CN115445648A - 一种低配位单原子钴催化剂及其合成方法与应用 - Google Patents

一种低配位单原子钴催化剂及其合成方法与应用 Download PDF

Info

Publication number
CN115445648A
CN115445648A CN202211063552.8A CN202211063552A CN115445648A CN 115445648 A CN115445648 A CN 115445648A CN 202211063552 A CN202211063552 A CN 202211063552A CN 115445648 A CN115445648 A CN 115445648A
Authority
CN
China
Prior art keywords
coordination
low
cobalt catalyst
catalyst
monoatomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211063552.8A
Other languages
English (en)
Other versions
CN115445648B (zh
Inventor
高耀文
胡春
梁晓滢
赵治宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN202211063552.8A priority Critical patent/CN115445648B/zh
Publication of CN115445648A publication Critical patent/CN115445648A/zh
Application granted granted Critical
Publication of CN115445648B publication Critical patent/CN115445648B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于废水处理技术领域,公开了一种低配位单原子钴催化剂及其合成方法与应用,该方法包括以下步骤:(1)以柠檬酸盐等富氧含碳有机物为碳源,在保护气氛下碳化制得碳载体;(2)将所述碳载体与葡萄糖、可溶性钴盐分散溶解在去离子水中,分离沉淀,去离子水洗涤后干燥,得到复合碳载体;(3)将所述复合碳载体与三聚氰胺混合后进行热处理制得低配位单原子钴催化剂。本发明提供的低配位单原子钴催化剂及其合成方法便捷高效,制得的催化剂结构可控,显著地提高了对过硫酸盐的活化效率,且受自然水体中常见离子影响较小,稳定性良好。

Description

一种低配位单原子钴催化剂及其合成方法与应用
技术领域
本发明涉及废水处理技术领域,具体涉及一种低配位单原子钴催化剂及其合成方法与应用。
背景技术
随着社会与科学技术的快速发展,新型污染物及其降解代谢物等在水环境中广泛分布,其造成的水污染日益威胁着人类和水生生物的安全。高级氧化技术(AOPs)可将难降解的新型有机污染物降解成低毒或者无毒的小分子有机物,甚至被完全氧化为水和二氧化碳。其中,基于过硫酸盐的高级氧化技术(SR-AOPs)可以有效去除水中各种类型难降解的新型污染物,如内分泌干扰物、药物及其代谢物、蓝藻毒素和全氟化合物等。
单原子催化剂(SACs)是指单个原子均匀分布于载体之上形成的一种新型非均相催化剂。与传统金属基催化剂相比,单原子催化剂能够实现金属原子接近100%的利用率,兼具均相催化剂均匀单一的活性中心与非均相催化剂结构稳定易分离的特点,极大地减少金属使用量。在量子尺寸效应和强金属-载体关联性的双重作用下,金属单原子呈现独特电子结构和电荷状态,非常有利于催化反应的进行。
研究表明,某些单原子催化剂可有效活化过硫酸盐产生活性氧物种降解水中有机污染物,但普遍存在制备方法复杂、活化效率低下的问题,降解效果也易受自然水体中常见离子影响,并不具备实际应用意义;申请号为202111486082.1的专利报道了一种铜单原子催化剂及其制备方法和应用,所制备的催化剂在紫外光条件下催化活化过硫酸钠可降解94%低浓度四环素,但其能耗大且仅适用于低浓度条件;申请号为202011320382.8的专利公开了一种利用氮掺杂多孔碳锚定的单原子钴催化剂活化过硫酸盐降解水体中有机污染物的方法,该催化剂能活化过硫酸盐在60分钟内降解苯酚等多种有机污染物,但其降解速率较慢,不利于实际应用。
发明内容
针对上述问题,本发明提供一种低配位单原子钴催化剂及其合成方法,通过调控单原子催化剂中金属原子与氮配位结构制备得低配位单原子钴催化剂,可进一步提高降解污染物效率,以解决上述问题。
本发明的目的采用以下技术方案来实现:
一种低配位单原子钴催化剂的合成方法,包括以下步骤:
(1)以富氧含碳有机物为碳源,在保护气氛下碳化制得碳载体;其中,所述富氧含碳有机物可为柠檬酸盐、柠檬酸酯以及碳水化合物等;
(2)将所述碳载体与葡萄糖、可溶性钴盐分散溶解在去离子水中,分离沉淀,去离子水洗涤后干燥,得到复合碳载体;
所述分散溶解可以采用超声处理的方法进行,超声处理时间在20-60min;
(3)将所述复合碳载体与三聚氰胺混合后在保护气氛下进行热处理,制得所述低配位单原子钴催化剂。
作为本发明优选的所述方式,所述碳化的条件为以不大于10℃/min的升温速率升温至800℃并保温1-2h。
作为本发明优选的所述方式,步骤(2)中所述碳载体与所述葡萄糖的质量比例为100:10:1。
作为本发明优选的所述方式,步骤(3)中所述复合碳载体与所述三聚氰胺的质量比例为1:(5-10)。
作为本发明优选的所述方式,所述热处理的条件为以不大于10℃/min的升温速率升温至900℃并保温2-4h。
本发明还提供了一种所述低配位单原子钴催化剂的应用方法,用于催化活化过硫酸盐降解水中有机污染物;
进一步优选的,所述过硫酸盐为过硫酸钠(Na2S2O8)、过硫酸钾(K2S2O8)、过氧单磺酸钾(K2SO4·KHSO4·2KHSO5)的一种或几种。
作为本发明优选的所述方式,所述有机污染物为内分泌干扰素、有机农药、偶氮类染料或抗生素,具体包括双酚A(BPA)、2-氯酚(2-CP)、酸性橙7(AO7)或磺胺甲恶唑(SMZ);
进一步优选的,所述有机污染物在废水中的浓度不大于0.5mmol/L,废水pH值在3-9。
作为本发明优选的所述方式,所述有机污染物与所述过硫酸盐的摩尔比例在1:(30-100);所述有机污染物与所述低配位单原子钴催化剂的质量比例在1:(4-100)。
本发明的有益效果为:
本发明提供的低配位单原子钴催化剂及其合成方法,便捷高效,以碳化的富氧含碳有机物为载体,采用分级锚定策略,并采取改变热处理温度的方式合成具有低配位单原子钴催化剂,该催化剂能高效活化过硫酸盐快速地降解水中包括双酚A、2-氯酚、酸性橙7与磺胺甲恶唑等多种有机污染物;
本发明合成方法科学合理,制得的催化剂结构可控应用广泛。与正常配位的单原子钴催化剂相比,本发明的低配位单原子钴催化剂显著地提高了对过硫酸盐的活化效率从而有效降解水中多种有机污染物,且受自然水体中常见离子影响较小,稳定性良好,可用于活化过硫酸盐并有效降解实际印染废水,具有良好的价值和应用前景。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明实施例1和对比例2-3中制备产物的XRD谱图;
图2是实施例1制备产物的高角环形暗场扫描透射电子显微镜图;
图3是实施例1制备产物的同步辐射X射线吸收精细结构(XAFS)光谱图;
图4是应用实施例2中几种不同催化环境对BPA降解结果对比图;
图5是应用实施例2中几种不同催化剂对BPA降解结果对比图;
图6是实施例1所述催化剂对BPA的重复降解效果对比图;
图7是实施例1所述催化剂对不同有机污染物的降解效果对比图;
图8是实施例1所述催化剂在不同阴离子下对BPA的降解效果对比图。
具体实施方式
实施例
参见附图1-8,具体结合以下实施例对本发明作进一步描述。
一种低配位单原子钴催化剂的合成方法,包括以下步骤:
(1)以富氧含碳有机物为碳源,在保护气氛下碳化制得碳载体;其中,所述富氧含碳有机物可为柠檬酸盐、柠檬酸酯以及碳水化合物等;
所述碳化的条件为以不大于10℃/min的升温速率升温至800℃并保温1-2h;
(2)将所述碳载体与葡萄糖、可溶性钴盐分散溶解在去离子水中,分离沉淀,去离子水洗涤后干燥,得到复合碳载体;
所述分散溶解可以采用超声处理的方法进行,超声处理时间在20-60min;
碳载体与所述葡萄糖的质量比例为100:10:1。
(3)将所述复合碳载体与三聚氰胺混合后在保护气氛下进行热处理,制得所述低配位单原子钴催化剂。
所述复合碳载体与所述三聚氰胺的质量比例为1:(5-10)。作为本发明优选的所述方式,
所述热处理的条件为以不大于10℃/min的升温速率升温至900℃并保温2-4h。
前述低配位单原子钴催化剂的应用,用于催化活化过硫酸盐降解水中有机污染物;
所述过硫酸盐为过硫酸钠(Na2S2O8)、过硫酸钾(K2S2O8)、过氧单磺酸钾(K2SO4·KHSO4·2KHSO5)的一种或几种。
所述有机污染物为内分泌干扰素、有机农药、偶氮类染料或抗生素,具体包括双酚A(BPA)、2-氯酚(2-CP)、酸性橙7(AO7)或磺胺甲恶唑(SMZ);
所述有机污染物在废水中的浓度不大于0.5mmol/L,废水pH值在3-9。
所述有机污染物与所述过硫酸盐的摩尔比例在1:(30-100);所述有机污染物与所述低配位单原子钴催化剂的质量比例在1:(4-100)。
具体实施例1
一种低配位单原子钴催化剂,其合成方法包括以下步骤:
(1)将10g柠檬酸钠置于瓷舟中,入管式炉,在氩气气氛下升温至800℃并保温碳化1h,制得碳载体,记为CS;
(2)将1g碳载体、0.1g葡萄糖与0.01g六水合硝酸钴溶解于50mL超纯水中,然后将溶液置于超声清洗器中处理30min;所得固体用超纯水洗涤后置于60℃烘箱中烘干;
(3)将(2)所得固体(0.5g)与三聚氰胺(3.0g)混合后研磨,将混合物置于瓷舟中,入管式炉,在氩气气氛下升温至900℃热处理3h,制得所述低配位单原子钴催化剂,记为CoSA-N3-C。
对比例1:高配位单原子钴催化剂CoSA-N4-C的合成
具体合成步骤与实施例1中相似,区别在于,步骤(3)中煅烧温度为800℃,合成得高配位单原子钴催化剂CoSA-N4-C。
对比例2:金属纳米颗粒负载Co-N-C的合成
具体合成步骤与实施例1中相似,区别在于,步骤(2)中不添加葡萄糖,合成得Co-N-C。
对比例3:氮掺杂碳催化剂N-C的合成
具体合成步骤与实施例1中相似,区别在于,步骤(2)中不添加六水合硝酸钴,合成得N-C。
实施例1和对比例2-3中制备产物的XRD谱图参见附图1,CoSA-N3-C显示了与氮掺杂碳催化剂(N-C)相似的衍射图谱,其中出现在24.7°和44.1°的两个宽峰分别对应于石墨(002)和(100)晶面,这表明CoSA-N3-C和N-C具有碳基材料特性,同时CoSA-N3-C中没有金属钴的特征峰,表明钴物种高度分散;相反,在氮掺杂碳负载的Co纳米颗粒(Co-N-C)中出现了一系列关于金属钴晶相的特征峰。
实施例1制备产物的高角环形暗场扫描透射电子显微镜(HAADF-STEM)图参见附图2,HAADF-STEM图像显示了CoSA-N3-C的层状结构,且没有形成金属钴晶体,与其XRD衍射图谱结论相符,且放大的HAADF-STEM图像显示出大量的发光点(点圈突出显示部分),证实了Co原子在CoSA-N3-C中呈原子级分布。
实施例1制备产物的同步辐射X射线吸收精细结构(XAFS)光谱图参见附图3。Co原子K边傅立叶变换-扩展边X射线吸收精细结构谱(FT-EXAFS)(图3a)显示CoSA-N3-C中Co主要在第一壳层与N原子配位,未检测到金属相Co-Co键的形成。扩展边X射线吸收精细结构拟合曲线(EXAFS fitting)(图3b-c)显示Co-N的平均配位数为3.0,说明与正常四配位形成Co-N4构型的单原子Co催化剂相比,CoSA-N3-C中单个Co原子平均与3个N原子配位,形成低配位的单原子Co-N3结构。
应用实施例1:
先将0.0143g PDS(过硫酸钠)加入到装有30mL 0.05mmol/L的BPA(双酚A)水溶液的烧杯中,待PDS完全溶解后,将0.015g催化剂CoSA-N3-C加入到烧杯中,开始反应,将此烧杯放入恒温30℃水浴磁力搅拌器中,反应进行每隔一定时间取样,然后使用高效液相色谱测量各时间段样品中污染物的浓度。
应用实施例2:
与应用实施例1操作相似,区别在于,将应用实施例1中加入的0.015g CoSA-N3-C和0.0143g PDS依次替换为:(1)0.015g CS和0.0143g PDS;(2)0.015g CS;(3)0.015g CoSA-N3-C;(4)0.0143g PDS;
单独氧化剂PDS、单独催化剂CoSA-N3-C、单独碳载体(CS)、CS/PDS以及CoSA-N3-C/PDS对BPA降解情况如附图4所示,CoSA-N3-C/PDS体系中BPA的降解效果明显,在4min内可完全氧化降解BPA。
应用实施例3:
与应用实施例1操作相似,区别在于,将应用实施例1中加入的0.015g CoSA-N3-C和0.0143g PDS依次替换为:(1)0.015g对比例1所制得催化剂CoSA-N4-C和0.0143g PDS;(2)0.015g对比实施例2所制得催化剂Co-N-C和0.0143g PDS。
实施例1、对比例1-2中催化剂的比活性及其与PDS的混合物对BPA降解情况如附图5所示,CoSA-N3-C/PDS体系中降解BPA速率快于CoSA-N4-C/PDS体系与Co-N-C/PDS体系;且经计算,催化剂CoSA-N3-C的比活性优于CoSA-N4-C与Co-N-C;证明单原子金属催化剂在PDS活化方面优于金属纳米颗粒负载的催化剂,且在单原子钴催化剂上降低金属钴与氮的配位数可以增强PDS活化降解水中有机物。
应用实施例4:
与应用实施例1步骤相同,区别在于,反应结束后,抽滤反应液,取固体烘干4-5h,将所得固体作为催化剂,继续重复上述应用实施例的操作,重复4次;
CoSA-N3-C/PDS体系重复4次后的降解效果情况参见附图6,从附图6中可以看出,催化剂CoSA-N3-C可重复利用性良好,重复4次之后仍保持80%的污染物降解效率。
应用实施例5:
与应用实施例1操作相似,区别在于,将应用实施例1中BPA水溶液分别替换为同浓度的2-氯酚(2-CP)、酸性橙7(AO7)以及磺胺甲恶唑(SMZ)进行催化降解;
催化剂CoSA-N3-C对不同有机污染物的降解效果情况参见附图7,从附图7中可以看出,催化剂CoSA-N3-C活化过硫酸盐对不同类的污染物也表现出良好的降解效果。
应用实施例6:
与应用实施例1操作相似,区别在于,分别向BPA水溶液中添加0.0035g NaCl、0.0051g NaNO3、0.0050g NaHCO3与0.0060g腐殖酸,由此来模拟自然水体环境;
催化剂CoSA-N3-C在不同阴离子下对BPA的降解效果情况参见附图8,从附图8中可以看出,在模拟自然水体环境中不同阴离子存在的情况下,催化剂CoSA-N3-C仍能高效活化过硫酸盐降解双酚A,表现出良好的抗干扰性。
需要特别说明的是,在本发明记载的上述范围内,选取其他的组分、配比及工艺参数而得到的其他技术方案,均可以实现本发明的技术效果,故不再将其一一列出。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (9)

1.一种低配位单原子钴催化剂的合成方法,其特征在于,包括以下步骤:
(1)以富氧含碳有机物为碳源,在保护气氛下碳化制得碳载体;
(2)将所述碳载体与葡萄糖、可溶性钴盐分散溶解在去离子水中,分离沉淀,去离子水洗涤后干燥,得到复合碳载体;
(3)将所述复合碳载体与三聚氰胺混合后在保护气氛下进行热处理,制得所述低配位单原子钴催化剂。
2.根据权利要求1所述的低配位单原子钴催化剂的合成方法,其特征在于,所述碳化的条件为以不大于10℃/min的升温速率升温至800℃并保温1-2h。
3.根据权利要求1所述的低配位单原子钴催化剂的合成方法,其特征在于,步骤(2)中所述碳载体与所述葡萄糖的质量比例为100:10:1。
4.根据权利要求1所述的低配位单原子钴催化剂的合成方法,其特征在于,步骤(3)中所述复合碳载体与所述三聚氰胺的质量比例为1:(5-10)。
5.根据权利要求1所述的低配位单原子钴催化剂的合成方法,其特征在于,所述热处理的条件为以不大于10℃/min的升温速率升温至900℃并保温2-4h。
6.一种低配位单原子钴催化剂,其特征在于,根据权利要求1-5之一所述的合成方法制备得到。
7.根据权利要求6所述的低配位单原子钴催化剂在活化过硫酸盐降解水中有机污染物的应用。
8.根据权利要求7所述的应用,其特征在于,所述有机污染物为内分泌干扰素、有机农药、偶氮类染料或抗生素。
9.根据权利要求7所述的应用,其特征在于,所述有机污染物与所述过硫酸盐的摩尔比例在1:(30-100);所述有机污染物与所述低配位单原子钴催化剂的质量比例在1:(4-100)。
CN202211063552.8A 2022-08-31 2022-08-31 一种低配位单原子钴催化剂及其合成方法与应用 Active CN115445648B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211063552.8A CN115445648B (zh) 2022-08-31 2022-08-31 一种低配位单原子钴催化剂及其合成方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211063552.8A CN115445648B (zh) 2022-08-31 2022-08-31 一种低配位单原子钴催化剂及其合成方法与应用

Publications (2)

Publication Number Publication Date
CN115445648A true CN115445648A (zh) 2022-12-09
CN115445648B CN115445648B (zh) 2024-01-30

Family

ID=84300124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211063552.8A Active CN115445648B (zh) 2022-08-31 2022-08-31 一种低配位单原子钴催化剂及其合成方法与应用

Country Status (1)

Country Link
CN (1) CN115445648B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116273126A (zh) * 2023-03-23 2023-06-23 天津大学 一种用于降解废水中有机污染物的催化剂及其制备方法与应用
CN116393130A (zh) * 2023-02-22 2023-07-07 中国石油大学(北京) 钴单原子碳基催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108636437A (zh) * 2018-05-09 2018-10-12 天津理工大学 一种氮掺杂碳负载金属单原子催化剂的制备方法
US20200230589A1 (en) * 2019-01-18 2020-07-23 Korea Institute Of Science And Technology Metal single-atom catalyst and method for preparing the same
CN111620311A (zh) * 2019-02-28 2020-09-04 中国科学院化学研究所 一种多孔碳负载单原子金属氮配位复合材料及其制备方法
CN112169822A (zh) * 2020-10-21 2021-01-05 南京大学 高效活化过硫酸盐的氮掺杂中空碳多面体@碳纳米管基单原子钴催化剂及其制备方法
CN112452346A (zh) * 2020-10-14 2021-03-09 浙江大学 一种制备金属单原子碳基催化剂的普适性方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108636437A (zh) * 2018-05-09 2018-10-12 天津理工大学 一种氮掺杂碳负载金属单原子催化剂的制备方法
US20200230589A1 (en) * 2019-01-18 2020-07-23 Korea Institute Of Science And Technology Metal single-atom catalyst and method for preparing the same
CN111620311A (zh) * 2019-02-28 2020-09-04 中国科学院化学研究所 一种多孔碳负载单原子金属氮配位复合材料及其制备方法
CN112452346A (zh) * 2020-10-14 2021-03-09 浙江大学 一种制备金属单原子碳基催化剂的普适性方法及应用
CN112169822A (zh) * 2020-10-21 2021-01-05 南京大学 高效活化过硫酸盐的氮掺杂中空碳多面体@碳纳米管基单原子钴催化剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116393130A (zh) * 2023-02-22 2023-07-07 中国石油大学(北京) 钴单原子碳基催化剂及其制备方法和应用
CN116273126A (zh) * 2023-03-23 2023-06-23 天津大学 一种用于降解废水中有机污染物的催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN115445648B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
Zhang et al. Ultrathin Bi2WO6 nanosheets loaded g-C3N4 quantum dots: A direct Z-scheme photocatalyst with enhanced photocatalytic activity towards degradation of organic pollutants under wide spectrum light irradiation
CN108380235B (zh) 一种石墨相氮化碳基非均相类芬顿催化剂的制备方法及其应用
Chithambararaj et al. Preparation of h-MoO 3 and α-MoO 3 nanocrystals: comparative study on photocatalytic degradation of methylene blue under visible light irradiation
CN115445648A (zh) 一种低配位单原子钴催化剂及其合成方法与应用
Lu et al. Facile construction of CoO/Bi2WO6 pn heterojunction with following Z-Scheme pathways for simultaneous elimination of tetracycline and Cr (VI) under visible light irradiation
KR101925751B1 (ko) 다이옥신 처리용 광촉매, 그 제조방법 및 이를 이용한 토양 중 다이옥신 처리방법
Zhang et al. Cu0 incorporated cobalt/nitrogen doped carbonaceous frameworks derived from ZIF-67 (Cu@ CoNC) as PMS activator for efficient degradation of naproxen: Direct electron transfer and 1O2 dominated nonradical mechanisms
Chen et al. Studies on the photocatalytic performance of cuprous oxide/chitosan nanocomposites activated by visible light
Khalid et al. Synergistic effects of Bi and N doped on ZnO nanorods for efficient photocatalysis
CN112705242B (zh) 一种金属铋纳米颗粒修饰多孔氮化碳复合材料及其制备方法和在去除水中抗生素中的应用
CN115805072B (zh) 一种负载型AgPt合金光催化剂及其制备方法和应用
Wang et al. Fructose-regulated ZnO single-crystal nanosheets with oxygen vacancies for photodegradation of high concentration pollutants and photocatalytic hydrogen evolution
Gao et al. Zeolitic Imidazolate Framework 8‐Derived Au@ ZnO for Efficient and Robust Photocatalytic Degradation of Tetracycline
CN113181949B (zh) 钴铁合金/氮硫共掺杂碳纳米复合材料及其制法与应用
Mohamed et al. Controllable synthesis of PtO modified mesoporous Co3O4 nanocrystals as a highly effective photocatalyst for degradation of Foron Blue dye
Ghanei-Zare et al. A metal-organic framework-derived CuO microrods for fast photocatalytic degradation of methylene blue
CN113617366A (zh) 一种用于降解废水有机污染物的材料
Wen et al. Utilizing three-dimensional ordered macroporous NiFe2O4 Loaded With g-C3N4 as a heterogeneous photo-Fenton catalyst for tetracycline degradation
Ji et al. CDs@ Cr2O3 catalytic degradation of Orange II based on non-radical pathway
Anusha et al. Improved CeMnO3 perovskite framework for visible-light-aided degradation of tetracycline hydrochloride antibiotic residue and methylene blue dye
Jiang et al. Synthesis of flower-like Cu3SnS4 microspheres and Cu3SnS4/reduced graphene oxide composite with high photocatalytic activity
Ho et al. High-efficiency reduction of p-nitrophenol on green-synthesized gold nanoparticles decorated on ceria nanorods
Liu et al. Enhanced photocatalytic activity for degradation of ofloxacin and dye by hierarchical flower-like ZnS/MoS2/Bi2WO6 heterojunction: Synergetic effect of 2D/2D coupling interface and solid sulfide solutions
CN111266114A (zh) 一种金属铁/氧化锌/碳三元纳米复合可见光催化剂及其制备方法和应用
CN115430451B (zh) 铁钛共掺杂的多孔石墨相氮化碳光芬顿催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant