstep (IO lock synchronization circuit) can be set to 0 by software, then the output signal of the synchronizer module 111 of the currently idle signal transmission line can be input to different The comparison module 151 compares the signal at the output end of the synchronizer module 111 of the signal transmission line currently requiring fault detection to realize the fault detection of the signal transmission line currently requiring fault detection.

若当前空闲的信号传输线路需要启用信号传输功能,则可以通过软件关闭不等比较模块151和相等比较模块152。If the currently idle signal transmission line needs to enable the signal transmission function, the inequality comparison module 151 and the equality comparison module 152 can be turned off by software.

本发明实施例信号传输线路的故障检测电路、方法、芯片、电子设备及车辆中,故障检测电路设置于系统级芯片中,包括信号发生支路和第一检测支路。信号发生支路具有与信号传输线路相同的同步器模块和功能模块,其中,功能模块用于通过同步器模块接收IO信号并对所接收的IO信号进行处理。第一检测支路连接于信号传输线路的同步器电路模块输出端与信号发生支路的同步器电路模块输出端之间。第一检测支路包括第一检测模块和第一注错模块。第一检测模块用于判断信号传输线路的同步器模块输出端的第一中间信号和信号发生支路的同步器模块输出端的第一发生信号之间的第一信号关系,以及基于第一信号关系对信号传输线路进行故障判断。第一注错模块用于判断第一检测模块的工作状态。由此,通过第一检测支路根据信号传输线路的同步器模块输出端的第一中间信号和信号发生支路的同步器模块输出端的第一发生信号之间的第一信号关系对信号传输线路进行故障判断,对信号传输线路所传输的信号进行实时监测,保证信号传输的正确性,在出现电路故障或信号干扰等问题时,及时判定信号传输线路发生故障,满足了对信号传输线路的具有高功能安全要求。此外,这里信号发生支路与信号传输线路具有相同的模块设置,故可以借用当前空闲的信号传输线路作为信号发生支路,有效节省电路资源。In the fault detection circuit, method, chip, electronic device and vehicle of the signal transmission line in the embodiment of the present invention, the fault detection circuit is set in the system level chip, including the signal generation branch and the first detection branch. The signal generation branch has the same synchronizer module and function module as the signal transmission line, wherein the function module is used to receive IO signals through the synchronizer module and process the received IO signals. The first detection branch is connected between the output end of the synchronizer circuit module of the signal transmission line and the output end of the synchronizer circuit module of the signal generation branch. The first detection branch includes a first detection module and a first error injection module. The first detection module is used for judging the first signal relationship between the first intermediate signal at the output end of the synchronizer module of the signal transmission line and the first generated signal at the output end of the synchronizer module of the signal generation branch, and based on the first signal relationship Signal transmission line for fault diagnosis. The first error injection module is used for judging the working state of the first detection module. Thus, the first signal relationship between the first intermediate signal at the output end of the synchronizer module of the signal transmission line and the first generated signal at the output end of the synchronizer module of the signal generation branch is performed on the signal transmission line through the first detection branch Fault judgment, real-time monitoring of the signal transmitted by the signal transmission line to ensure the correctness of signal transmission, in the event of circuit failure or signal interference, timely determine the failure of the signal transmission line, which meets the high requirements of the signal transmission line Functional safety requirements. In addition, the signal generation branch and the signal transmission line have the same module configuration, so the currently idle signal transmission line can be used as the signal generation branch, effectively saving circuit resources.

同理,基于上文信号传输线路的故障检测电路,本发明实施例还提供一种信号传输线路的故障检测方法,如图8所示,该方法至少包括如下流程:操作801,接收信号传输线路的同步器模块输出端的第一中间信号和信号发生支路的同步器模块输出端的第一发生信号;操作802,在第一中间信号和第一发生信号的第一信号关系满足第一设定条件时输出第一中断指令。Similarly, based on the above fault detection circuit of the signal transmission line, the embodiment of the present invention also provides a fault detection method of the signal transmission line, as shown in FIG. The first intermediate signal at the output end of the synchronizer module and the first generated signal at the output end of the synchronizer module of the signal generation branch; in operation 802, the first signal relationship between the first intermediate signal and the first generated signal satisfies the first setting condition When the first interrupt command is output.

进一步,基于上文信号传输线路的故障检测电路,本发明实施例还提供了一种芯片,芯片包括上述信号传输线路故障检测电路。Furthermore, based on the above-mentioned fault detection circuit for the signal transmission line, an embodiment of the present invention further provides a chip, and the chip includes the above-mentioned fault detection circuit for the signal transmission line.

更进一步,基于上文信号传输线路的故障检测电路,本发明实施例还提供了一种电子设备,电子设备包括上述芯片。Furthermore, based on the above fault detection circuit of the signal transmission line, an embodiment of the present invention also provides an electronic device, which includes the above-mentioned chip.

再进一步,基于上文信号传输线路的故障检测电路,本发明实施例还提供了一种车辆,车辆包括上述电子设备。Still further, based on the above fault detection circuit of the signal transmission line, an embodiment of the present invention also provides a vehicle, which includes the above-mentioned electronic device.

这里需要指出的是:以上对针对信号传输线路的故障检测方法、芯片、电子设备及车辆实施例的描述,与前述图1至图7所示的方法实施例的描述是类似的,具有同前述图1至图7所示的传输线路的故障检测电路实施例相似的有益效果,因此不做赘述。对于本发明传输线路的故障检测方法、芯片、电子设备及车辆实施例中未披露的技术细节,请参照本发明前述图1至图7所示的传输线路的故障检测电路实施例的描述而理解,为节约篇幅,因此不再赘述。It should be pointed out here that: the above description of the fault detection method for the signal transmission line, the chip, the electronic equipment and the vehicle embodiment are similar to the description of the method embodiment shown in Figures 1 to 7, and have the same The embodiment of the fault detection circuit of the transmission line shown in FIGS. 1 to 7 has similar beneficial effects, so details are not repeated here. For the technical details not disclosed in the transmission line fault detection method, chip, electronic equipment, and vehicle embodiments of the present invention, please refer to the description of the fault detection circuit embodiment of the transmission line shown in Figures 1 to 7 of the present invention for understanding , in order to save space, it is not repeated here.

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, in this document, the term "comprising", "comprising" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.

在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。In the several embodiments provided in this application, it should be understood that the disclosed devices and methods may be implemented in other ways. The device embodiments described above are only illustrative. For example, the division of units is only a logical function division. In actual implementation, there may be other division methods, such as: multiple units or components can be combined or integrated. to another system, or some features may be ignored, or not implemented. In addition, the coupling, or direct coupling, or communication connection between the components shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be electrical, mechanical or other forms of.

上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。The units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units; they may be located in one place or distributed to multiple network units; Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention can be integrated into one processing unit, or each unit can be used as a single unit, or two or more units can be integrated into one unit; the above-mentioned integration The unit can be realized in the form of hardware or in the form of hardware plus software functional unit.

本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。Those of ordinary skill in the art can understand that all or part of the steps for realizing the above method embodiments can be completed by hardware related to program instructions, and the aforementioned programs can be stored in computer-readable storage media. When the program is executed, the execution includes: The steps of the above-mentioned method embodiments; and the aforementioned storage medium includes: various media capable of storing program codes such as removable storage devices, read only memory (Read Only Memory, ROM), magnetic disks or optical disks.

或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。Alternatively, if the above-mentioned integrated units of the present invention are implemented in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the embodiment of the present invention is essentially or the part that contributes to the prior art can be embodied in the form of a software product. The computer software product is stored in a storage medium and includes several instructions for Make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the methods in various embodiments of the present invention. The aforementioned storage medium includes various media capable of storing program codes such as removable storage devices, ROMs, magnetic disks or optical disks.

以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone familiar with the technical field can easily think of changes or replacements within the technical scope disclosed in the present invention, and should cover all Within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.

Claims (11)

1.一种信号传输线路的故障检测电路,所述故障检测电路设置于系统级芯片中,包括:1. A fault detection circuit of a signal transmission line, said fault detection circuit is arranged in a SoC, comprising: 信号发生支路,具有与信号传输线路相同的同步器模块和功能模块,所述功能模块用于通过所述同步器模块接收IO信号并对所接收的IO信号进行处理;The signal generation branch has a synchronizer module and a function module identical to the signal transmission line, and the function module is used to receive the IO signal through the synchronizer module and process the received IO signal; 第一检测支路,连接于所述信号传输线路的同步器电路模块输出端与信号发生支路的同步器电路模块输出端之间,包括:The first detection branch is connected between the output end of the synchronizer circuit module of the signal transmission line and the output end of the synchronizer circuit module of the signal generation branch, including: 第一检测模块,用于判断所述信号传输线路的同步器模块输出端的第一中间信号和所述信号发生支路的同步器模块输出端的第一发生信号之间的第一信号关系,以及基于所述第一信号关系对所述信号传输线路进行故障判断;The first detection module is used to judge the first signal relationship between the first intermediate signal at the output end of the synchronizer module of the signal transmission line and the first generated signal at the output end of the synchronizer module of the signal generation branch, and based on The first signal relationship performs fault judgment on the signal transmission line; 第一注错模块,用于判断所述第一检测模块的工作状态。The first error injection module is used to judge the working state of the first detection module. 2.根据权利要求1所述的电路,所述第一检测模块为不等比较模块;相应的,2. The circuit according to claim 1, the first detection module is an inequality comparison module; correspondingly, 第一检测模块在所述第一信号关系为所述第一中间信号和所述第一发生信号不相等时,判定所述信号传输线路发生故障,输出第一中断信号。When the first signal relationship is that the first intermediate signal is not equal to the first occurrence signal, the first detection module determines that the signal transmission line is faulty, and outputs a first interrupt signal. 3.根据权利要求1所述的电路,所述信号发生支路和所述信号传输线路均还包括脉冲宽度过滤器模块;相应的,所述故障检测电路还包括:3. The circuit according to claim 1, the signal generation branch and the signal transmission line also include a pulse width filter module; correspondingly, the fault detection circuit also includes: 第二检测支路,连接于所述信号传输线路的脉冲宽度过滤器模块输出端与所述信号发生支路的脉冲宽度过滤器模块输出端之间,包括:The second detection branch is connected between the output end of the pulse width filter module of the signal transmission line and the output end of the pulse width filter module of the signal generation branch, including: 第二检测模块,用于判断所述信号传输线路的脉冲宽度过滤器模块输出端的第二中间信号与所述信号发生支路的脉冲宽度过滤器模块输出端第二发生信号的第二信号关系,以及基于所述第二信号关系对所述信号传输线路进行故障判断;The second detection module is used to judge the second signal relationship between the second intermediate signal at the output end of the pulse width filter module of the signal transmission line and the second signal generated at the output end of the pulse width filter module of the signal generation branch, and performing fault judgment on the signal transmission line based on the second signal relationship; 第二注错模块,用于判断所述第二检测模块的工作状态。The second error injection module is used to judge the working state of the second detection module. 4.根据权利要求3所述的电路,所述第二检测支路还包括:4. The circuit of claim 3, the second detection branch further comprising: 选择器,输入端与所述信号传输线路的同步器模块输出端以及所述信号发生线路的同步器模块输出端相连接,输出端与所述信号发生支路的脉冲宽度过滤器模块的输入端相连接,用于选择将所述信号传输线路的同步器模块输出端信号或所述信号发生支路的输出端信号作为所述信号发生支路的脉冲宽度过滤器模块的输入信号。A selector, the input end of which is connected to the output end of the synchronizer module of the signal transmission line and the output end of the synchronizer module of the signal generation line, and the output end is connected to the input end of the pulse width filter module of the signal generation branch are connected, and are used to select the output signal of the synchronizer module of the signal transmission line or the output signal of the signal generation branch as the input signal of the pulse width filter module of the signal generation branch. 5.根据权利要求4所述的电路,所述信号传输线路的脉冲宽度过滤模块和所述信号发生支路的脉冲宽度过滤模块被配置为用于过滤相同脉冲宽度相反脉冲极性的过滤配置。5. The circuit according to claim 4, the pulse width filtering module of the signal transmission line and the pulse width filtering module of the signal generating branch are configured as a filtering configuration for filtering the same pulse width but opposite pulse polarity. 6.根据权利要求4所述的电路,所述第二检测支路还包括:6. The circuit of claim 4, the second detection branch further comprising: 反向器,连接在所述信号传输线路的同步器模块输出端与所述信号发生支路的脉冲宽度过滤模块的输入端之间,用于将所述信号传输线路的同步器模块输出端信号进行反向之后输入至所述信号发生支路的脉冲宽度过滤模块;相应的,an inverter, connected between the output end of the synchronizer module of the signal transmission line and the input end of the pulse width filter module of the signal generation branch, and used to transfer the output signal of the synchronizer module of the signal transmission line input to the pulse width filtering module of the signal generation branch after reverse; correspondingly, 所述信号传输线路的脉冲宽度过滤模块和所述信号发生支路的脉冲宽度过滤模块被配置为用于过滤相同脉冲宽度相反脉冲极性的过滤配置。The pulse width filtering module of the signal transmission line and the pulse width filtering module of the signal generating branch are configured as a filtering configuration for filtering the same pulse width but opposite pulse polarity. 7.根据权利要求1所述的电路,所述信号发生支路为独立设置的与所述信号传输线路相同的信号传输线路或当前处于空闲状态的与所述信号传输线路相同的其他信号传输线路。7. The circuit according to claim 1, the signal generation branch is an independently set signal transmission line identical to the signal transmission line or another signal transmission line identical to the signal transmission line currently in an idle state . 8.一种信号传输线路的故障检测方法,所述方法包括:8. A fault detection method for a signal transmission line, said method comprising: 接收信号传输线路的同步器模块输出端的第一中间信号和信号发生支路的同步器模块输出端的第一发生信号;receiving the first intermediate signal at the output end of the synchronizer module of the signal transmission line and the first generated signal at the output end of the synchronizer module of the signal generation branch; 在所述第一中间信号和第一发生信号的第一信号关系满足第一设定条件时输出第一中断指令。Outputting a first interruption instruction when a first signal relationship between the first intermediate signal and the first generation signal satisfies a first setting condition. 9.一种芯片,所述芯片包括权利要求1-6中任一项所述的信号传输线路故障检测电路。9. A chip, comprising the signal transmission line fault detection circuit according to any one of claims 1-6. 10.一种电子设备,所述电子设备包括权利要求9所述的芯片。10. An electronic device comprising the chip of claim 9. 11.一种车辆,所述车辆包括权利要求10所述的电子设备。11. A vehicle comprising the electronic device of claim 10.
CN202211056639.2A 2022-08-31 2022-08-31 Fault detection circuit, method and chip for signal transmission line Active CN115453315B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211056639.2A CN115453315B (en) 2022-08-31 2022-08-31 Fault detection circuit, method and chip for signal transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211056639.2A CN115453315B (en) 2022-08-31 2022-08-31 Fault detection circuit, method and chip for signal transmission line

Publications (2)

Publication Number Publication Date
CN115453315A true CN115453315A (en) 2022-12-09
CN115453315B CN115453315B (en) 2025-05-23

Family

ID=84301649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211056639.2A Active CN115453315B (en) 2022-08-31 2022-08-31 Fault detection circuit, method and chip for signal transmission line

Country Status (1)

Country Link
CN (1) CN115453315B (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112974A (en) * 1984-11-07 1986-05-30 Hitachi Ltd Trouble detection circuit and trouble diagnosis system
EP0332055A2 (en) * 1988-03-08 1989-09-13 Siemens Nixdorf Informationssysteme Aktiengesellschaft Detection circuit arrangement for faulty levels of digital signals injected in a bus
KR19990031790A (en) * 1997-10-14 1999-05-06 이계철 Synchronous and data fault detection monitoring circuit
CN200959622Y (en) * 2006-07-31 2007-10-10 华为技术有限公司 A differential signal transmission line detection system
CN104536864A (en) * 2014-12-10 2015-04-22 山东华芯半导体有限公司 Fault injection method for Nand Flash simulation model with controllable bit flipping
CN107480016A (en) * 2017-07-27 2017-12-15 珠海高凌信息科技股份有限公司 A kind of transmission equipment interface circuit self checking method and its circuitry self test system
CN107607826A (en) * 2017-09-14 2018-01-19 浙江正泰中自控制工程有限公司 A kind of dcs I/O module break detection circuit and its detection method
CN108320767A (en) * 2018-02-12 2018-07-24 河海大学常州校区 A kind of selective reinforcement means of combinational logic circuit anti-single particle mistake
CN110704234A (en) * 2019-09-12 2020-01-17 无锡江南计算技术研究所 Storage control data transmission error injection method
US20210006237A1 (en) * 2019-07-02 2021-01-07 Stmicroelectronics International N.V. Immediate fail detect clock domain crossing synchronizer
CN113253097A (en) * 2021-05-31 2021-08-13 中国人民解放军国防科技大学 SRAM type FPGA fault injection acceleration test method based on whole frame turnover
US20210302488A1 (en) * 2020-03-29 2021-09-30 Maxim Integrated Products, Inc. Systems and methods for fault detection and reporting through serial interface transceivers
US20220068419A1 (en) * 2020-08-31 2022-03-03 Changxin Memory Technologies, Inc. Test circuit, test device and test method thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112974A (en) * 1984-11-07 1986-05-30 Hitachi Ltd Trouble detection circuit and trouble diagnosis system
EP0332055A2 (en) * 1988-03-08 1989-09-13 Siemens Nixdorf Informationssysteme Aktiengesellschaft Detection circuit arrangement for faulty levels of digital signals injected in a bus
KR19990031790A (en) * 1997-10-14 1999-05-06 이계철 Synchronous and data fault detection monitoring circuit
CN200959622Y (en) * 2006-07-31 2007-10-10 华为技术有限公司 A differential signal transmission line detection system
CN104536864A (en) * 2014-12-10 2015-04-22 山东华芯半导体有限公司 Fault injection method for Nand Flash simulation model with controllable bit flipping
CN107480016A (en) * 2017-07-27 2017-12-15 珠海高凌信息科技股份有限公司 A kind of transmission equipment interface circuit self checking method and its circuitry self test system
CN107607826A (en) * 2017-09-14 2018-01-19 浙江正泰中自控制工程有限公司 A kind of dcs I/O module break detection circuit and its detection method
CN108320767A (en) * 2018-02-12 2018-07-24 河海大学常州校区 A kind of selective reinforcement means of combinational logic circuit anti-single particle mistake
US20210006237A1 (en) * 2019-07-02 2021-01-07 Stmicroelectronics International N.V. Immediate fail detect clock domain crossing synchronizer
CN110704234A (en) * 2019-09-12 2020-01-17 无锡江南计算技术研究所 Storage control data transmission error injection method
US20210302488A1 (en) * 2020-03-29 2021-09-30 Maxim Integrated Products, Inc. Systems and methods for fault detection and reporting through serial interface transceivers
US20220068419A1 (en) * 2020-08-31 2022-03-03 Changxin Memory Technologies, Inc. Test circuit, test device and test method thereof
CN113253097A (en) * 2021-05-31 2021-08-13 中国人民解放军国防科技大学 SRAM type FPGA fault injection acceleration test method based on whole frame turnover

Also Published As

Publication number Publication date
CN115453315B (en) 2025-05-23

Similar Documents

Publication Publication Date Title
CN101378267B (en) Primary and secondary switching device, and switching method using the same
US20140143463A1 (en) System on chip and corresponding monitoring method
JPS63273142A (en) Cross connection type inspection circuit and integrated circuit therefor
JP2011043957A (en) Fault monitoring circuit, semiconductor integrated circuit, and faulty part locating method
JP7381752B2 (en) Monitoring processors operating in lockstep
CN101131570B (en) Redundancy switch-over control method and control circuit thereof
EP3321814B1 (en) Method and apparatus for handling outstanding interconnect transactions
CN113076210B (en) Server fault diagnosis result notification method, system, terminal and storage medium
CN115392186A (en) Fault collection management system and method in system on chip
JP6563047B2 (en) Alarm processing circuit and alarm processing method
CN115453315A (en) Fault detection circuit, method and chip for signal transmission line
CN117707880A (en) Debug and trace circuitry for lockstep architecture, related methods, processing systems, and devices
CN201196776Y (en) Single plate and system with clock backup
CN101166415B (en) Master/slave switch circuit and method
US7366954B2 (en) Data transfer device and abnormal transfer state detecting method
TWI823556B (en) Memory abnormality detection system, motherboard, electronic device and abnormality detection method
CN110647426B (en) Dual-computer hot backup method, device and system and computer storage medium
JP3055249B2 (en) Processor debugging method
CN119960415A (en) Fault signal processing module and method, processor, electronic equipment and vehicle
JPH0471037A (en) Duplex system for electronic computer
CN115617663A (en) Test method, device and electronic equipment for pulse voting function
JPS5847465Y2 (en) Error detection holding device
JPH07160521A (en) Information processor with anti-fault function
JPS62226739A (en) Clock mode setting error detection method
JPS61134846A (en) Electronic computer system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant