CN115449072B - 一种ROS响应型超支化聚(β-氨基酯)及其仿生纳米复合物的制备方法与应用 - Google Patents

一种ROS响应型超支化聚(β-氨基酯)及其仿生纳米复合物的制备方法与应用 Download PDF

Info

Publication number
CN115449072B
CN115449072B CN202211063316.6A CN202211063316A CN115449072B CN 115449072 B CN115449072 B CN 115449072B CN 202211063316 A CN202211063316 A CN 202211063316A CN 115449072 B CN115449072 B CN 115449072B
Authority
CN
China
Prior art keywords
ncs
membrane
cells
amino ester
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211063316.6A
Other languages
English (en)
Other versions
CN115449072A (zh
Inventor
殷黎晨
吴清华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202211063316.6A priority Critical patent/CN115449072B/zh
Publication of CN115449072A publication Critical patent/CN115449072A/zh
Application granted granted Critical
Publication of CN115449072B publication Critical patent/CN115449072B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Rheumatology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Pain & Pain Management (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Polymers & Plastics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种ROS响应型超支化聚(β‑氨基酯)及其仿生纳米复合物的制备方法与应用,所述超支化聚(β‑氨基酯)通过两步亲核加成反应以及迈克尔加成反应,最后经胺类分子封端获得,含有具有ROS响应性断裂的磺撑二基。将所述超支化聚(β‑氨基酯)包载基因形成纳米核,纳米核被血小板膜和小胶质细胞膜的融合膜包裹形成所述仿生纳米复合物。本发明的仿生纳米复合物可通过外部细胞膜涂层的逐级靶向作用和内部聚(β‑氨基酯)的ROS响应性将核酸药物成功递送至炎症部位目标细胞,发挥基因沉默效果,改善炎性微环境。同时,该仿生纳米复合物能有效避免调理作用并且在全身施用后具备长时间的血液循环,在脑缺血再灌注的临床治疗中具有极大的潜力。

Description

一种ROS响应型超支化聚(β-氨基酯)及其仿生纳米复合物的 制备方法与应用
技术领域
本发明涉及生物材料及医学技术领域,具体涉及一种ROS响应型超支化聚(β-氨基酯)及其仿生纳米复合物的制备方法与应用。
背景技术
脑缺血再灌注(cerebral ischemia-reperfusion,CIR)损伤是指长期缺血的脑组织恢复血流灌注后,组织损伤程度较缺血前进一步加重的现象。近年来,溶栓疗法(静脉溶栓和介入溶栓)取得了快速发展,但其伴随的再灌注损伤却无法忽视,如何治疗CIR损伤成为人们关注的焦点。
CIR损伤过程中,小胶质细胞在灌注早期主要分化为促炎表型M1型,此时,胞内多种炎症通路被激活,分泌大量促炎细胞因子、趋化因子和活性氧自由基(reactive oxygenspecies,ROS)。最近研究表明,鞘氨醇激酶1(sphingosine kinase 1,SPHK-1)在调节小胶质细胞介导的持续炎症中发挥了重要作用。M1型小胶质细胞过量表达SPHK-1,进而磷酸化鞘氨醇并产生鞘氨醇-磷酸(sphingosine-phosphate,S1P)。后者泛素化肿瘤坏死因子受体相关因子2(tumor necrosis factor receptor-associated factor 2,TRAF-2),进而磷酸化核因子κB(nuclear factor-κB,NF-κB),最终过度产生促炎细胞因子,包括肿瘤坏死因子α(tumor necrosis factorα,TNF-α)、白介素1β(interleukin 1β,IL-1β)和IL-17A等。其中IL-17A和IL-1β分别通过NADPH氧化酶和NF-κB途径诱导产生ROS和诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS),进一步诱导氧化应激,并通过酶裂解和线粒体凋亡途径引起神经元凋亡。此外,SPHK-1调控的S1P可与内皮细胞上的S1PR2受体结合,激活G12-Rho通路,从而引发基质金属蛋白酶9(matrix metalloproteinase 9,MMP-9)的过度产生,后者可裂解内皮细胞间基质,从而破坏血脑屏障(blood-brain barrier,BBB),导致脑内出血以及脑水肿。因此,抑制异常表达的SPHK-1可能为治疗CIR损伤提供有前景的治疗策略。
基于RNAi技术的高速发展,SPHK-1siRNA(siSPHK-1)可通过抑制小胶质细胞中的SPHK-1过表达,逆转小胶质细胞的激活状态,减缓对神经血管损伤单位的损伤。然而,体内存在的多重生物屏障严重阻碍了siSPHK-1的脑部递送。阳离子聚合物是一类重要的siRNA递送载体,能够缩合siRNA并形成粒径适中的纳米复合物(nanocomplexes,NCs),从而促进靶细胞对siRNA的摄取、提升siRNA的转染效率。超支化聚(β-氨基酯)(poly(β-aminoester),PBAE)是一类重要的阳离子基因递送载体,具有独特的超支化结构,能高效包载siRNA,介导有效的基因转染。然而,PBAE介导siRNA的脑部递送过程中,存在多重生理障碍(血液屏障、BBB和细胞膜屏障),严重影响了siRNA的递送效率,限制了体内应用。因此,为了实现脑部靶基因的高效沉默,NCs需要具备以下能力:(1)需要具备较好的长循环能力,从而可以促进siRNA的脑部富集;(2)高效的BBB穿透能力;(3)靶细胞的有效摄取。然而,基于阳离子聚合物的siRNA递送系统很难同时满足上述全部要求。因此,迫切需要开发同时具备长循环、BBB高效穿透和病灶部位靶向性的基因递送体系,用于提升基因的脑部递送效率。
细胞膜包被的仿生纳米粒具有长循环、病灶靶向和良好的生物相容性等特性。目前,基于病灶微环境特征和细胞膜的生物学功能,多种类型的细胞膜已被开发并用于功能化纳米粒,实现不同类型疾病的诊疗。例如,红细胞膜包被有助于减少免疫系统对纳米粒的清除;中性粒细胞或巨噬细胞膜包被延长了纳米粒的体内循环半衰期并促进其肿瘤靶向;脑胶质瘤细胞膜包被增强了纳米粒的BBB穿透效果,并赋予纳米粒靶向膜同源细胞的能力;血小板膜包被使纳米粒具有血栓靶向功能。然而,由于体内病理微环境的复杂性,单一细胞膜包被不足以克服体内复杂的生理屏障,严重限制了纳米粒的疗效。因此,基于日趋成熟的单细胞膜包被技术,研究者们尝试融合不同类型的细胞膜,用于弥补单一细胞膜的不足、赋予纳米粒多种生物学功能,从而适应体内复杂的病理微环境。目前发展的融合膜主要包括红细胞/血小板膜、肿瘤细胞/白细胞膜、肿瘤细胞/红细胞膜和中性粒细胞膜/巨噬细胞膜等。因此,本领域中亟需研发一种新型的更安全和更有效的基因递送体系用于治疗与小胶质细胞中SPHK-1通路相关的疾病,尤其是脑缺血再灌注损伤。
发明内容
本发明要解决的技术问题是提供一种ROS响应型超支化聚(β-氨基酯)及其仿生纳米复合物的制备方法与应用,本发明制备了一种ROS响应型超支化聚(β-氨基酯),利用其包载核酸形成纳米核,再将血小板膜和小胶质细胞膜的融合膜包覆于纳米核外层形成仿生纳米复合物。本发明制备的仿生纳米复合物可有效精准靶向脑梗塞部位小胶质细胞,并介导SPHK-1基因沉默发挥抗炎作用,同时能够避免调理作用,在全身施用后具备长时间的血液循环,在SPHK-1过表达相关疾病(例如脑缺血再灌注)的临床治疗中具有极大的潜力。
为解决上述技术问题,本发明提供以下技术方案:
本发明第一方面提供了一种ROS响应型超支化聚(β-氨基酯),所述超支化聚(β-氨基酯)的主链结构中包含磺撑二基,所述超支化聚(β-氨基酯)的结构如下所示:
其中,n为1-1000的任一整数;
x、y、z独立选自1~1000的任一整数。
本发明第二方面提供了第一方面所述ROS响应型超支化聚(β-氨基酯)的制备方法,包括以下步骤:
(1)将巯基乙醇与顺式二氯乙烯通过亲核加成反应合成顺式-2,2'-[乙烯-1,2-二基双(亚磺酰)]二乙醇;
(2)将步骤(1)制备的顺式-2,2'-[乙烯-1,2-二基双(亚磺酰)]二乙醇与丙烯酰胺通过亲核加成反应合成2-[2-乙烯-1,2-双(磺撑二基)]-丙烯酸酯;
(3)将步骤(2)制备的2-[2-乙烯-1,2-双(磺撑二基)]-丙烯酸酯与三羟甲基丙烷三丙烯酸酯、氨基醇通过迈克尔加成反应合成聚(β-氨基酯),最后用胺类分子封端得到所述超支化聚(β-氨基酯)。
进一步地,步骤(1)中,所述亲核加成反应在碱性试剂、溶剂的存在下进行。
进一步地,步骤(1)中,所述亲核加成反应的反应温度为70~90℃,反应时间不少于18h。
进一步地,步骤(2)中,所述亲核加成反应在缚酸剂、溶剂的存在下进行;所述缚酸剂包括但不限于有机胺,例如三乙胺。
进一步地,步骤(2)中,所述亲核加成反应在惰性气氛下进行。
进一步地,步骤(3)中,所述胺类分子为精胺、1,3-二氨基丙烷、1,3-二氨基-2,2-二甲基丙烷、1,3-戊烷二胺、2-甲基-1,5-戊二胺、1,11-二氨基-3,6,9-三氧杂十一烷、2-[(3-氨丙基)胺]乙醇或1-(3-氨丙基)-4-甲基哌嗪。
本发明第三方面提供了一种仿生纳米复合物,所述仿生纳米复合物由纳米内核及其表面的细胞膜涂层组成;所述纳米内核由第一方面所述的ROS响应型超支化聚(β-氨基酯)包载基因药物得到,所述细胞膜涂层为血小板膜与小胶质细胞膜的融合膜。
进一步地,所述基因药物为介导抗炎反应的DNA、mRNA、siRNA或miRNA。
在本发明的一些实施例中,所述基因药物为siSPHK-1。
进一步地,血小板及小胶质细胞可来源于人、非人灵长类动物、啮齿类动物、偶蹄类动物或奇蹄类动物。
进一步地,所述非人灵长类动物包括但不限于猩猩、猿、猴猿。
进一步地,所述啮齿类动物包括但不限于大鼠、小鼠、豚鼠、仓鼠、兔。
进一步地,所述偶蹄类动物包括但不限于羊、牛、猪、骆驼、羊驼。
进一步地,所述奇蹄类动物包括但不限于马。
进一步地,所述血小板为骨髓成熟的巨核细胞胞浆裂解脱落下来的小块胞质。
进一步地,所述小胶质细胞为骨髓的单核细胞、骨髓的造血干细胞、神经外胚层、血管外膜、中枢神经系统内固有的造血干细胞、外周中胚层/间叶组织或循环血中的单核细胞。
进一步地,所述血小板膜、小胶质细胞膜和融合细胞膜具有如下特征:维持或保留细胞膜原有的天然结构完整性(例如一级结构、二级结构、三级结构或四级结构完整性)或活性(例如结合活性、受体活性、信号传导通路活性)。
在本发明的一些实施例中,所述血小板为天然血小板,所述小胶质细胞为BV-2细胞、HMC3细胞或T0251~永生化人小胶质细胞-SV40。
在本发明的一些实施例中,血小板膜表达特异性表面标志物优选CD29和/或CD61,小胶质细胞膜表达特异性表面标志物优选Iba1、CD29、CD51/CD61中的一种或多种。
本发明第四方面提供了一种第三方面所述仿生纳米复合物的制备方法,包括以下步骤:
(1)将权利要求1所述的ROS响应型超支化聚(β-氨基酯)与基因药物混合孵育,得到纳米核;将血小板膜与小胶质细胞膜混合并超声,得到融合膜;
(2)将步骤(1)制备的融合膜通过声波法、机械共挤压法、电穿孔法或加热法包裹至纳米核上,得到所述仿生纳米复合物。
进一步地,所述血小板膜与小胶质细胞膜通过裂解和组分分离得到;所述裂解包括但不限于超声裂解、酶裂解、化学裂解、匀浆裂解、低渗溶胀裂解,所述分离包括但不限于离心(例如逐级离心)、沉淀、过滤、磁珠、层析分离。
在本发明的一些实施例中,通过超声裂解小胶质细胞,并通过逐级离心得到小胶质细胞膜;通过反复冻融破坏血小板并通过离心得到血小板膜。
进一步地,步骤(1)中,所述血小板膜与小胶质细胞膜以质量比为1:1。
进一步地,步骤(2)中,所述融合膜与纳米核的质量比为1:1~2。
在本发明的一些实施例中,将融合膜与纳米核混合后超声得到仿生纳米复合物,所述超声的功率为100W,超声的时间为2~5min。
进一步地,所述仿生纳米复合物的形态为球形、立方体、圆锥形、圆柱形、棱柱形、棱锥形、或其它规则或不规则的形状;所述仿生纳米复合物的粒径分布为1nm~1μm或其间的任何数值范围。
本发明第五方面提供了一种第三方面所述的仿生纳米复合物或所述纳米核与融合膜的组合物在制备用于预防和/或治疗脑部炎症性疾病的药物中的应用,所述药物用于增强屏障穿透和/或抑制小胶质细胞过度激活。
进一步地,所述脑部炎症性疾病包括但不限于脑缺血再灌注损伤。
与现有技术相比,本发明的有益效果在于:
1.本发明合成了ROS响应性的超支化聚(β-氨基酯)(BS),然后与基因药物孵育制备得到纳米核,进而被由血小板膜和小胶质细胞膜制备得到的融合膜包裹,得到仿生纳米复合物。细胞膜的引入,一方面使纳米复合物继承了血小板和小胶质细胞的表面受体,通过受体识别作用和同型靶向作用精准靶向小胶质细胞,避免了潜在的不良反应;另外,包覆在纳米核表面的细胞膜屏蔽了纳米核的正电荷,从而减少了纳米复合物对血清蛋白的吸附,大大提高了仿生纳米复合物的血清稳定性;此外,仿生纳米复合物表面包含血小板和小胶质细胞的表面特异性蛋白,可避免调理作用,从而延长了血液循环。
2.本发明制备的仿生纳米复合物,能够依靠外部细胞膜涂层的逐级靶向作用依次穿透多个生理屏障,并最终将基因药物例如siSPHK-1递送至小胶质细胞中,SPHK-1介导基因沉默,从而发挥抗炎作用缓解梗塞部位的炎性微环境。与现行基因药物相比较,具有长循环、高效病灶部位靶向性和高安全性等优势。此外,本发明通过动物实验进一步验证了所述仿生纳米复合物的作用效果,在构建的小鼠动脉大脑栓塞模型中,将基因药物为siSPHK-1的仿生纳米复合物以尾静脉注射方式注入小鼠体内,成功下调了小胶质细胞上异常增高的SPHK-1并显著改善MCAO/R小鼠的生理指标和认知能力。
附图说明
图1为实施例1制备的化合物1的核磁共振氢谱图;
图2为实施例1制备的化合物2的核磁共振氢谱图;
图3为实施例1制备的聚合物1的核磁共振氢谱图;
图4:图4A为不同BS/siSPHK-1质量比的BSsS NCs的粒径和zeta电位,图4B为H2O2处理前后的粒径变化;
图5:图5A为血小板膜和小胶质细胞膜的融合的CLSM图,图5B为血小板膜和小胶质细胞膜以不同质量比融合的FRET图;
图6:图6A为HBSsS NCs的透射电镜图,图6B为不同HM/siSPHK-1比例下的HBSsSNCs的电位,图6C为H2O2处理前后HBSsS NCs的粒径,图6D为包膜NCs的特征蛋白条带;
图7为BV-2细胞与BV-2细胞与不同聚合物/siSPHK-1质量比的阳离子NCs或膜包被的NCs孵育24小时后的相对活力;
图8:图8A为OGD/R处理的BV-2细胞与含Cy5siSPHK-1的NCs或游离Cy5siSPHK-1孵育4小时后的流式细胞图,图8B为BV-2细胞的平均荧光强度;
图9为OGD/R处理的BV-2细胞对anti-CD29或anti-CD51/CD61预处理的HBSsS NCs的摄取;
图10为含Cy5siSPHK-1的NCs穿透bEnd.3细胞单层的效率;
图11为BSsS、BBSsS、PBSsS和HBSsS在静脉注射后的半衰期;
图12:图12A为BSsS NCs、BBSsS NCs、PBSsS NCs和HBSsS NCs在尾静脉后脑梗塞部位的荧光强度图,图12B为小鼠脑梗塞部位的生物成像;
图13为BSsS NCs、BBSsS NCs、PBSsS NCs和HBSsS NCs在尾静脉6小时后,梗塞脑组织的CLSM图;
图14:图14A为BSsS NCs、BBSsS NCs、PBSsS NCs和HBSsS NCs在静脉注射6小时后,梗塞脑组织中小胶质细胞的代表性流式细胞图;图14B为摄取含Cy5siSPHK-1的NCs的脑细胞的代表性流式细胞图;图14C为小胶质细胞内的平均荧光强度;图14D为CD11b+CD45LOW细胞的比例;
图15为HBSsS处理后MCAO/R小鼠梗塞脑组织中SPHK-1 mRNA和TRAF-2 mRNA的相对含量;
图16为HBSsS处理后MCAO小鼠梗塞脑组织中H2O2、蛋白酶(iNOS和MMP-9)、促炎细胞因子(TNF-α、IL-6、IL-1β和IL-17A)的浓度;
图17为HBSsS处理后MMCAO/R小鼠梗塞脑组织切片的CLSM图;
图18为HBSsS处理后MCAO/R小鼠脑组织的TTC染色图和定量计算的脑梗塞面积;
图19:图19A为MCAO/R小鼠在MMW水迷宫中的游泳路径图,图19B为MCAO/R小鼠在象限内停留时间,图19C为MCAO/R小鼠穿梭平台次数;
上述各图中*表示p<0.05,**表示p<0.01,***表示p<0.001。
具体实施方式
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1ROS响应性超支化聚(β-氨基酯)的制备
本实施例涉及不同聚(β-氨基酯)的制备,具体操作如下:
1.ROS响应性超支化聚(β-氨基酯)的制备(BS):
(1)顺式-2,2'-[乙烯-1,2-二基双(亚磺酰)]二乙醇的制备:将2-巯基乙醇(3.00g,8.39mmol)和NaOH(1.54g,38.39mmol)溶于无水乙醇(15mL),冰浴搅拌30分钟。随后,向混合物中逐滴滴加顺式-1,2-二氯乙烯的乙醇溶液(1.86g,9.19mmol,2mL),80℃反应18小时。待溶液冷却至室温,加入去离子水(20mL),乙醚萃取(10mL×3),去离子水洗涤(20mL×2),无水硫酸镁干燥,过滤去除硫酸镁,旋蒸除去溶剂,得粗产物。使用乙酸乙酯/正己烷(1/1,v/v)作为洗脱剂,通过硅胶柱色谱法纯化粗产物,得到化合物1。对化合物1进行核磁表征,测试结果如图1所示,制备得到顺式-2,2'-[乙烯-1,2-二基双(亚磺酰)]二乙醇。
(2)2-[2-乙烯-1,2-双(磺撑二基)]-丙烯酸酯的制备:氮气保护下,将化合物1(720mg,4mmol)和三乙胺(TEA,10mL,80mmol)溶于无水四氢呋喃(20mL),向混合物中逐滴滴加丙烯酰氯的四氢呋喃溶液(4.88mL,60mmol,10mL),室温反应24小时。反应结束后,过滤除去不溶物,旋蒸除去溶剂,得粗产物。将粗产物溶于二氯甲烷(200mL),分别用Na2CO3溶液(200mL×5,0.2mol/L)和去离子水(200mL×3)洗涤,无水硫酸钠干燥,过滤去除硫酸钠,旋蒸除去溶剂,得化合物2。对化合物2进行核磁表征,测试结果如图2所示,制备得到2-[2-乙烯-1,2-双(磺撑二基)]-丙烯酸酯。
(3)ROS响应性超支化聚(β-氨基酯)的制备:将化合物2(251mg,1.07mmol)、TMPTA(74mg,0.25mmol)和ABOL(89mg,1mmol)混合,50℃反应6小时。向混合物中加入MPZ的二氯甲烷溶液(157mg,1mmol,1mL),室温反应12小时。反应结束后,将混合物逐滴滴至无水乙醚(30mL)中,离心(5000rpm,10min)得到聚合物1。使用DMF(含0.05M LiBr)作为洗脱相,流速为1.0mL/min,通过GPC测定聚合物的分子量(Mn)为12500,多分散指数为1.09。对制备得到的聚合物1进行核磁表征,结果如图3所示,制备得到如以下结构式所示的ROS响应性超支化聚(β-氨基酯):
2.ROS非响应性超支化聚(β-氨基酯)的制备(BC):
通过相同的方法合成ROS非响应性超支化聚(β-氨基酯),各组分投料为:HDDA(197mg,0.83mmol)、TMPTA(74mg,0.25mmol)、ABOL(89mg,1mmol)及MPZ(157mg,1mmol),制备得到聚合物2。聚合物的结构式如下所示:
3.线性聚(β-氨基酯)的制备(LS):
通过相同的方法合成线性聚(β-氨基酯),各组分投料为:AE(288mg,1.23mmol)、ABOL(89mg,1mmol)及MPZ(157mg,1mmol),制备得到聚合物3。聚合物的结构式如下所示:
实施例2纳米核的制备
将实施例1制备的BS(1mg/mL)与siSPHK-1(0.1mg/mL)混合,涡旋5s,室温孵育30分钟,形成BSsS纳米核(BSsS NCs)。
为研究不同聚合物/siRNA质量比混合对BSsS NCs粒径的影响,分别设置BS/siSPHK-1的质量比为0、10、20、30、40、50、60试验组,通过纳米粒度及电位仪仪测定不同组别制备的BSsS NCs的粒径大小,如图4(A)所示,当BS/siSPHK-1的质量比小于30时,BSsSNCs粒径的大小随质量比的增大而减小,当BS/siSPHK-1的质量比大于30时,质量比继续增大,BSsS NCs粒径无明显变化;BSsS NCs纳米粒的电位随BS/siSPHK-1质量比的增大而增大。
为评估纳米粒的ROS响应性解离能力,将新鲜制备的BSsS NCs用H2O2处理,使用粒度仪测定纳米粒经H2O2处理前后的粒径。测试结果如图4(B)所示,H2O2处理后,BSsS NCs的粒径从127.5nm显著增至945.1nm,而BCsS NCs的粒径则未见明显变化,说明BSsS NCs具有ROS响应性。
实施例3仿生纳米复合物的制备
本实施例涉及一种仿生纳米复合物的制备,具体过程如下所示:
(1)膜材料的制备:
小胶质细胞膜的制备:将小鼠小胶质细胞BV-2(购自中国科学院细胞库,目录号BFN608006363,培养基为含有10%FBS的DMEM,37℃,5%CO2)悬浮于含有20mM Tris·HCl(pH 7.5)、10mM KCl、75mM蔗糖、2mM MgCl2和蛋白酶/磷酸酶抑制剂(购自Pierce,货号A32953,每片溶于10mL溶液中)的匀浆缓冲液中。用JY 92-IIN匀浆器(75W)破碎悬浮液中的细胞,然后以20000g离心25分钟收集上清液,并对上清液以100000g离心35分钟收集细胞膜。使用BCA试剂盒测定所收集细胞膜的蛋白质含量。可从约3×107个BV-2细胞中提取出含有约5mg膜蛋白的膜材料。
血小板膜的制备:从健康C57BL/6小鼠眼眶静脉取得新鲜血液,室温静置30分钟,离心(100g,20min)收集上层血浆,重复上述离心步骤两次去除残余的血细胞,得到纯化的血浆。向所得血浆中加入前列腺素1(1μM),离心(800g,20min)收集沉淀,得到血小板。随后用含有前列腺素1(1μM)的磷酸盐缓冲液重悬血小板,离心(800g,5min)收集沉淀,重复两次,得到纯化的血小板。血小板反复冻融,离心(4000g,5min)收集沉淀,得到PM,冻干,-80℃保存。BCA试剂盒测定PM的蛋白含量。从25mL的小鼠全血中可以提取出含有约8mg膜蛋白的膜材料。
(2)融合膜的制备:
为了进行膜融合研究,将DiOBM与DiDPM混合(w/w=1:1)并超声(100W,37℃,10min),CLSM观察并拍照。具体参见图5(A)。红色荧光信号(DiDPM)和绿色荧光信号(DiOBM)出现了明显重叠,表明BM和PM可以有效融合。通过荧光共振能量转移(FRET)实验进一步验证膜的融合,将PM与DiI/DiDBM按不同质量比(PM/DiI/DiDBM;w/w=0:1、1:1或3:1)混合并超声(100W,37℃,10min)。在550-750nm的范围内收集荧光发射光谱(λex=525nm)。供体(DiI)在565nm处的荧光恢复表示膜融合,如图5(B)。随着PM/BM质量比逐渐增加,DiI在565nm处的荧光强度逐渐增强,而DiD在670nm处的荧光强度显著减弱,表明掺入PM减弱了FRET对(DiD和DiI)之间的相互作用。
(3)仿生纳米复合物的制备:
将BM和PM按膜蛋白质量比1:1混合,超声(37℃,10min)制备HM。随后,将HM和BSsSNCs按融合膜蛋白与siSPHK-1的质量比为15:1混合并超声(37℃,3min),离心(12000g,15min)收集膜包被的纳米粒,并用PBS洗涤三次以除去过量的膜,得到融合膜包被的纳米粒(HBSsS NCs)。
按照相同的方法制备PM包被的纳米粒(PBSsS NCs)和BM包被的纳米粒(BBSsSNCs)。
(4)性能表征
HBSsS NCs的形貌:用乙酸双氧铀(0.2wt%)对上述制备的HBSsS NCs进行染色,使用透射电子显微镜(TEM,TECNAI G2,FEI,US)观察HBSsS NCs的形态。如图6(A)所示,纳米火箭呈球状结构,并具有可辨识的清晰膜结构。
HBSsS NCs的zeta电位和流体动力学尺寸:使用Zetasizer Nano ZS90(MalvernInstruments,Ltd.,UK)测定纳米复合物的流体动力学尺寸和zeta电位。将HM和BSsS NCs按融合膜蛋白与siSPHK-1以不同质量比(0:1、6:1、15:1、30:1)混合制备得到的HBSsS NCs,使用电位仪测定各HBSsS NCs的zeta电位,如图6(B)所示,HM与siSPHK-1的质量比为0:1或6:1时,zeta电位为正值,继续增大HM的量,当HM与siSPHK-1的质量比为15:1时,zeta电位为-9.3mV,且zeta电位的负值随着HM与siSPHK-1比值的增大而增大。如图6(C)所示,当HM与siSPHK-1的质量比为15:1时,制备得到的HBSsS NCs的流体动力学尺寸约为161.1nm。
HBSsS NCs、PBSsS NCs及BBSsS NCs表面特异性表达:通过Western blot检查不同纳米粒不同纳米粒上的血小板和/或BV-2细胞特异性表面标志物,包括BV-2细胞特征蛋白:Iba1、CD51/CD61和CD29)和血小板特征蛋白:CD29和CD61。Iba1、CD61、CD29、CD51/CD61和β-actin一抗的稀释浓度为1:1000。HRP标记的二抗的稀释浓度为1:1000。具体参见图6(D),包裹在纳米核上的融合细胞膜具有与天然细胞膜基本相同的表面标志物表达,这也说明上述纳米粒与天然细胞具有相似的膜功能。
本发明通过上述方法制得了包含BSsS纳米核和有效包裹该纳米核的血小板膜和/或小胶质细胞融合膜的稳定纳米复合物,其能够在表面上提供与相应天然细胞类似的表面蛋白。
实施例4细胞实验
通过细胞实验进一步研究HBSsS NCs的生物相容性,将BV-2细胞以1×104个细胞/孔接种至96孔板并培养24小时。将细胞培养基替换成含10%FBS的DMEM,随后加入BSsS NCs或膜包被的NCs(BBSsS NCs、PBSsS NCs或HBSsS NCs,1μg siSPHK-1/mL),37℃孵育24小时。通过MTT法测定细胞活力,以未经过任何处理的细胞的活力作为对照(100%),计算NCs处理后细胞的相对活力。结果如图7所示,所有膜包被的NCs(BBSsS NCs、PBSsS NCs和HBSsSNCs)均未影响BV-2细胞的增殖,各组细胞存活率均高于98%,由此可知,本申请制备的HBSsS NCs具备高生物相容性功能。
为了研究BV-2细胞对纳米粒的摄取,将BV-2细胞以1×105个细胞/孔接种至12孔板并培养24小时。随后将细胞进行氧糖剥夺/复氧(OGD/R)处理,加入BSsS NCs、BBSsS NCs、PBSsS NCs或HBSsS NCs(1μgCy5siSPHK-1/mL),37℃孵育4小时。移除培养基,用含肝素钠(20U/mL)的冷PBS洗涤细胞3次,胰酶消化,离心(1000rpm,5min)收集细胞,流式细胞仪测定NCs的细胞摄取量。结果如图8所示,血小板膜和小胶质细胞膜包被的NCs的细胞摄取量均显著高于BSsS NCs,而红细胞膜包被的NCs却无此效果。此外,BBSsS NCs和HBSsS NCs的细胞摄取量分别比PBSsS NCs组高24%和14%。上述结果初步证实血小板膜和小胶质细胞膜协同促进了NCs的内吞。
为了进一步研究HBSsS NCs增效BV-2细胞摄取的机制,将BV-2细胞以1×104个细胞/孔接种至96孔板并培养24小时。首先将HBSsS NCs与anti-CD29(0.1mg/mL)或anti-CD51/CD61(0.1mg/mL)孵育2小时,随后将细胞进行OGD/R处理,加入anti-CD29或anti-CD51/CD61预处理的HBSsS NCs(10μgCy5siSPHK-1/mL),37℃孵育4小时。移除培养基,用含肝素钠(20U/mL)的冷PBS洗涤细胞3次,加入RIPA裂解液(100μL/孔),4℃裂解20分钟。收集裂解液,荧光分光光度法测定Cy5siSPHK-1的含量(λex=644nm,λem=663nm),BCA试剂盒测定蛋白含量。以未经抗体处理的NCs的摄取量作为100%,计算anti-CD29或anti-CD51/CD61预处理的NCs的相对细胞摄取量(%)。结果如图9所示,相比未处理的HBSsS NCs,anti-CD29或anti-CD51/CD61预处理的HBSsS NCs在BV-2细胞中的摄取量分别下降了41%和48%,表明HM上CD29或CD51/CD61介导了HBSsS NCs的细胞内吞。当使用两种抗体联合处理HBSsS NCs后,BV-2细胞对HBSsS NCs的摄取量进一步下降了67%,表明CD29和CD51/CD61可联合增效HBSsS NCs在小胶质细胞中的内吞。上述发现共同表明,HBSsS NCs可通过CD51/CD61介导的同型靶向和CD29介导的小胶质细胞膜上CD106的识别,触发小窝蛋白介导的内吞作用,从而增强细胞内吞。
实施例5HBSsS NCs体外血脑屏障穿透效率研究
体外构建bEnd.3细胞和BV-2细胞共培养体系,用于体外模拟血脑屏障(BBB)。将bEnd.3细胞以5×104个细胞/孔接种至Transwell上室(孔径0.4μm,Corning,NY)并培养7天,通过细胞电阻仪测定bEnd.3细胞的跨膜电阻(transepithelial electricalresistance,TEER),TEER达到200Ω·cm2左右,表明内皮细胞单层的形成。将细胞单层进行OGD/R处理,随后向上室中加入BSsS NCs、BBSsS NCs、PBSsS NCs或HBSsS NCs(4μgCy5siSPHK-1/mL),37℃孵育4小时,收集下室培养基。荧光分光光度法测定培养基中Cy5siSPHK-1的含量(λex=644nm,λem=663nm)。以初始加入的Cy5siSPHK-1含量作为100%,计算含Cy5siSPHK-1的NCs穿透bEnd.3单层的效率。计算结果如图10所示,膜包被的NCs(BBSsSNCs、PBSsS NCs和HBSsS NCs)穿透效率显著高于BSsS NCs,其中HBSsS NCs的穿透效率是BSsS NCs的3.9倍。上述结果表明膜包被的NCs具有良好的BBB穿透能力,这可能是由于BM和PM上高表达的CD29能够与内皮细胞上的CD106特异性识别并结合,从而促进纳米复合物的跨内皮迁移。此外,BBSsS NCs和HBSsS NCs的穿透效率略高于PBSsS NCs,这可能是CD29在BM和PM上表达量不同造成的。
实施例6HBSsS NCs的体内半衰期和炎症组织靶向性研究
为了证明HBSsS NCs具备较长的体内循环时间,对HBSsS NCs在静脉注射后的药代动力学进行研究。雄性C57/BL6小鼠(6-8周,18-20g,购自上海斯莱克实验动物有限责任公司,以每笼四只饲养于洁净室中,随意饮水,12:12小时光暗循环,温度25±1℃。动物实验方案由苏州大学机构动物护理和使用委员会审查和批准)以400μg siSPHK-1/kg的剂量静脉注射BSsS NCs、BBSsS NCs、PBSsS NCs或HBSsS NCs。在预定的时间点收集血液,并通过分光荧光法(λex=644nm,λem=663nm)确定血浆中的BSsS NCs、BBSsS NCs、PBSsS NCs或HBSsSNCs的含量。计算循环半衰期(t1/2)。结果如图11所示,BBSsS NCs、PBSsS NCs和HBSsS NCs显示比BSsS NCs(t1/2=1.8小时)显著延长的血液循环时间,其t1/2分别为11.1、10.6和10.9小时。
为了进一步研究HBSsS NCs的炎症组织靶向性,以400μg siSPHK-1/kg的剂量对动脉大脑栓塞(MCAO/R)小鼠进行BSsS NCs、BBSsS NCs、PBSsS NCs或HBSsS NCs静脉注射,通过Lumina III观察脑梗塞部位的NCs富集。对雄性C57/BL6小鼠麻醉,沿锁骨正中做竖向切口(长度为1cm)。分离皮下肌肉组织,相继暴露颈总动脉、颈外动脉和颈内动脉,结扎颈总动脉和颈外动脉,在颈总动脉结扎处做“V字形”切口,将6-0硅胶包被的尼龙线栓从切口处小心插入,缓慢进入颈内动脉,并推进线栓直至中断大脑中动脉的血流供应。栓塞1小时后,将线栓轻轻拔出,恢复血流灌注,止血、缝合伤口并消毒。再灌注2小时后,尾静脉注射PBS或NCs(BSsS NCs、BBSsS NCs、PBSsS NCs或HBSsS NCs;400μg siSPHK-1/kg)。没有进行MCAO/R处理或NCs注射的小鼠作为对照组。在预定的时间点将小鼠处死,收集脑组织并通过小动物活体荧光成像仪进行荧光成像。具体参见图12,静脉注射HBSsS的比注射BSsS的小鼠显示出更强的荧光强度,是经DiDRM NDs处理的关节的3.6倍。相比之下,在左脑半球几乎没有观察到荧光信号。膜包被NCs(BBSsS NCs、PBSsS NCs和HBSsS NCs)在脑梗塞区的富集量较BSsS NCs组显著增加,且HBSsS NCs的富集量最高,是BSsS的2.7倍。离体脑切片成像的结果与上述结果一致。这些结果表明,HBSsS在发炎的脑梗塞组织中具有更强的聚集性,这可能是由于HM兼具PM的血栓靶向能力和BM的BBB穿透能力,从而增强了HBSsS NCs在脑梗塞区域的聚集和组织渗透。
上述实验结果说明本发明制备的HBSsS NCs在体内具有较长的循环半衰期和更强的炎症部位靶向性,相较于循环半衰期较短和靶向性差的药物(例如核酸类药物),能更有效发挥其治疗作用。
实施例7HBSsS NCs的体内半衰期和炎症组织靶向性研究
为了证明HBSsS具有体内血栓靶向能力,再灌注后2小时,尾静脉注射含Cy5siSPHK-1的BSsS NCs、BBSsS NCs、PBSsS NCs或HBSsS NCs(400μgCy5siSPHK-1/kg),6小时后处死小鼠,收集大脑,OCT包埋。使用冰冻切片机将脑组织横向切成10μm厚的切片,0.1%曲拉通孵育10分钟,4%多聚甲醛固定10分钟。加入FITC标记的大鼠抗小鼠CD61(1:200),室温孵育2小时,随后用DAPI(10μg/mL)染色10分钟,PBS润洗3次,最后滴加抗荧光淬灭剂并封片,并用激光共聚焦显微镜观察并拍照。具体参见图13,BSsS NCs组的脑梗塞组织内未见红色荧光(Cy5siSPHK-1),而膜包被NCs组的脑梗塞组织内出现大量红色荧光,表明膜包被NCs可有效穿透BBB并在脑实质中富集。此外,PBSsS NCs组和HBSsS NCs组脑组织内的红色荧光信号和绿色荧光信号(血栓部位)大量重叠,进一步表明PM的包被促进了NCs的血栓靶向。
实施例8HBSsS NCs的体内细胞摄取研究
为了研究MCAO/R小鼠脑内小胶质细胞对NCs的摄取情况,再灌注2小时后,尾静脉注射含Cy5siSPHK-1的BSsS NCs、BBSsS NCs、PBSsS NCs或HBSsS NCs(400μgCy5siSPHK-1/kg),6小时后处死小鼠。收集梗塞处大脑组织并称重(20mg),PBS洗涤3次,将其剪碎并分散在组织消化液[2mL,含有胶原酶D(1mg/mL)和DNase I(50μg/mL)的DMEM]中,摇床(100rpm,37℃)孵育1小时。尼龙网(孔径为77μm)过滤组织消化液3次,离心(1500rpm,5min)收集细胞,随后加入红细胞裂解液,室温处理5分钟,离心(1500rpm,5min)收集细胞。使用含有1%FBS的PBS重悬细胞,加入FITC标记的大鼠抗小鼠CD11b(1:200)和PerCP标记的大鼠抗小鼠CD45(1:200),4℃孵育30min。离心(1000rpm,5min)收集细胞,重悬于含有10%FBS的PBS(200μL)中,重复离心重悬步骤三次,流式细胞术分析。具体见图14。99%的小胶质细胞摄取了HBSsS NCs,明显高于BBSsS NCs组(91%)和PBSsS NCs组(48%)。此外,定量结果显示HBSsS NCs的细胞摄取量分别是BBSsS NCs和PBSsS NCs的1.4倍和2.1倍,这可能是由于HM上的整合素(CD29和CD51/CD61)介导的内吞作用促进了小胶质细胞的摄取。此外,在摄取HBSsS NCs的脑细胞中,小胶质细胞占比55%,显著高于其余各组,表明HBSsS NCs可以特异性地靶向小胶质细胞并被其高效摄取。上述结果表明,HBSsS NCs可通过PM和BM增效BBB穿透和小胶质细胞摄取,从而有效递送siSPHK-1至MCAO/R小鼠梗塞组织的小胶质细胞。
实施例9HBSsS NCs的体内抗炎效率研究
为了研究HBSsS纳米火箭的体内抗炎效率,MCAO/R损伤后24小时,处死小鼠并收集梗塞处大脑组织。用Trizol试剂提取细胞中的RNA,并用Nanodrop仪测定RNA的浓度和纯度,real-time PCR测定SPHK-1和TRAF-2mRNA的相对含量(GAPDH作为内参)。具体参见图15。经HBSsS NCs治疗后,梗塞组织中SPHK-1和TRAF-2的mRNA表达量分别降低了68%和77%,明显优于BBSsS NCs(47%和56%)和PBSsS NCs(48%和50%),表明HM增强了HBSsS NCs在梗塞处的靶向和富集,从而增效HBSsS NCs在小胶质细胞的基因沉默。
MCAO/R损伤后24小时,处死小鼠并收集梗塞处大脑组织。将其剪碎并加入含有蛋白酶抑制剂的RIPA裂解液(100mg组织/mL),使用组织匀浆机匀浆(4℃,5min),离心(12,000g,4℃,15min)收集上清液。ELISA试剂盒测定上清液中TNF-α、IL-6、IL-1β、IL-17A、iNOS和MMP-9的浓度。具体参见图16。经HBSsS NCs治疗后,MCAO/R小鼠梗塞脑组织中的促炎因子(TNF-α、IL-6、IL-1β、IL-17A、iNOS和MMP-9)含量分别下降了79%、80%、60%、62%、55%和48%,表明HBSsS NCs有效缓解了梗塞组织处的炎症反应。此外,将上清液转移至96孔板(100μL/孔),与DCFH-DA(10μM)在37℃孵育30分钟,荧光光度法测定H2O2的浓度(λex=488nm,λem=525nm)。结果显示HBSsS NCs有效抑制了脑梗塞组织内H2O2的产生,抑制率为54%,表明HBSsS NCs有效缓解了梗塞组织处的氧化应激。上述结果共同表明,HBSsS NCs可在基因和蛋白层面有效遏制SPHK-1的表达,从而抑制了SPHK-1相关通路中炎症分子、下游促炎因子、ROS、iNOS和MMP-9的表达,减缓了炎症和氧化应激反应,从而改善炎性微环境。
实施例10HBSsS NCs对BBB和神经血管单元修复研究
为了研究HBSsS NCs对BBB的修复情况,MCAO/R损伤后第5天,麻醉小鼠,腹腔注射伊文思蓝(40mg/kg),6小时后处死小鼠,收集梗塞处大脑组织并称重,将其剪碎并加入50%三氯乙酸(1mL),使用组织匀浆机匀浆(4℃,5min),离心(14,000g,4℃,30min)收集上清液。向上清液中加入无水乙醇(v/v=1/3),充分混匀。紫外分光光度计测定630nm处的吸光度,计算组织中伊文思蓝的含量。具体参见图17。MCAO/R损伤5天后,HBSsS NCs组小鼠脑组织中的伊文思蓝含量显著降低,较HBSsC NCs组减少约60%。这主要是由于HBSsS NCs抑制了炎性细胞因子和MMP-9的过度分泌,从而缓解了BBB损伤,促进BBB完整性的恢复。
为了研究HBSsS NCs对神经血管单元的修复情况,MCAO/R损伤后第2天,处死小鼠并收集大脑组织,OCT包埋。使用冰冻切片机将脑组织切成10微米厚的切片,0.1%曲拉通孵育5分钟,4%多聚甲醛固定15分钟,加入anti-CD31兔单克隆抗体(1:200)或anti-NeuN兔单克隆抗体(1:500),室温孵育2小时,PBS洗涤3次,随后加入山羊抗兔IgG Alexa Flour 488(1:1000),继续孵育30分钟,使用DAPI(10μg/mL)染色10分钟,PBS洗涤3次,最后滴加抗荧光淬灭剂并封片。CLSM观察组织切片中血管和神经元的分布并拍照。具体参见图17。与PBS组相比,HBSsS NCs组脑切片中的黄色荧光信号和绿色荧光信号明显增多,表明HBSsS NCs可促进血管和神经元再生。这可能是由于HBSsS NCs抑制了炎性因子和部分蛋白酶(MMP-9和iNOS)的产生,改善了炎性微环境,缓解了内皮细胞和神经元损伤,从而有助于神经元和血管的修复。
为了评估脑缺血区域的细胞凋亡情况,使用冰冻切片机将脑组织切成10微米厚的切片,0.1%曲拉通孵育5分钟,4%多聚甲醛固定15分钟,加入一步法TUNEL凋亡检测试剂,室温染色1小时,PBS洗涤3次,随后用DAPI(10μg/mL)染色10分钟,PBS洗涤3次,最后滴加抗荧光淬灭剂并封片。CLSM观察并拍照。具体参见图17。PBS组出现大量绿色荧光信号(TUNEL标记的凋亡细胞),表明CIR损伤可导致脑细胞大量凋亡。而HBSsS NCs组可见较少的绿色荧光信号,表明HBSsS NCs可有效缓解脑细胞凋亡。
实施例11HBSsS NCs治疗对脑梗塞组织的影响
MCAO/R损伤后第5天,处死小鼠并收集大脑组织,置于-20℃冰箱冷冻5分钟,随后将其横向切成厚度为2毫米的薄片,置于含有1%TTC的PBS溶液中,37℃避光染色30分钟,随后置于4%多聚甲醛溶液中,室温固定24小时,光学显微镜观察并区分正常区域(红色)和梗塞区域(白色),Image J定量分析梗塞面积。脑梗塞面积(%)表示为白色区域面积×100%/总区域面积。具体参见图18。与PBS组小鼠相比,HBSsS NCs组小鼠脑切片中红色面积明显增加。通过Image J软件定量计算各组小鼠脑梗塞面积,结果显示HBSsS NCs组小鼠的脑梗塞面积较HBSsC NCs组减少了72%。上述结果表明,HBSsS NCs可通过改善炎性微环境促进对BBB和神经元的修复,最终减小脑部梗塞面积。
实施例12HBSsS NCs治疗对MCAO/R小鼠行为和认知能力的影响
MCAO/R损伤后第22天,莫里斯水迷宫(morris water maze,MWM)实验考察小鼠的空间学习和记忆能力35。圆形水池(直径120cm)位于一个有恒定光线的隔音测试室中,水温保持在22℃。将水池均匀地分成四个象限。圆形平台(直径10cm)被放置在第1象限的中心,在接下来的训练实验中保持其位置不变。向水池中注水直至水面没过圆形平台1.5厘米,加入钛白粉使平台在水中不可见。在水池上方设置数码相机,并与追踪装置相连,记录小鼠的路径。在实验前对小鼠进行训练,连续4天,每天进行4次训练。训练内容如下:每只小鼠被轻放在水迷宫的水面上,记录其到达平台的时间,最大时限为60秒,并允许小鼠在平台上停留15秒。如果小鼠在60秒内没有找到平台,则记录潜伏期为60秒,并将小鼠轻轻引导到平台上,允许其在平台上停留15秒。在第5天,移走平台,使用EthoVision自动跟踪系统(Noldus信息技术公司)对小鼠进行视频跟踪,并记录小鼠的在原平台所在的象限停留时间以及象限穿越情况。具体参见图19。在4天的训练中,小鼠以相似的速度游动,并有相同的能力找到平台。在第5天移走平台,与PBS或HBSsC NCs组小鼠相比,HBSsS NCs组小鼠在原平台所在的象限停留的时间显著减少,并表现出更多的平台穿梭次数和更少的扩散性游泳行为。上述结果表明,HBSsS NCs可通过介导SPHK-1的有效沉默,促进神经血管单元的修复,从而显著改善MCAO/R小鼠的记忆能力。
本发明通过动物实验证明了HBSsS NCs对于脑缺血再灌注损伤的抗炎治疗具有巨大潜力。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

1.一种ROS响应型超支化聚(β-氨基酯),其特征在于,所述超支化聚(β-氨基酯)的主链结构中包含磺撑二基;所述超支化聚(β-氨基酯)的结构如下所示:
其中,n为1-1000 的任一整数;
x、y、z独立选自1~1000的任一整数。
2.一种权利要求1所述的ROS响应型超支化聚(β-氨基酯)的制备方法,其特征在于,包括以下步骤:
(1)将巯基乙醇与顺式二氯乙烯通过亲核加成反应合成顺式-2,2'-[乙烯-1,2-二基双(亚磺酰)]二乙醇;
(2)将步骤(1)制备的顺式-2,2'-[乙烯-1,2-二基双(亚磺酰)]二乙醇与丙烯酰氯通过亲核加成反应合成2-[2-乙烯-1,2-双(磺撑二基)]-丙烯酸酯;
(3)将步骤(2)制备的2-[2-乙烯-1,2-双(磺撑二基)]-丙烯酸酯与三羟甲基丙烷三丙烯酸酯、氨基醇通过迈克尔加成反应合成聚(β-氨基酯),最后用胺类分子封端得到所述超支化聚(β-氨基酯)。
3.根据权利要求2所述的制备方法,其特征在于,步骤(1)中,所述亲核加成反应的反应温度为70~90 ℃,反应时间不少于18 h。
4.一种仿生纳米复合物,其特征在于,所述仿生纳米复合物由纳米内核及其表面的细胞膜涂层组成;所述纳米内核由权利要求1所述的ROS响应型超支化聚(β-氨基酯)包载基因药物得到,所述细胞膜涂层为血小板膜与小胶质细胞膜的融合膜。
5.根据权利要求4所述的仿生纳米复合物,其特征在于,所述基因药物为介导抗炎反应的DNA、mRNA、siRNA或miRNA。
6.根据权利要求4所述的仿生纳米复合物,其特征在于,所述血小板及小胶质细胞来源于人、非人灵长类动物、啮齿类动物、偶蹄类动物或奇蹄类动物;所述血小板为骨髓成熟的巨核细胞胞浆裂解脱落下来的小块胞质;所述小胶质细胞为骨髓的单核细胞、骨髓的造血干细胞、神经外胚层、血管外膜、中枢神经系统内固有的造血干细胞、外周中胚层/间叶组织或循环血中的单核细胞。
7.根据权利要求6所述的仿生纳米复合物,其特征在于,所述小胶质细胞为BV-2细胞、HMC3细胞或T0251~永生化人小胶质细胞-SV40。
8.一种权利要求4~7任一项所述仿生纳米复合物的制备方法,其特征在于,包括以下步骤;
(1)将权利要求1所述的ROS响应型超支化聚(β-氨基酯)与基因药物混合孵育,得到纳米核;将血小板膜与小胶质细胞膜混合并超声,得到融合膜;
(2)将步骤(1)制备的融合膜通过声波法、机械共挤压法、电穿孔法或加热法包裹至纳米核上,得到所述仿生纳米复合物。
9.根据权利要求8所述的制备方法,其特征在于,步骤(1)中,所述血小板膜与小胶质细胞膜以质量比1:1混合;步骤(2)中,所述融合膜与纳米核的质量比为1:1~2 。
10.一种权利要求4~7任一项所述的仿生纳米复合物在制备用于预防和/或治疗脑部炎症性疾病的药物中的应用,其特征在于,所述药物用于增强屏障穿透和/或抑制小胶质细胞过度激活。
CN202211063316.6A 2022-08-31 2022-08-31 一种ROS响应型超支化聚(β-氨基酯)及其仿生纳米复合物的制备方法与应用 Active CN115449072B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211063316.6A CN115449072B (zh) 2022-08-31 2022-08-31 一种ROS响应型超支化聚(β-氨基酯)及其仿生纳米复合物的制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211063316.6A CN115449072B (zh) 2022-08-31 2022-08-31 一种ROS响应型超支化聚(β-氨基酯)及其仿生纳米复合物的制备方法与应用

Publications (2)

Publication Number Publication Date
CN115449072A CN115449072A (zh) 2022-12-09
CN115449072B true CN115449072B (zh) 2023-12-15

Family

ID=84300803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211063316.6A Active CN115449072B (zh) 2022-08-31 2022-08-31 一种ROS响应型超支化聚(β-氨基酯)及其仿生纳米复合物的制备方法与应用

Country Status (1)

Country Link
CN (1) CN115449072B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110612119A (zh) * 2017-02-07 2019-12-24 西雅图儿童医院(Dba西雅图儿童研究所) 磷脂醚(ple)car t细胞肿瘤靶向(ctct)剂
CN110746599A (zh) * 2019-09-30 2020-02-04 苏州大学 具有高效基因递送能力的UV光响应性超支化聚β-氨基酯及其制备方法与应用
CN111718494A (zh) * 2020-06-09 2020-09-29 苏州大学 具有高效基因递送能力的还原响应性超支化聚β-氨基酯及其制备方法与应用
CN114533671A (zh) * 2022-02-25 2022-05-27 中国药科大学 基于生物可降解超支化聚碳酸酯“壳-核”式聚合物胶束的制备方法及应用
CN114642734A (zh) * 2022-01-27 2022-06-21 苏州大学 药物及siRNA共递送纳米复合物及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005317193A1 (en) * 2004-04-20 2006-06-22 Dendritic Nanotechnologies, Inc. Dendritic polymers with enhanced amplification and interior functionality

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110612119A (zh) * 2017-02-07 2019-12-24 西雅图儿童医院(Dba西雅图儿童研究所) 磷脂醚(ple)car t细胞肿瘤靶向(ctct)剂
CN110746599A (zh) * 2019-09-30 2020-02-04 苏州大学 具有高效基因递送能力的UV光响应性超支化聚β-氨基酯及其制备方法与应用
CN111718494A (zh) * 2020-06-09 2020-09-29 苏州大学 具有高效基因递送能力的还原响应性超支化聚β-氨基酯及其制备方法与应用
CN114642734A (zh) * 2022-01-27 2022-06-21 苏州大学 药物及siRNA共递送纳米复合物及其制备方法与应用
CN114533671A (zh) * 2022-02-25 2022-05-27 中国药科大学 基于生物可降解超支化聚碳酸酯“壳-核”式聚合物胶束的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Light-assisted hierarchical intratumoral penetration and programmed antitumor therapy based on tumor microenvironment (TME)-amendatory and self-adaptive polymeric nanoclusters";Jing Yan等;《Biomaterials》;第255卷;120166 *
"Tailoring Hyperbranched Poly(β-amino ester) as a Robust and Universal Platform for Cytosolic Protein Delivery";Xun Liu等;《Adv. Mater.》;第34卷;2108116 *

Also Published As

Publication number Publication date
CN115449072A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
Zhang et al. Nanoenzyme engineered neutrophil-derived exosomes attenuate joint injury in advanced rheumatoid arthritis via regulating inflammatory environment
An et al. Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases
Xin et al. Mesenchymal stromal cell-derived extracellular vesicles modulate microglia/macrophage polarization and protect the brain against hypoxia-ischemic injury in neonatal mice by targeting delivery of miR-21a-5p
Wang et al. Engineered exosomes with independent module/cascading function for therapy of Parkinson's disease by multistep targeting and multistage intervention method
Zhang et al. ROS-triggered self-disintegrating and pH-responsive astaxanthin nanoparticles for regulating the intestinal barrier and colitis
Huang et al. Rat bone mesenchymal stem cell‐derived exosomes loaded with miR‐494 promoting neurofilament regeneration and behavioral function recovery after spinal cord injury
Wang et al. Precise gene delivery systems with detachable albumin shell remodeling dysfunctional microglia by TREM2 for treatment of Alzheimer's disease
Pan et al. Bacteria‐derived outer‐membrane vesicles hitchhike neutrophils to enhance ischemic stroke therapy
WO2023134122A1 (zh) 清除促炎因子和抑制t细胞活化的细胞膜包被纳米诱饵及其制备方法与应用
Wang et al. Polysaccharopeptide from Trametes versicolor blocks inflammatory osteoarthritis pain-morphine tolerance effects via activating cannabinoid type 2 receptor
US11129875B2 (en) Osteoarthritis treatment with chemokine-loaded alginate microparticles
Guan et al. A mesoporous polydopamine-derived nanomedicine for targeted and synergistic treatment of inflammatory bowel disease by pH-Responsive drug release and ROS scavenging
CN115449072B (zh) 一种ROS响应型超支化聚(β-氨基酯)及其仿生纳米复合物的制备方法与应用
Huang et al. Preparation of gastrodin‐modified dendrimer‐entrapped gold nanoparticles as a drug delivery system for cerebral ischemia–reperfusion injury
Duan et al. An ischemia-homing bioengineered nano-scavenger for specifically alleviating multiple pathogeneses in ischemic stroke
Tang et al. Neutrophil membrane fusogenic nanoliposomal leonurine for targeted ischemic stroke therapy via remodeling cerebral niche and restoring blood-brain barrier integrity
Shin et al. Therapeutic effects of stiripentol against ischemia-reperfusion injury in gerbils focusing on cognitive deficit, neuronal death, astrocyte damage and blood brain barrier leakage in the hippocampus
CN113925836A (zh) 清除rankl的细胞膜包被纳米诱饵、其制备及应用
Zhou et al. ROS/electro dual-reactive nanogel for targeting epileptic foci to remodel aberrant circuits and inflammatory microenvironment
Bai et al. Engineered urinary-derived extracellular vesicles loaded nanoenzymes as Trojan horses to regulate the inflammatory microenvironment for treatment of Alzheimer's disease
Xu et al. Oligodendrocyte progenitor cell-specific delivery of lipid nanoparticles loaded with Olig2 synthetically modified messenger RNA for ischemic stroke therapy
Zhao et al. Carrier-free quercetin nanomedicine blocks NLRP3 deubiquitination and TXNIP recruitment for Parkinson’s disease therapy
Zhang et al. Retracted: Decoy Oligodeoxynucleotides, Polysaccharides, and Targeted Peptide‐Functionalized Gold Nanorods for the Combined Treatment of Rheumatoid Arthritis
Liu et al. A macrophage plasma membrane-coated and DNA structured nanomedicine targets to alleviate rheumatoid arthritis via dual inhibition to TNF-α and NF-κB
Sun et al. Fibroblast-Mimicking nanodecoys for Multi-Target antiangiogenesis in the inflammation treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant