CN115443699A - 无线通信中的同步信号和物理广播信道块发射 - Google Patents

无线通信中的同步信号和物理广播信道块发射 Download PDF

Info

Publication number
CN115443699A
CN115443699A CN202180005772.2A CN202180005772A CN115443699A CN 115443699 A CN115443699 A CN 115443699A CN 202180005772 A CN202180005772 A CN 202180005772A CN 115443699 A CN115443699 A CN 115443699A
Authority
CN
China
Prior art keywords
ssb
base station
further configured
cellular base
scs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180005772.2A
Other languages
English (en)
Inventor
何宏
姚春海
叶春璇
张大伟
孙海童
O·欧泰瑞
S·A·A·法库里安
曾威
杨维东
牛华宁
张羽书
崔杰
叶思根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of CN115443699A publication Critical patent/CN115443699A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及无线通信中的同步信号和物理广播信道块发射。一种用户装备(UE)可监测下行链路频率位置以检测来自蜂窝基站的同步块(SSB)。当监测该下行链路频率位置时,该UE可被配置为在计算SSB频率位置时使用至少一个步长。该UE可响应于监测到该下行链路频率位置而确定由该蜂窝基站使用的子载波间隔(SCS),并且可至少部分地基于在计算该SSB频率位置时使用的该步长来确定用于一个或多个SSB发射的该子载波间隔。然后,UE可在与该蜂窝基站通信时利用该一个或多个SSB发射的所确定的子载波间隔。

Description

无线通信中的同步信号和物理广播信道块发射
技术领域
本发明涉及无线通信,并且更具体地涉及用于无线通信中的同步信号和物理广播信道块发射的设备、系统和方法。
相关技术描述
无线通信系统的使用正在快速增长。在最近几年中,无线设备诸如智能电话和平板电脑已变得越来越复杂精密。除了支持电话呼叫之外,现在很多移动设备还提供对互联网、电子邮件、文本消息和使用全球定位系统(GPS)的导航的访问,并且能够操作利用这些功能的复杂精密的应用。另外,存在许多不同的无线通信技术和无线通信标准。无线通信标准的一些示例包括GSM、UMTS(例如与WCDMA或TD-SCDMA空中接口相关联)、LTE、高级LTE(LTE-A)、HSPA、3GPP2 CDMA2000(例如,1xRTT、1xEV-DO、HRPD、eHRPD)、IEEE 802.11(WLAN或Wi-Fi)、BLUETOOTHTM等。
在无线通信设备中引入数量不断增长的特征和功能还产生了对于改进无线通信以及改进无线通信设备的持续需求。为了增加覆盖范围并更好地服务于日益增长的需求和无线通信的预期用途范围,除了上面提到的通信标准之外,还在开发更多的无线通信技术。
提出的超越当前国际移动通信高级(IMT-Advanced)标准的下一个电信标准被称为第5代移动网络或第5代无线系统,或简称5G(对于5G新空口,也称为5G-NR,也简称为NR)。与当前LTE标准相比,5G-NR针对更高密度的移动宽带用户提出了更高的容量,同时支持设备到设备的超可靠和大规模机器通信,以及更低的延迟和更低的电池消耗。此外,与当前LTE标准相比,5G-NR标准可以允许更少限制的UE调度。因此,正在努力在5G-NR的持续发展中利用更高频率下可能的更高吞吐量。因此,需要改进支持这种开发和设计的领域。
发明内容
实施方案涉及无线通信,并且更具体地涉及用于无线通信中的同步信号和物理广播信道块发射的设备、系统和方法。
例如,用户装备(UE)可监测下行链路频率位置以检测来自蜂窝基站的同步块(SSB)。当监测下行链路频率位置时,UE可被配置为在计算SSB频率位置时使用至少一个步长。该UE可响应于监测到该下行链路频率位置而确定由该蜂窝基站使用的子载波间隔(SCS),并且可至少部分地基于在计算该SSB频率位置时使用的该步长来确定用于一个或多个SSB发射的该子载波间隔。然后,UE可在与该蜂窝基站通信时利用该一个或多个SSB发射的所确定的子载波间隔。
在一些实施方案中,在监测下行链路频率位置时,UE可被配置为在计算SSB频率位置时使用多个步长。UE可使用第一步长来计算用于第一组SSB子载波间隔的频率位置,并且使用第二步长来计算用于第二组SSB子载波间隔的频率位置。另外,在监测下行链路频率位置时,UE可被配置为使用第一步长来计算用于根据蜂窝通信标准强制地由一个或多个UE支持的第一组SSB子载波间隔的频率位置,并且使用第二步长来计算用于根据蜂窝通信标准可选地由一个或多个UE支持的第二组SSB子载波间隔的频率位置。
附加地或另选地,在监测下行链路频率位置时,UE可被配置为针对根据蜂窝通信标准可选地由一个或多个UE支持的第二组SSB子载波间隔中的多个SSB子载波间隔中的每个SSB子载波间隔使用相应不同的第二步长。第二组SSB子载波间隔可包括480kHz和960kHz等等。此外,在监测下行链路频率位置时,UE可被配置为在计算用于SSB的所有可能的子载波间隔的频率位置时使用单个步长,这些所有可能的子载波间隔包括根据蜂窝通信标准强制地由一个或多个UE支持的SSB子载波间隔和根据蜂窝通信标准可选地由一个或多个UE支持的SSB子载波间隔。
在一些实施方案中,蜂窝基站可包括天线、能够操作地耦接到天线的无线电部件以及能够操作地耦接到无线电部件的处理元件。蜂窝基站可被配置为:根据周期性模式发射作为物理广播信道(PBCH)有效负载的一部分的同步信令,其中在周期性模式的至少一个周期子集中,发射各自包括多个SS块(SSB)的一个或多个SS突发,其中每个SS突发包括在两个连续SSB之间被保留用于波束切换的至少一个符号。
在一些实施方案中,用户装备(UE)可包括天线、能够操作地耦接到天线的无线电部件以及能够操作地耦接到无线电部件的处理元件。UE可被配置为:监测下行链路频率位置以检测作为来自蜂窝基站的物理广播信道(PBCH)有效负载发射的一部分的一个或多个同步信号块(SSB),其中该一个或多个SSB包括能够由UE在确定发现突发发射窗口(DBTW)的存在或不存在时使用的信息。
可在多个不同类型的设备中实施本文所描述的技术并且/或者将本文所描述的技术与多个不同类型的设备一起使用,该多个不同类型的设备包括但不限于无人驾驶飞行器(UAV)、无人驾驶控制器(UAC)、基站、接入点、蜂窝电话、平板计算机、可穿戴计算设备、便携式媒体播放器、汽车和/或机动车辆和各种其他计算设备中的任一种计算设备。
本发明内容旨在提供在本文档中所描述的主题中的一些的简要概述。因此,应当理解,上述特征仅为示例并且不应理解为以任何方式缩小本文所述的主题的范围或实质。本文所描述的主题的其它特征、方面和优点将通过以下具体实施方式、附图和权利要求书而变得显而易见。
附图说明
当结合以下附图考虑各个实施方案的以下详细描述时,可获得对本主题的更好的理解,在附图中:
图1A示出了根据一些实施方案的示例性无线通信系统。
图1B示出了根据一些实施方案的与用户装备(UE)设备通信的基站(BS)和接入点的示例。
图2示出了根据一些实施方案的WLAN接入点(AP)的示例性简化框图。
图3A示出了根据一些实施方案的BS的示例框图。
图3B示出了根据一些实施方案的服务器的示例框图。
图4示出了根据一些实施方案的UE的示例性框图。
图5示出根据一些实施方案的蜂窝通信电路的示例框图。
图6A示出了演进分组核心(EPC)网络、LTE基站(eNB)、和5GNR基站(gNB)之间的连接的示例。
图6B示出了用于eNB和gNB的协议栈的示例。
图7是示出根据一些实施方案的在初始接入操作期间确定SSB-SCS的示例性方法的流程图。
图8示出了根据一些实施方案的频域中的SSB-SCS相关的同步光栅位置的示例。
图9示出了根据一些实施方案的非交织的全球同步信道(GSCN)分配的示例。
图10示出了根据一些实施方案的交织的GSCN分配的示例。
图11示出了根据一些实施方案的用于具有多个SSB SCS的频带的基于偏移的同步光栅确定。
图12示出了根据一些实施方案的指示可选SCS的经修改的系统信息块4(SIB4)。
图13示出了根据一些实施方案的通过允许用于SIB1获取的CORESET#0和0型搜索空间来支持CGI报告功能的SSB发射的示例。
图14是示出根据一些实施方案的指示候选SSB之间的波束切换的方法的流程图。
图15示出了根据一些实施方案的用于具有CORESET 0与SSB之间的复用的480kHz和960kHz SCS的候选SSB模式。
图16示出了根据一些实施方案的由PBCH发射的第二解调参考信号(DMRS)符号发信号通知的1位SSB模式索引。
图17示出了根据一些实施方案的具有上行链路(UL)控制信令发射的发现突发发射窗口(DBTW)中的基于SSB模式的示例性同步信号块发射窗口(SSBTW)。
图18示出了根据一些实施方案的示例性的基于子时隙的SSB模式。
图19A和图19B示出了根据一些实施方案的用于新480kHz和960kHz SCS的时间对准的SSBTW模式的两个示例。
图20是示出根据一些实施方案的在候选SCS中指示DPTW存在的方法的流程图。
图21示出了根据一些实施方案的5ms半帧中的120kHz和240kHz子载波间隔,以及5ms半帧中的2个时隙的扩展部分中的SSB起始位置的示例。
图22示出了根据一些实施方案的基于GSCN值的预分配的DBTW存在指示。
图23示出了根据一些实施方案的重新利用物理广播信道(PBCH)有效负载中的现有字段作为指示DBTW存在的方式的示例性方法。
图24示出了根据一些实施方案的使用PBCH发射的第二DMRS符号以便指示DBTW的存在。
图25示出了根据一些实施方案的如SIB4所指示的多个绝对射频信道(ARFCN)中的DBTW的存在和相关联的Q值。
图26示出了根据一些实施方案的在5ms发现参考信号(DRS)窗口内具有固定位置的SSB的示例。
图27示出了根据一些实施方案的5ms DBTW窗口内的时间偏移的SSB发射的示例。
虽然本文所描述的特征可受各种修改形式和另选形式的影响,但其特定实施方案在附图中以举例的方式示出并在本文详细描述。然而,应当理解,附图和对其的详细描述并非旨在将本文限制于所公开的具体形式,而正相反,其目的在于覆盖落在如由所附权利要求书所限定的主题的实质和范围内的所有修改、等同物和另选方案。
具体实施方式
首字母缩略词
在本公开中通篇使用各种首字母缩略词。在本公开中通篇可能出现的最为突出的所用首字母缩略词的定义如下:
·3GPP:第三代合作伙伴计划
·TS:技术规范
·RAN:无线电接入网络
·RAT:无线电接入技术
·UE:用户装备
·RF:射频
·BS:基站
·DL:下行链路
·UL:上行链路
·LTE:长期演进
·NR:新空口
·5GS:5G系统
·5GMM:5GS移动性管理
·5GC:5G核心网
·IE:信息元素
·LBT:先听后说
·SCS:子载波间隔
·SSB:同步信号块
·RRM:无线电资源管理
·RLM:无线电链路管理
·QCL:准共址
·SMTC:基于SSB的RRM测量定时配置
·SSBTW:同步信号块发射窗口
·DBTW:发现突发发射窗口
·DRS:发现参考信号
·EPC:演进分组核心
·DMRS:解调参考信号
·ARFCN:绝对射频信道
·PSS:主同步信号
·SSS:辅同步信号
·FR:频率范围
·CGI:小区全局标识
·RB:资源块
·BPSK:二进制相移键控
·QPSK:正交相移键控
术语
以下为在本公开中所使用的术语表:
存储器介质—各种类型的非暂态存储器设备或存储设备中的任何设备。术语“存储器介质”旨在包括安装介质,例如CD-ROM、软盘或磁带设备;计算机系统存储器或随机存取存储器诸如DRAM、DDR RAM、SRAM、EDO RAM、Rambus RAM等;非易失性存储器诸如闪存、磁介质,例如,硬盘驱动器或光学存储装置;寄存器或其它类似类型的存储器元件等。存储器介质也可包括其它类型的非暂态存储器或它们的组合。此外,存储器介质可位于执行程序的第一计算机系统中,或者可位于通过网络诸如互联网连接到第一计算机系统的不同的第二计算机系统中。在后面的情况下,第二计算机系统可向第一计算机提供程序指令以用于执行。术语“存储器介质”可包括可驻留在例如通过网络连接的不同计算机系统中的不同位置的两个或更多个存储器介质。存储器介质可存储可由一个或多个处理器执行的程序指令(例如,表现为计算机程序)。
载体介质—如上所述的存储器介质,以及物理传输介质,诸如总线、网络和/或其他传送信号(诸如电信号、电磁信号或数字信号)的物理传输介质。
可编程硬件元件—包括各种硬件设备,该各种硬件设备包括经由可编程互连件而被连接的多个可编程功能块。示例包括FPGA(现场可编程门阵列)、PLD(可编程逻辑设备)、FPOA(现场可编程对象阵列)和CPLD(复杂的PLD)。可编程功能块可从细粒度(组合逻辑部件或查找表)到粗粒度(算术逻辑单元或处理器内核)变动。可编程硬件元件也可被称为“可配置逻辑部件”。
计算机系统(或计算机)—各种类型的计算或处理系统中的任一种,包括个人计算机系统(PC)、大型计算机系统、工作站、网络电器、互联网电器、个人数字助理(PDA)、电视系统、网格计算系统或其他设备或设备的组合。一般来讲,术语“计算机系统”可被广义地定义为涵盖具有执行来自存储器介质的指令的至少一个处理器的任何设备(或设备的组合)。
用户装备(UE)(或“UE设备”)—移动式或便携式并执行无线通信的各种类型的计算机系统设备中的任一种。UE设备的示例包括移动电话或智能电话(例如,iPhoneTM、基于AndroidTM的电话)、便携式游戏设备(例如,Nintendo DSTM、PlayStation PortableTM、Gameboy AdvanceTM、iPhoneTM)、膝上型电脑、可穿戴设备(例如,智能手表、智能眼镜)、PDA、便携式互联网设备、音乐播放器、数据存储设备、其他手持设备、汽车和/或机动车辆、无人驾驶飞行器(UAV)(例如,无人机)、UAV控制器(UAC)等。一般来讲,术语“UE”或“UE设备”可广义地被定义为涵盖易于由用户(或与用户一起)运输并且能够进行无线通信的任何电子、计算和/或电信设备(或设备的组合)。
基站—术语“基站”具有其普通含义的全部范围,并且至少包括被安装在固定位置处并且用于作为无线电话系统或无线电系统的一部分进行通信的无线通信站。
处理元件(或处理器)—是指能够执行设备诸如用户装备或蜂窝网络设备中的功能的各种元件或元件的组合。处理元件可包括例如:处理器和相关联的存储器、各个处理器核心的部分或电路、整个处理器核心、处理器阵列、电路诸如ASIC(专用集成电路)、可编程硬件元件诸如现场可编程门阵列(FPGA)以及以上各种组合中的任何一种。
信道—用于将信息从发送器(发射器)传送至接收器的介质。应当注意,由于术语“信道”的特性可根据不同的无线协议而有所不同,因此本发明所使用的术语“信道”可被视为以符合术语使用所参考的设备的类型的标准的方式来使用。在一些标准中,信道宽度可为可变的(例如,取决于设备能力、频带条件等)。例如,LTE可支持1.4MHz至20MHz的可扩展信道带宽。相比之下,WLAN信道可为22MHz宽,而蓝牙信道可为1Mhz宽。其它协议和标准可包括对信道的不同定义。此外,一些标准可定义并使用多种类型的信道,例如用于上行链路或下行链路的不同信道和/或针对不同用途诸如数据、控制信息等的不同信道。
频带—术语“频带”具有其普通含义的全部范围,并且至少包括其中为了相同目的而使用或留出信道的一段频谱(例如,射频频谱)。
Wi-Fi—术语“Wi-Fi”具有其通常含义的全部范围,并且至少包括无线通信网络或RAT,其由无线LAN(WLAN)接入点提供服务并通过这些接入点提供至互联网的连接性。大多数现代Wi-Fi网络(或WLAN网络)基于IEEE 802.11标准,并以“Wi-Fi”的命名面市。Wi-Fi(WLAN)网络不同于蜂窝网络。
自动—是指由计算机系统(例如,由计算机系统执行的软件)或设备(例如,电路、可编程硬件元件、ASIC等)在无需通过用户输入直接指定或执行动作或操作的情况下执行该动作或操作。因此,术语“自动”与用户手动执行或指定操作形成对比,其中用户提供输入来直接执行该操作。自动过程可由用户所提供的输入来启动,但“自动”执行的后续动作不是由用户指定的,即,不是“手动”执行的,其中用户指定要执行的每个动作。例如,用户通过选择每个字段并提供输入指定信息(例如,通过键入信息、选择复选框、无线电选择等)来填写电子表格为手动填写该表格,即使计算机系统必须响应于用户动作来更新该表格。该表格可通过计算机系统自动填写,其中计算机系统(例如,在计算机系统上执行的软件)分析表格的字段并填写该表格,而无需任何用户输入指定字段的答案。如上面所指示的,用户可援引表格的自动填写,但不参与表格的实际填写(例如,用户不用手动指定字段的答案而是它们自动地完成)。本说明书提供了响应于用户已采取的动作而自动执行的操作的各种示例。
大约—是指接近正确或精确的值。例如,大约可以是指在精确(或期望)值的1%至10%以内的值。然而,应该注意,实际的阈值(或公差)可取决于应用。例如,在一些实施方案中,“大约”可意指在一些指定值或期望值的0.1%以内,而在各种其他实施方案中,根据特定应用的期望或要求,阈值可为例如2%、3%、5%等。
并发—是指并行执行或实施,其中任务、进程或程序以至少部分重叠地方式执行。例如,可使用“强”或严格的并行性来实现并发性,其中在相应计算元件上(至少部分地)并行执行任务;或者使用“弱并行性”来实现并发性,其中以交织的方式(例如,通过执行线程的时间复用)执行任务。
各种部件可被描述为“被配置为”执行一个或多个任务。在此类环境中,“被配置为”是一般表示“具有”在操作期间执行一个或多个任务的“结构”的宽泛表述。由此,即使在部件当前没有执行任务时,该部件也能被配置为执行该任务(例如,一组电导体可被配置为将模块电连接到另一个模块,即使当这两个模块未连接时)。在一些上下文中,“被配置为”可以是一般意味着“具有”在操作期间实行一个或多个任务的“电路”的结构的宽泛表述。由此,即使在部件当前未接通时,该部件也能被配置为执行任务。通常,形成与“被配置为”对应的结构的电路可包括硬件电路。
为了便于描述,可将各种部件描述为执行一个或多个任务。此类描述应当被解释为包括短语“被配置为”。表述被配置为执行一个或多个任务的部件明确地旨在对该部件不援引35 U.S.C.§112(f)的解释。
图1A和1B:通信系统
图1A示出了根据一些实施方案的简化的示例性无线通信系统。需注意,图1A的系统仅仅是可能系统的一个示例,并且根据需要,本公开的特征可在各种系统中的任何一个中实现。
如图所示,示例性无线通信系统包括基站102A,该基站通过传输介质与一个或多个用户设备106A、用户设备106B到用户设备106N等通信。每个用户设备在本文中可称为“用户装备”(UE)。因此,用户设备106称为UE或UE设备。
基站(BS)102A可以是收发器基站(BTS)或小区站点(“蜂窝式基站”),并且可包括使得能够实现与UE 106A到UE 106N的无线通信的硬件。
基站的通信区域(或覆盖区域)可称为“小区”。基站102A和UE 106可被配置为利用各种无线电接入技术(RAT)中的任一者通过传输介质进行通信,该无线电接入技术也被称为无线通信技术或电信标准,诸如GSM、UMTS(与例如WCDMA或TD-SCDMA空中接口相关联)、LTE、高级LTE(LTE-A)、5G新空口(5G NR)、HSPA、3GPP2 CDMA2000(例如,1xRTT、1xEV-DO、HRPD、eHRPD)等等。需注意,如果在LTE的环境中实施基站102A,则其另选地可被称为“eNodeB”或“eNB”。需注意,如果在5G NR的环境中实施基站102A,则其另选地可被称为“gNodeB”或“gNB”。
如图所示,基站102A也可被配备为与网络100(例如,在各种可能性中,蜂窝服务提供商的核心网络、电信网络诸如公共交换电话网(PSTN)和/或互联网)进行通信。因此,基站102A可促进用户设备之间和/或用户设备与网络100之间的通信。特别地,蜂窝基站102A可提供具有各种通信能力诸如语音、SMS和/或数据服务的UE 106。
基站102A和根据相同或不同的蜂窝通信标准进行操作的其他类似的基站(诸如基站102B......102N)可因此被提供作为小区的网络,该小区的网络可经由一个或多个蜂窝通信标准在地理区域上向UE 106A-N和类似的设备提供连续或几乎连续的重叠服务。
因此,尽管基站102A可充当如图1中所示的UE 106A-N的“服务小区”,但每个UE106还可能够从一个或多个其他小区(可由基站102B-N和/或任何其他基站提供)接收信号(并可能在其通信范围内),该一个或多个其他小区可被称为“相邻小区”。此类小区也可能够促进用户设备之间和/或用户设备和网络100之间的通信。此类小区可包括“宏”小区、“微”小区、“微微”小区和/或提供服务区域大小的任何各种其他粒度的小区。例如,在图1中示出的基站102A至102B可为宏小区,而基站102N可为微小区。其他配置也是可能的。
在一些实施方案中,基站102A可为下一代基站,例如,5G新空口(5G NR)基站或“gNB”。在一些实施方案中,gNB可连接到传统演进分组核心(EPC)网络和/或连接到新空口通信核心(NRC)网络。此外,gNB小区可包括一个或多个传输和接收点(TRP)。此外,能够根据5G NR操作的UE可连接到一个或多个gNB内的一个或多个TRP。
需注意,UE 106能够使用多个无线通信标准进行通信。例如,除至少一种蜂窝通信协议(例如,GSM、UMTS(与例如WCDMA或TD-SCDMA空中接口相关联)、LTE、LTE-A、5G NR、HSPA、3GPP2CDMA2000(例如,1xRTT、1xEV-DO、HRPD、eHRPD)等)之外,UE106可被配置为使用无线联网(例如,Wi-Fi)和/或对等无线通信协议(例如,蓝牙、Wi-Fi对等,等)进行通信。如果需要的话,UE 106还可以或另选地被配置为使用一个或多个全球导航卫星系统(GNSS,例如GPS或GLONASS)、一个或多个移动电视广播标准(例如,ATSC-M/H或DVB-H)和/或任何其他无线通信协议进行通信。无线通信标准的其他组合(包括多于两种无线通信标准)也是可能的。
图1B示出了根据一些实施方案的与基站102和接入点112通信的用户装备106(例如,设备106A至设备106N中的一者)。UE 106可以是具有蜂窝通信能力和非蜂窝通信能力(例如,Bluetooth、Wi-Fi等)的设备,诸如移动电话、手持设备、计算机或平板电脑、或几乎任何类型的无线设备。
UE 106可包括被配置为执行存储在存储器中的程序指令的处理器。UE106可通过执行此类存储的指令来执行本发明所述的方法实施方案中的任何一个。另选地或除此之外,UE 106可包括可编程硬件元件,诸如被配置为执行本发明所述的方法实施方案中的任何一个或本发明所述的方法实施方案中的任何一个的任何部分的现场可编程门阵列(FPGA)。
UE 106可包括用于使用一个或多个无线通信协议或技术进行通信的一个或多个天线。在一些实施方案中,UE 106可被配置为使用例如CDMA2000(1xRTT/1xEV-DO/HRPD/eHRPD)、LTE/高级LTE、或使用单个共享无线电部件的5G NR和/或GSM、LTE、高级LTE、或使用单个共享无线电部件的5G Nr进行通信。共享无线电可耦接到单根天线,或者可耦接到多根天线(例如,对于MIMO),以用于执行无线通信。通常,无线电部件可包括基带处理器、模拟射频(RF)信号处理电路(例如,包括滤波器、混频器、振荡器、放大器等)或数字处理电路(例如,用于数字调制以及其他数字处理)的任何组合。类似地,该无线电部件可使用前述硬件来实现一个或多个接收链和发射链。例如,UE 106可在多种无线通信技术诸如上面论述的那些之间共享接收链和/或发射链的一个或多个部分。
在一些实施方案中,UE 106针对被配置为用其进行通信的每个无线通信协议而可包括单独的发射链和/或接收链(例如,包括单独的天线和其他无线电部件)。作为另一种可能性,UE 106可包括在多个无线通信协议之间共享的一个或多个无线电部件,以及由单个无线通信协议唯一地使用的一个或多个无线电部件。例如,UE 106可包括用于使用LTE或5GNR(或者LTE或1xRTT、或者LTE或GSM)中的任一者进行通信的共享无线电部件、以及用于使用Wi-Fi和蓝牙中的每一者进行通信的单独无线电部件。其他配置也是可能的。
图2:接入点框图
图2示出了接入点(AP)112的示例性框图。需注意,图2的AP的框图仅为可能的系统的一个示例。如图所示,AP 112可以包括可执行针对AP112的程序指令的处理器204。处理器204还可以(直接或间接地)耦接到存储器管理单元(MMU)240或其他电路或设备,该MMU可以被配置为接收来自处理器204的地址并将这些地址转换为存储器(例如,存储器260和只读存储器(ROM)250)中的位置。
AP 112可包括至少一个网络端口270。网络端口270可以被配置为耦接到有线网络并向多个设备诸如UE 106提供对互联网的访问。例如,网络端口270(或附加的网络端口)可以被配置为耦接到本地网络,诸如家庭网络或企业网络。例如,端口270可以是以太网端口。本地网络可提供通往附加网络诸如互联网的连接。
AP 112可包括至少一个天线234,其可被配置为用作无线收发器并且可被进一步配置为经由无线通信电路230来与UE 106进行通信。天线234经由通信链232与无线通信电路230通信。通信链232可包括一个或多个接收链、一个或多个发射链或两者。无线通信电路230可以被配置为经由Wi-Fi或WLAN(例如,802.11)进行通信。例如,在小小区的情况下AP与基站共处时,或在可能希望AP 112经由各种不同无线通信技术通信的其他情况下,无线通信电路230还可以或另选地被配置为经由各种其他无线通信技术通信,所述其他无线通信技术包括,但不限于5G NR、长期演进(LTE)、高级LTE(LTE-A)、全球移动系统(GSM)、宽带码分多址(WCDMA)、CDMA2000等。
在一些实施方案中,如下文进一步描述的,AP 112可以被配置成执行如本文进一步描述的用于多载波波束选择和功率控制的开销减少的方法。
图3A:基站的框图
图3A示出了根据一些实施方案的基站102的示例框图。需注意,图3A的基站仅仅是可能的基站的一个示例。如图所示,基站102可包含处理器304,该处理器可为基站102执行程序指令。处理器304还可耦接到存储器管理单元(MMU)340,该MMU可被配置成从处理器304接收地址,并且将这些地址转换成存储器(例如,存储器360和只读存储器(ROM)350)中的位置,或者转换成其他电路或设备。
基站102可以包含至少一个网络端口370。网络端口370可以被配置为耦接到电话网络,并向多个设备(例如UE设备106)提供对电话网络的接入,如上面在图1和图2中所描述的。
网络端口370(或附加的网络端口)还可被配置为或另选地被配置为耦接到蜂窝网络,例如,蜂窝服务提供方的核心网。核心网络可向多个设备诸如UE设备106提供与移动性相关的服务和/或其他服务。在一些情况下,网络端口370可以经由核心网络耦接到电话网络,和/或核心网络可以提供电话网络(例如,在由蜂窝服务提供商服务的其他UE设备之间)。
在一些实施方案中,基站102可以是下一代基站,例如,5G新空口(5G NR)基站,或“gNB”。在此类实施方案中,基站102可连接到传统演进分组核心(EPC)网络和/或连接到NR核心(NRC)网络。此外,基站102可被视为5G NR小区并且可包括一个或多个过渡和接收点(TRP)。此外,能够根据5G NR操作的UE可连接到一个或多个gNB内的一个或多个TRP。
基站102可以包括至少一个天线334,并且可能包含多个天线。至少一个天线334可被配置为作为无线收发机进行操作,并且可还被配置为经由无线电部件330与UE设备106进行通信。天线334通过通信链332与无线电部件330通信。通信链332可是接收链、发射链或两者。无线电部件330可被配置成经由各种无线通信标准进行通信,包含但不限于,5G NR、LTE、LTE-A、GSM、UMTS、CDMA2000、Wi-Fi等。
基站102可被配置为使用多个无线通信标准来进行无线通信。在一些情况下,基站102可包括可使得基站102能够根据多种无线通信技术来进行通信的多个无线电。例如,作为一种可能性,基站102可包括用于根据LTE来执行通信的LTE无线电部件以及用于根据5GNR来执行通信的5GNR无线电部件。在这种情况下,基站102可能够作为LTE基站和5G NR基站两者来操作。作为另一种可能性,基站102可包括能够根据多种无线通信技术(例如,5G NR和Wi-Fi、LTE和Wi-Fi、LTE和UMTS、LTE和CDMA2000、UMTS和GSM等)中的任一个来执行通信的多模无线电部件。
如本文随后进一步描述的,基站102可包括用于实施或支持本文所述的特征的实施方式的硬件和软件组件。基站102的处理器304可被配置成例如通过执行存储在存储介质(例如,非暂时性计算机可读存储介质)上的程序指令来实现或支持本文描述的部分或全部方法的实现。另外地,处理器304可被配置为可编程硬件元件,例如FPGA(现场可编程门阵列),或者ASIC(专用集成电路),或者它们的组合。可选地(或附加地),BS102的处理器304连同一个或多个其他部件330、332、334、340、350、360、370可被配置为实现或支持本文描述的部分或全部特征的实现。
此外,如本文所述,处理器304可包括一个或多个处理元件。换句话说,一个或多个处理元件可被包含在处理器304中。因此,处理器304可包含被配置成执行处理器304的功能的一个或多个集成电路(IC)。此外,每个集成电路可包含被配置成执行处理器304的功能的电路(例如,第一电路、第二电路等)。
此外,如本文所述,无线电部件330可以包括一个或多个处理元件。换句话说,无线电部件330中可包含一个或多个处理元件。因此,无线电部件330可包含被配置为执行无线电部件330的功能的一个或多个集成电路(IC)。此外,每个集成电路可包含被配置成执行无线电部件330的功能的电路(例如,第一电路、第二电路等)。
图3B:服务器的框图
图3B示出了根据一些实施方案的服务器104的示例框图。需注意,图3B的服务器仅仅是可能的服务器的一个示例。如图所示,服务器104可包括可执行针对服务器104的程序指令的处理器344。处理器344也可耦接到存储器管理单元(MMU)374,该MMU可被配置为从处理器344接收地址并将这些地址转换为存储器(例如,存储器364和只读存储器(ROM)354)中的位置或转换到其他电路或设备。
服务器104可被配置为向多个设备(诸如基站102、UE设备106和/或UTM 108)提供接入网络的功能,例如,如本文进一步所述。
在一些实施方案中,服务器104可以是无线电接入网络的一部分,诸如5G新空口(5G NR)接入网络。在一些实施方案中,服务器104可连接到传统演进分组核心(EPC)网络和/或连接到NR核心(NRC)网络。
如本文随后进一步描述的,服务器104可包括用于实现或支持实现本文所述特征的硬件和软件组件。服务器104的处理器344可被配置为例如通过执行存储在存储介质(例如,非暂态计算机可读存储介质)上的程序指令,来实现或支持实现本文所述的方法的部分或全部。另选地,处理器344可被配置为可编程硬件元件诸如FPGA(现场可编程门阵列)或配置为ASIC(专用集成电路)或它们的组合。另选地(或除此之外),结合其他部件354、364和/或374中的一个或多个部件,服务器104的处理器344可被配置为实现或支持实现本文所述的特征的部分或全部。
此外,如本文所述,处理器344可由一个或多个处理元件组成。换句话讲,一个或多个处理元件可包括在处理器344中。因此,处理器344可包括被配置为执行处理器344的功能的一个或多个集成电路(IC)。此外,每个集成电路都可包括被配置为执行处理器344的功能的电路(例如,第一电路、第二电路等)。
图4:UE的框图
图4示出了根据一些实施方案的通信设备106的示例性简化框图。需注意,图4的通信设备的框图仅仅是可能的通信设备的一个示例。根据实施方案,通信设备106可以是用户装备(UE)设备、移动设备或移动站、无线设备或无线站、台式计算机或计算设备、移动计算设备(例如,膝上型电脑、笔记本或便携式计算设备)、平板电脑、无人驾驶飞行器(UAV)、UAV控制器(UAC)和/或设备的组合以及其他设备。如图所示,通信设备106可包括被配置为执行核心功能的一组部件400。例如,该组部件可被实施为片上系统(SOC),其可包括用于各种目的的部分。另选地,该组部件400可被实施为用于各种目的的单独部件或部件组。这组部件400可(例如,通信地;直接或间接地)耦接到通信设备106的各种其他电路。
例如,通信设备106可包括各种类型的存储器(例如,包括与非门(NAND)闪存410)、输入/输出接口诸如连接器I/F 420(例如,用于连接到计算机系统;坞站;充电站;输入设备,诸如麦克风、相机、键盘;输出设备,诸如扬声器;等)、可与通信设备106集成的或在通信设备106外部的显示器460、以及诸如用于5G NR、LTE、GSM等的蜂窝通信电路430、以及短程至中程无线通信电路429(例如,BluetoothTM和WLAN电路)。在一些实施方案中,通信设备106可包括有线通信电路(未示出),诸如例如用于以太网的网络接口卡。
蜂窝通信电路430可(例如,通信地;直接或间接地)耦接到一个或多个天线,诸如所示的天线435和436。短程至中程无线通信电路429也可(例如,通信地;直接或间接地)耦接到一个或多个天线,诸如所示的天线437和438。另选地,短程至中程无线通信电路429除了(例如,通信地;直接或间接地)耦接到天线437和438之外或作为替代,可(例如,通信地;直接或间接地)耦接到天线435和436。短程至中程无线通信电路429和/或蜂窝通信电路430可包括多个接收链和/或多个发射链,用于接收和/或发射多个空间流,诸如在多输入-多输出(MIMO)配置中。
在一些实施方案中,如下文进一步所述,蜂窝通信电路430可包括多个RAT的专用接收链(包括和/或耦接到(例如通信地;直接或间接地)专用处理器和/或无线电部件)(例如,用于LTE的第一接收链以及用于5G-NR的第二接收链)。此外,在一些实施方案中,蜂窝通信电路430可包括可在专用于特定RAT的无线电部件之间切换的单个发射链。例如,第一无线电部件可专用于第一RAT,例如LTE,并且可与专用接收链以及与附加无线电部件共享的发射链通信,附加无线电部件例如是可专用于第二RAT(例如,5G NR)并且可与专用接收链以及共享发射链通信的第二无线电部件。
通信设备106也可包括一个或多个用户界面元素和/或被配置为与一个或多个用户界面元素一起使用。用户界面元素可包括各种元件诸如显示器460(其可为触摸屏显示器)、键盘(该键盘可为分立的键盘或者可实施为触摸屏显示器的一部分)、鼠标、麦克风和/或扬声器、一个或多个相机、一个或多个按钮,和/或能够向用户提供信息和/或接收或解释用户输入的各种其他元件中的任何一个。
通信设备106还可包括具有SIM(用户身份识别模块)功能的一个或多个智能卡445,诸如一个或多个UICC卡(一个或多个通用集成电路卡)445。需注意,术语“SIM”或“SIM实体”旨在包括各种类型的SIM实施或SIM功能中的任何一种,诸如一个或多个UICC卡445、一个或多个eUICC、一个或多个eSIM、可移除式或嵌入式等。在一些实施方案中,UE 106可包括至少两个SIM。每个SIM可以执行一个或多个SIM应用和/或以其他方式实现SIM功能。因此,每个SIM可以是可以嵌入的单个智能卡,例如,可以焊接到UE 106中的电路板上,或者每个SIM可以实现为可移除的智能卡。因此,SIM可以是一个或多个可移除智能卡(诸如有时被称为“SIM卡”的UICC卡),并且/或者SIM 410可以是一个或多个嵌入式卡(诸如有时被称为“eSIM”或“eSIM卡”的嵌入式UICC(eUICC))。在一些实施方案中(诸如当SIM包括eUICC时),SIM中的一个或多个SIM可实现嵌入式SIM(eSIM)功能;在这样的实施方案中,SIM中的单个SIM可以执行多个SIM应用。每个SIM可包括诸如处理器和/或存储器的部件;用于执行SIM/eSIM功能的指令可以存储在存储器中并由处理器执行。在一些实施方案中,UE 106可根据需要包括可移除智能卡和固定/不可移除智能卡(诸如实现eSIM功能的一个或多个eUICC卡)的组合。例如,UE 106可包括两个嵌入式SIM、两个可移除SIM或一个嵌入式SIM和一个可移除SIM的组合。还构想了各种其他SIM配置。
如上所述,在一些实施方案中,UE 106可包括两个或更多个SIM。在UE 106中包括两个或更多个SIM可允许UE 106支持两种不同的电话号码,并且可允许UE 106在对应的两个或更多个相应网络上通信。例如,第一SIM可以支持例如LTE的第一RAT,而第二SIM支持例如5G NR的第二RAT。当然其他实现和RAT也是可能的。在一些实施方案中,当UE 106包括两个SIM时,UE 106可支持双卡双通(DSDA)功能。DSDA功能可允许UE 106同时连接到两个网络(并且使用两种不同的RAT),或者允许在相同或不同的网络上同时保持由使用相同或不同RAT的两个不同SIM支持的两个连接。DSDA功能还可允许UE 106在任一电话号码上同时接收语音呼叫或数据流量。在某些实施方案中,语音呼叫可以是分组交换通信。换句话讲,可以使用基于LTE的语音(VoLTE)技术和/或基于NR的语音(VoNR)技术来接收语音呼叫。在一些实施方案中,UE 106可支持双卡双待(DSDS)功能。DSDS功能可允许UE 106中的两个SIM中的任一者待机等待语音呼叫和/或数据连接。在DSDS中,当在一个SIM上建立呼叫/数据时,另一个SIM不再处于活动状态。在一些实施方案中,DSDx功能(DSDA或DSDS功能)可使用执行用于不同载体和/或RAT的多个SIM应用的单个SIM(例如,eUICC)来实现。
如图所示,SOC 400可包括处理器402和显示电路404,该处理器可执行用于通信设备106的程序指令,该显示电路可执行图形处理并向显示器460提供显示信号。处理器402也可耦接到存储器管理单元(MMU)440(该MMU可被配置为从处理器402接收地址,并将那些地址转换成存储器(例如,存储器406、只读存储器(ROM)450、NAND闪存存储器410)中的位置)和/或耦接到其他电路或设备(诸如,显示电路404、短程至中程无线通信电路429、蜂窝通信电路430、连接器I/F 420和/或显示器460)。MMU 440可被配置为执行存储器保护和页表转换或设置。在一些实施方案中,MMU 440可被包括作为处理器402的一部分。
如上所述,通信设备106可被配置为使用无线和/或有线通信电路来进行通信。通信设备106可被配置成基于统一的TCI框架(例如,在5G NR系统及更高系统中)来执行用于波束故障恢复的方法,如本文进一步所述。
如本文所述,通信设备106可包括用于实施通信设备106的上述特征的硬件和软件组件,以将用于功率节省的调度配置文件发送到网络。例如通过执行被存储在存储器介质(例如,非暂态计算机可读存储器介质)上的程序指令,通信设备106的处理器402可被配置为实施本发明所述的特征的部分或全部。另选地(或除此之外),处理器402可被配置为可编程硬件元件,诸如FPGA(现场可编程门阵列)或ASIC(专用集成电路)。另选地(或除此之外),结合其他部件400、404、406、410、420、429、430、440、445、450、460中的一个或多个其他部件,通信设备106的处理器402可被配置为实施本文所述特征的一部分或全部。
此外,如本发明所述,处理器402可包括一个或多个处理元件。因此,处理器402可包括被配置为执行处理器402的功能的一个或多个集成电路(IC)。此外,每个集成电路都可包括被配置为执行处理器402的功能的电路(例如,第一电路、第二电路等)。
进一步地,如本文所述,蜂窝通信电路430和短程至中程无线通信电路429可各自包括一个或多个处理元件。换句话讲,一个或多个处理元件可包括在蜂窝通信电路430中,并且类似地,一个或多个处理元件可包括在短程至中程无线通信电路429中。因此,蜂窝通信电路430可包括被配置为执行蜂窝通信电路430的功能的一个或多个集成电路(IC)。此外,每个集成电路可包括被配置为执行蜂窝通信电路430的功能的电路(例如,第一电路、第二电路等)。类似地,短程至中程无线通信电路429可包括被配置为执行短程至中程无线通信电路429的功能的一个或多个IC。此外,每个集成电路可包括被配置为执行短程至中程无线通信电路429的功能的电路(例如,第一电路、第二电路等等)。
图5:蜂窝通信电路的框图
图5示出根据一些实施方案的蜂窝通信电路的示例性简化框图。需注意,图5的蜂窝通信电路的框图仅仅是一种可能的蜂窝通信电路的一个示例。根据实施方案,蜂窝通信电路530(其可为蜂窝通信电路430)可包括在通信设备诸如上述通信设备106中。如上所述,除了其他设备之外,通信设备106可以是用户装备(UE)设备、移动设备或移动站、无线设备或无线站、台式计算机或计算设备、移动计算设备(例如膝上型电脑、笔记本或便携式计算设备)、平板电脑和/或设备的组合。
蜂窝通信电路530可(例如,通信地;直接或间接地)耦接到一个或多个天线,诸如(图4中)所示的天线435a-435b和436。在一些实施方案中,蜂窝通信电路530可包括多个RAT的专用接收链(包括和/或耦接到(例如通信地;直接或间接地)专用处理器和/或无线电部件)(例如,用于LTE的第一接收链以及用于5G-NR的第二接收链)。例如,如图5所示,蜂窝通信电路530可包括调制解调器510和调制解调器520。调制解调器510可被配置用于根据第一RAT的通信,例如诸如LTE或LTE-A,并且调制解调器520可被配置用于根据第二RAT的通信,例如诸如5G NR。
如图所示,调制解调器510可包括一个或多个处理器512和与处理器512通信的存储器516。调制解调器510可与射频(RF)前端530通信。RF前端530可包括用于发射和接收无线电信号的电路。例如,RF前端530可包括接收电路(RX)532和发射电路(TX)534。在一些实施方案中,接收电路532可与下行链路(DL)前端550通信,该下行链路前端可包括用于经由天线335a接收无线电信号的电路。
类似地,调制解调器520可包括一个或多个处理器522和与处理器522通信的存储器526。调制解调器520可与RF前端540通信。RF前端540可包括用于发射和接收无线电信号的电路。例如,RF前端540可包括接收电路542和发射电路544。在一些实施方案中,接收电路542可与DL前端560通信,该DL前端可包括用于经由天线335b接收无线电信号的电路。
在一些实施方案中,开关570可将发射电路534耦接到上行链路(UL)前端572。此外,开关570可将发射电路544耦接到UL前端572。UL前端572可包括用于经由天线336发射无线电信号的电路。因此,当蜂窝通信电路530接收根据(例如,经由调制解调器510支持的)第一RAT进行发射的指令时,开关570可被切换到允许调制解调器510根据第一RAT(例如,经由包括发射电路534和UL前端572的发射链)发射信号的第一状态。类似地,当蜂窝通信电路530接收根据(例如,经由调制解调器520支持的)第二RAT进行发射的指令时,开关570可被切换到允许调制解调器520根据第二RAT(例如,经由包括发射电路544和UL前端572的发射链)发射信号的第二状态。
在一些实施方案中,蜂窝通信电路530可被配置成基于统一的TCI框架(例如,在5GNR系统及更高系统中)来执行波束故障恢复的方法,如本文进一步所述的。
如本文所述,调制解调器510可包括用于实施上述特征或用于时分复用NSA NR操作的UL数据的以及本文所述各种其他技术的硬件和软件组件。例如通过执行被存储在存储器介质(例如,非暂态计算机可读存储器介质)上的程序指令,处理器512可被配置为实施本文所述的特征的一部分或全部。另选地(或除此之外),处理器512可被配置作为可编程硬件元件诸如FPGA(现场可编程门阵列),或者作为ASIC(专用集成电路)。另选地(或除此之外),结合其他部件530、532、534、550、570、572、335和336中的一个或多个部件,处理器512可被配置为实施本文所述的特征部的部分或全部。
此外,如本文所述,处理器512可包括一个或多个处理元件。因此,处理器512可包括被配置为执行处理器512的功能的一个或多个集成电路(IC)。此外,每个集成电路可包括被配置为执行处理器512的功能的电路(例如,第一电路、第二电路等)。
如本文所述,调制解调器520可包括旨在实施用于将功率节省的调度配置文件传输到网络的上述特征以及本文所述各种其他技术的硬件和软件部件。例如通过执行被存储在存储器介质(例如,非暂态计算机可读存储器介质)上的程序指令,处理器522可被配置为实施本文所述的特征部的一部分或全部。另选地(或除此之外),处理器522可被配置作为可编程硬件元件诸如FPGA(现场可编程门阵列),或者作为ASIC(专用集成电路)。另选地(或另外地),结合其他部件540、542、544、550、570、572、335和336中的一个或多个部件,处理器522可被配置为实施本文所述的特征部的部分或全部。
此外,如本文所述,处理器522可以包括一个或多个处理元件。因此,处理器522可以包括被配置为执行处理器522的功能的一个或多个集成电路(IC)。此外,每个集成电路可包括被配置为执行处理器522的功能的电路(例如,第一电路、第二电路等)。
图6A和6B:带有LTE的5G NR架构
在一些具体实施中,第五代(5G)无线通信最初将与当前无线通信标准(例如,LTE)并发部署。例如,LTE与5G新空口(5G NR或NR)之间的双连接已被指定作为NR的初始部署的一部分。因此,如图6A至图6B所示,演进分组核心(EPC)网络600可继续与当前LTE基站(例如,eNB602)通信。此外,eNB 602可与5G NR基站(例如,gNB 604)通信,并且可在核心网络600和gNB 604之间传递数据。因此,EPC网络600可被使用(或重新使用),并且gNB 604可充当用户设备的额外容量,例如用于为UE提供增大的下行链路吞吐量。换句话讲,LTE可被用于控制面信令,并且NR可被用于用户面信令。因此,LTE可被用于建立与网络的连接,并且NR可被用于数据服务。
图6B示出了所提出的用于eNB 602和gNB 604的协议栈。如图所示,eNB 602可包括与无线电链路控制(RLC)层622a-622b交接的介质访问控制(MAC)层632。RLC层622a也可与分组数据汇聚协议(PDCP)层612a交接,RLC层622b可与PDCP层612b交接。类似于高级LTE版本12中指定的双连接,PDCP层612a可经由主小区组(MCG)承载来与EPC网络600交接,而PDCP层612b可经由分离承载来与EPC网络600交接。
另外,如图所示,gNB 604可包括与RLC层624a-624b交接的MAC层634。RLC层624a可经由X2接口与eNB 602的PDCP层612b交接,用于在eNB 602和gNB 604之间的信息交换和/或协调(例如,调度UE)。此外,RLC层624b可与PDCP层614交接。与高级LTE版本12中指定的双连接类似,PDCP层614可经由辅小区组(SCG)承载来与EPC网络600交接。因此,eNB 602可被视为主节点(MeNB),而gNB 604可被视为辅节点(SgNB)。在一些情况下,可能要求UE保持与MeNB和SgNB两者的连接。在此类情形中,MeNB可被用于保持与EPC的无线电资源控制(RRC)连接,而SgNB可被用于容量(例如,附加下行链路和/或上行链路吞吐量)。
同步信号块索引信令
同步信号通常可用在蜂窝通信系统中以帮助无线设备检测和获取蜂窝通信系统的小区的系统信息。换句话说,同步信号可由蜂窝网络中的基站发射,以允许UE检测和使用同步信号中的信息以与该基站正确地通信。根据各种实施方案,可存在多种类型的同步信号,其可包括主同步信号(PSS)、辅同步信号(SSS)、物理广播信道(PBCH)和/或各种其他部分中的任一个。在各种可能性中,同步信号可提供/促进小区检测/访问的一个或多个方面,诸如定时同步(例如,符号、时隙、子帧和/或无线电帧级定时),物理小区标识符(小区ID),和/或小区的部分或全部系统信息(例如,主信息块(MIB)、一个或多个系统信息块(SIB)等)。
同步信号可一起提供或在不同时间被提供,并且可根据需要根据各种传输模式中的任一种被传输。作为一种可能性(例如,根据3GPP LTE),可以单独的周期性间隔提供PSS、SSS和PBCH。作为另一种可能性(例如,根据3GPP NR),可在根据期望的传输模式传输的多个同步信号块中的每个中一起(例如,使用连续符号)提供PSS、SSS和PBCH。根据一些实施方案,由小区提供的同步信号的每个周期性模式可被称为同步信号突发集。
用于无线通信中的同步信号/PBCH块发射的方法和设备
将当前NR操作延伸到71GHz已成为最近研究和工作项目讨论的主题。特别地,可能期望修改当前SSB发射以适应此延伸。例如,将操作延伸到71GHz频率范围可能需要用于同步信号块(SSB)的120kHz子载波间隔(SCS)和用于初始带宽部分(BWP)中的初始接入相关信号/信道的120kHz SCS的支持。另外,各种其他更高频率SCS(例如,240kHz、480kHz、960kHz)也可用于SSB以及附加SCS(例如,480kHz、960kHz),用于初始BWP或除了初始接入之外的其他情况中的初始接入相关信号/信道。
此外,可能需要用于初始接入的480kHz和960kHz SCS的支持,以便减少UE侧的功率消耗。更具体地,由于这些SCS通常是可选特征并且因此UE可能不支持这些SCS的事实,因此UE可能浪费宝贵电池寿命,在最终不支持的SCS上执行小区搜索操作。因此,下文所述的实施方案试图提供用于帮助UE的解决方案,使得UE能够当执行小区搜索或其他功能时识别具有可选SCS的SSB。
图7—通过使用频率步长计算频率位置来确定子载波间隔的方法
图7示出了根据一些实施方案通过使用频率步长计算频率位置来确定子载波间隔的方法。
在702中,UE可在计算SSB频率位置时使用至少一个步长。换句话说,UE可在确定UE在其处搜索或监测SSB的频率位置时使用至少一个步长。例如,UE可利用对应于可能被强制支持的(例如,120kHz SCS)或被可选地支持的(例如,240kHz、480kHz、960kHz SCS)不同SCS)频带中的不同的步长(例如,Δi)来计算SSB频率位置。附加地或另选地,根据一些实施方案,步长可通过最小信道带宽和SCS的SSB带宽的差值来表征,单个步长可用于所有SSBSCS(强制和可选)或仅可选SSB SCS。此外,单独的单个步长可用于不同的可选SSB SCS或者GSCN索引可用于计算SSB频率位置。换句话说,通过利用频率步长(例如,具有某些频率间隔(例如,步长)的同步光栅)),光栅可用于指示当不存在同步块位置的显式信令时可由UE使用的用于系统获取的同步块的频率位置。
在704中,基于在702中所确定的计算出的SSB频率位置,UE可监测下行链路频率位置以检测来自蜂窝基站的同步块(SSB)。例如,UE可能够在未许可频谱中的高于52.6GHz的频带中操作,并且可进一步被配置为支持更高频率子载波间隔(例如,240kHz、480kHz、960kHz)。因此,UE可执行用于初始接入的小区搜索操作,并且可潜在地利用对应的SCS从网络(例如,基站)接收SSB。换句话说,为了试图与网络且更具体地,该网络的特定小区通信,UE可利用所述SCS监测下行链路频率位置。
接下来,在706中,通过监测DL频率位置,UE可至少部分地基于步长来确定蜂窝基站使用的子载波间隔。例如,如上文关于704所述,UE可使用对应于特定SCS的特定步长来计算SSB频率位置,并且可进一步确定与计算出的SSB频率位置相关联的子载波间隔。附加地或另选地,UE可使用通过最小信道带宽和已知的SCS(例如,预期或搜索的SCS)的SSB带宽来表征的步长以计算SSB频率位置并最终确认或确定基于所选步长预期的子载波间隔的步长。换句话说,通过计算SSB频率位置(基于步长)并且知道强制和/或可选SCS(例如,120kHz、240kHz、480kHz和960kHz)的子载波间隔和周期性,UE可基于计算出的SSB频率位置利用同步光栅来确认或确定与接收到的SSB相关联的子载波间隔。
在708中,UE可在与蜂窝基站通信时利用所确定的子载波间隔。换句话说,已确定与SSB相关联的子载波间隔(基于通过利用特定步长的计算出的SSB频率位置),UE可配置其未来的发射以支持所述子载波间隔,并且可能尝试通过执行小区搜索和小区附接程序来与网络(例如,基站)通信。
在一些实施方案中,在702处,UE可使用一个或多个步长的各种组合中的任何组合来计算在利用SSB监测频率位置中使用的频率位置。例如,UE可被配置为在计算SSB频率位置时使用多个步长。UE可使用第一步长来计算用于第一组SSB子载波间隔的频率位置,并且使用第二步长来计算用于第二组SSB子载波间隔的频率位置。另外,在监测下行链路频率位置时,UE可被配置为使用第一步长来计算用于根据蜂窝通信标准强制的第一组SSB子载波间隔的频率位置,并且使用第二步长来计算用于根据蜂窝通信标准可选的第二组SSB子载波间隔的频率位置。
附加地或另选地,在702处,UE可被配置为针对根据蜂窝通信标准可选的第二组SSB子载波间隔中的多个SSB子载波间隔中的每个SSB子载波间隔使用相应不同的第二步长。第二组SSB子载波间隔可包括480kHz和960kHz等等。此外,在监测下行链路频率位置时,UE可被配置为在计算用于SSB的所有可能的子载波间隔的频率位置时使用单个步长,这些所有可能的子载波间隔包括根据蜂窝通信标准强制的SSB子载波间隔和根据蜂窝通信标准可选的SSB子载波间隔。
图8至图11—初始接入期间的SSB-SCS确定
UE可采取多种方法在具有至少一个用于SSB的可选SCS的NR操作频带中执行初始接入程序。更具体地,UE可采取用于初始接入程序的多种方法,以确定UE可用于系统获取的与给定全局同步信道号(GSCN)值相关联的SSB的SCS(例如,480kHz SCS和960kHz SCS)。
在一些实施方案中,UE可利用不同的步长(例如,Δi)来计算用于强制SSB SCS(例如,120kHz SCS)和可选SSB SCS(例如,480kHz/960kHz SCS)的SSB频率位置SSREF。例如,Δ0=17.28可用于强制SSB SCS并且用于可选SSB SCSi的步长Δi(例如,分别用于480kHz和960kHz SCS的i=0,1)可基于具有SCSi的频率范围FR3内的最小信道带宽
Figure BDA0003582089730000261
和该SCS的SSB带宽
Figure BDA0003582089730000262
来确定。在一些实施方案中,步长可通过最小信道带宽与SCS的SSB带宽之间的差值来表征(例如,
Figure BDA0003582089730000263
)其中Δ12
在一些实施方案中,单个步长Δ可用于所有可选SSB SCS。然而,在这种情况下,如果UE仅支持可选SCS的子集而不是所有可选SCS,则UE也可执行SSB SCS的假设检测。
图8—频域中的SSB-SCS相关的同步光栅位置
单独的步长Δi也可用于不同的可选SSB SCSi。例如,在一些实施方案中,可选SSBSCS的数目可限制为1,以最小化用于支持多于一个可选SCS的UE的小区搜索复杂性。图8示出了频域中的SSB-SCS相关的同步光栅位置的一个示例。更具体地,图8示出了针对不同的可选SSB SCSΔi使用单独的步长i。例如,在具有包括一个强制SCS(例如,120kHz SCS)和两个可选SSB SCS(例如,480kHz/960kHz SCS)的三个SCS的情况下,能够为120kHz SCS的UE在一些实施方案中仅在对应于120kHz SCS的图8的频率位置810、820、830、840和/或850上执行小区搜索。换句话说,通过在可选SSB SCS上不执行附加的小区搜索操作,UE可节省功率(例如,降低其功率消耗)。
图9-非交织的全球同步信道(GSCN)分配
在一些实施方案中,单个步长Δ可用于SSB的所有SCS,包括任何强制SCS(例如,120/240kHz SCS)和任何可选SSB SCS(例如,480/960kHz SCS)两者。此外,为了降低SSB检测复杂性,支持的GSCN可被分成不同的组,并且SSB SCS与GSCN组之间的关联可在UE或规范中被硬编码。
在一些实施方案中,一定数目的GSCN可被均匀地拆分成N个组(例如,具有一对一比率的组),其中这些组被保留用于频带内的支持的SCS。此外,在一些实施方案中,可以非交织的模式分配一定数目的GSCN。例如,图9示出了用于具有多个SSB SCS的频带的非交织的同步光栅确定。更具体地,图9示出了包括强制SCS(例如,对应于第1组GSCN的120kHzSCS)和可选SSB SCS(例如,对应于第2组和第3组GSCN的480/960kHz SCS)以及它们相应的GSCN索引的三组GSCN。
此外,GSCN的非交织的分配可由G1=mod(T,N)限定,其中T表示频带内的GSCN的总数目并且N表示频带内的支持的SCS的数目。例如,如果G1>0,组n,n=0,1,…,G1-1可由GSCN值索引组成n*K1+k,k=0,1,...,K1–1其中
Figure BDA0003582089730000271
此外,组n,n=G1,G1+1,…,N-1可由GSCN索引组成G1*K1+(n-G1)*K2+k,k=0,1,…,K2-1其中
Figure BDA0003582089730000272
图9示出了这种非交织的GSCN组的一个示例,其中假设T=10,N=3,G1=1,K1=4,和K2=3。因此,如图9所示,第1组可对应于GSCN索引0-3,第2组可对应于GSCN索引4-6,并且第3组可对应于GSCN索引7-9。
图10-交织的GSCN分配
如上所述,单个步长Δ可用于SSB的所有SCS,包括强制SCS(例如,120/240kHzSCS)和可选SSB SCS(例如,480/960kHz SCS)。此外,为了减少SSB检测复杂性,支持的GSCN可被分成不同的组,并且SSB SCS与GSCN组之间的关联可在UE中或蜂窝通信规范中被硬编码。
此外,在一些实施方案中,可以交织的模式分配一定数目的GSCN。更具体地,GSCN的交织的分配可由G1=mod(T,N)限定其中T表示频带内的GSCN的总数目并且N表示频带内的支持的SCS的数目。因此,组n,n=0,1,…,G1-1可包括GSCN值索引k*N+n,k=0,1,...,K1–1其中
Figure BDA0003582089730000281
此外,组n,n=G1,G1+1,…,N可以包括GSCN索引k*N+n,k=0,1,…,K2-1其中
Figure BDA0003582089730000282
图10示出了用于确定不同的SSB SCS的同步光栅的这种非交织的GSCN组的一个示例,其中假设T=10,N=3,G1=1,K1=4,和K2=3。如图10所示,第1组可对应于用于120kHzSSB SCS的GSCN,索引为0、3、6和9,第2组可对应于用于480kHz SSB SCS的GSCN,索引为1、4和7,并且第3组可对应于用于960kHz SSB SCS的GSCN,索引为2、5和8。这种GSCN的交织的分配对于先前描述的GSCN分配技术可能是优选的,因为它可允许增加组件载波(CC)的数目以与较大SCS(例如,480kHz和960kHz)一起利用。因此,这可能比先前非交织的示例更困难,因为可使用用于最小SCS的最小带宽(BW)来限定GSCN间隙。(例如,240kHz SCS)。
图11—用于具有多个SSB SCS的频带的基于偏移的同步光栅确定
在一些实施方案中,单个步长Δ可用于除了不同频率偏移
Figure BDA0003582089730000283
或起始位置Si之外的SSB的所有SCS以确定用于不同SSB SCSi的
Figure BDA0003582089730000284
更具体地,在一些实施方案中,用于SCSi的GSCN值“O”的SSB频率位置
Figure BDA0003582089730000285
(其中O>22255)可被确定为通过
Figure BDA0003582089730000286
来表征的公共起始频率位置。附加地或另选地,根据一些实施方案,用于每个SCS的起始频率位置可被直接限定为
Figure BDA0003582089730000291
图11示出了使用前述方法以确定用于不同SSB SCSi的
Figure BDA0003582089730000292
的用于不同SSB SCS的同步光栅确定的示例。另外,图11呈现频带中的三个SSB SCS(分别为120kHz、480kHz和960kHz)。
更具体地,图11示出了用于具有多个SSB SCS的频带的基于偏移的同步光栅确定。例如,图11示出了单个步长Δ用于假设的三个SSB SCS(分别为120kHz、480kHz和960kHz),如
Figure BDA0003582089730000293
Figure BDA0003582089730000294
之间为240kHz,并且
Figure BDA0003582089730000295
Figure BDA0003582089730000296
之间为480kHz,并且
Figure BDA0003582089730000297
Figure BDA0003582089730000298
之间为960kHz所示。另外,也示出了对应于240kHz SCS SSB与480kHz SCS SSB之间的频率偏移的不同频率偏移参数
Figure BDA0003582089730000299
以及对应于240kHz SCS SSB与960kHz SCS SSB之间的频率偏移的
Figure BDA00035820897300002910
图12—指示SSB的可选SCS的经修改的系统信息块4(SIB4)
对于异频小区重选,根据一些实施方案,可通过使用系统信息块4(SIB4)针对每个列出的载波明确地提供可选SSB SCS(即480kHz或960kHz)的使用。此外,具有强制SCS(例如,120kHz SCS)的至少一个绝对射频信道号(ARFCN)或GSCN应包括在由SIB4提供的频率列表
中。图12示出了根据一些实施方案的经修改的SIB4,以明确地针对每个列
出的频率和小区提供可选SSB SCS信息。例如,如图12所示,如果UE不支持SCS960kHz,则UE可选择在ARFCN3、ARFCN4或ARFCN8上不执行小区重选。类似地,如果UE不支持SCS 480kHz,则UE可选择在ARFCN1或ARFCN5上不执行小区重选。
另外,当考虑小区全局标识(CGI)读数以支持在高于52.6GHz的频带中的自动邻区关系(ANR)功能时,用于CGI目的的SSB(即480kHz或960kHz SCS)的可选SCS可能需要限于非GSCN位置。此外,一个关键条件可涉及具有由ssbFrequency信息元素(IE)在与提供reportCGIIE的报告配置相关联的测量配置中提供的可选SCS的SSB的频率位置。因此,这不应对应于同步光栅条目的GSCN。对非GSCN位置的这种限制可用于消除在细胞选择程序期间针对初始接入使用这些可选SCS的可能性。
在一些实施方案中,UE可根据两个偏移O1和O2的总和确定从用于Type0-PDCCH CSS设置的CORESET的最小资源块(RB)索引到与对应的同步信号/物理广播信道(SS/PBCH)块的第一RB重叠的公共RB的最小RB索引的偏移。此外,偏移O1可基于在UE或规范中被硬编码的表格由PBCH有效负载的IEcontrolResourceSetZero发信号通知。另外,偏移O2可被确定为从与在测量配置中指示的SS/PBCH块的第一RB重叠的公共RB的最小RB索引到与假设位于对应于配置为CGI报告的有关小区的同步光栅条目的GSCN处的SS/PBCH块的第一RB重叠的公共RB的最小RB索引的偏移。
图13—用于CGI报告的具有可选SCS的SSB发射
图13示出了根据一些实施方案的通过允许用于SIB1获取的CORESET#0 1350和0型搜索空间来支持CGI报告功能的SSB 1330发射的一个示例。例如,通过将具有可选SCS(480kHz和960kHz SCS)的SSB 1330发射限制为没有有效GSCN映射的ARFCN 610(与具有有效GSCN映射的ARFCN 1320相比),网络(例如,基站或gNB)可为不支持这些可选SCS的UE有效地解决小区搜索期间的可选SCS SSB检测的不必要功率消耗的问题。
更具体地,如图13所示,UE可基于SSB 1330中的IE“controlResourceSetZero”的值获得“O1”值。另外,在一些实施方案中,“O2”的值可由UE基于ARFCN13上的SSB 1330的最低物理资源块(PRB)来导出,在CGI测量配置中提供该值。附加地或另选地,“O2”的值可由UE基于具有有效GSCN的ARFCN 1320上的假设SSB 1340的最低PRB或基于在发射的SSB与用于SIB1的CORESET#0之间的偏移RB来导出,其中接收是“O1”值和“O2”值的总和。
在一些实施方案中,经修改的SCS IESubcarrierSpacing还可用于为报告对应的可选SCS的支持的UE提供用于目标小区的可选SSB SCS的信息。
样品IE:
SubcarrierSpacing::=ENUMERATED{kHz15,kHz30,kHz60,kHz120,kHz240,kHz480,kHz960,spare 1}
例如,在SCell添加/修改消息中,测量相关IE可至少包括:“MeasIdleCarrierNR-R16”、“MeasObjectNR”和“MeasTiming”以辅助信息输送列出的频带的可选SSB SCS信息的存在和确切值作为辅助信息。
用于无线通信中的SS/PBCH块发射的方法
如上所述,可能需要与初始接入信道(例如,SSB发射)相关的新方法,以能够在许可和未许可频带中将NR操作延伸到高达71GHz。例如,已分析了在该频率范围内用于许可和未许可操作的高达64个SSB波束的支持以及用于SSB的120kHz SCS和用于初始带宽部分(BWP)中的初始接入相关信号/信道的120kHz SCS的支持。另外,除了对于除初始接入以外的情况对用于SSB的附加SCS(480kHz、960kHz)的潜在需要之外,还已分析了对用于SSB的SCS(240kHz,480kHz,960kHz)的支持和对用于初始BWP中的初始接入相关信号/信道的附加SCS(480kHz,960kHz)的支持。
因此,清楚地需要开发用于具有较大SCS(即480kHz和960kHz SCS)的SSB发射的解决方案,除了考虑DL-UL切换间隙的需要以在连续SSB发射之间启用UL短控制发射之外。此外,还需要考虑用于小区搜索的功率消耗,这将随着较大的SCS SSB发射窗口的增加的尺寸而降低。下文所述的实施方案试图提供用于辅助UE的解决方案,使得UE能够有效地在用于各种SCS的候选SSB的不同波束模式之间切换。
图14—指示候选SSB之间的波束切换的方法
图14示出了根据一些实施方案的指示候选SSB之间的波束切换的方法。该方法可由蜂窝网络中的蜂窝基站执行。例如,如上简述,小区搜索操作可极大地影响UE的功率消耗,尤其是在较大的SCS发射窗口中。因此,下文所述的方法试图提供用于通过在用于各种SCS的候选SSB的不同波束模式之间有效切换来启用连续SSB发射之间的UL短控制发射的机制。
在1402中,基站(BS)可根据周期性模式发射多个同步信号(SS)块。例如,同步信号块(SSB)可以模式发射,使得时隙中的某些符号每当根据该模式发射SSB时具有相同的索引值。换句话说,SSB的符号可每当SSB以周期性模式发射时占用时隙中的相同位置。
另外,作为1402的一部分,在1402a中,BS可SS突发,每个包括在周期性模式的周期性的子集中被发射的SS块(SSB)。换句话说,可以对应于一个或多个SSB的组或突发的特定周期性发射由基站发射的所述多个同步信号。例如,包括三个SSB的第一SS突发可由基站发射,然后是(在特定时间段之后)发射包括用于由UE测量的三个更多SSB的另一个SS。这种突发周期性可为对应于由基站发射的所述多个SSB的周期性模式的子集。
接下来,作为1402的一部分,在1402b中,BS可在每个SS突发中包括在两个连续SSB之间被保留用于波束切换的至少一个符号。例如,同步信号块(SSB)可以使得时隙中的某些符号被保留用于波束切换的模式发射。更具体地,候选SSB的保留的波束切换符号可具有对应于周期性模式的索引,使得符号布置在时隙中以允许将不同的发射波束用于两个连续SSB。换句话说,通过在保留的波束切换符号之间提供适当的间隔(根据周期性模式),UE可能能够更有效地在连续SSB之间执行波束切换操作。
图15—用于具有CORESET 0与SSB之间的复用的480kHz和960kHz SCS的候选SSB模式
在一些实施方案中,各种“对称”SS/PBCH块(SSB)模式可通过为波束切换在两个连续候选SSB之间保留至少一个符号(例如,模式1中的符号#6和图15中的模式#1和#2的符号#13)来限定。对于具有SSB的半帧,用于候选SSB的第一符号索引可如下确定,其中索引0对应于半帧中的第一时隙的第一符号。例如,关于图15中的模式#1 1510,候选SSB的第一符号具有索引{2,9}+14*n,n=0,1,2,…,31。根据一些实施方案,利用该模式,两个符号(即符号#6和#13)可在单个时隙中被保留用于SSB波束切换,使得不同的Tx波束#1530和#1540可用于两个连续SSB。
关于图15中的模式#2 1520,候选SSB的第一符号可具有索引2+14*n,n=0,1,2,…,63。根据一些实施方案,对应地,模式#2可能能够为SIB1分配更多资源,使得在单个时隙中使用相同的模拟波束(例如,图15中的波束#1550)发射SSB、相关联的CORESET 0和SIB1消息而无需进行波束切换。因此,通过在同一波束上发射上述资源,一个益处可为切换间隙开销被最小化。
当确定来自图15中的模式#1和模式#2的对应的SSB模式(如果支持两个模式的话)时,可考虑多种方法。例如,在一些实施方案中,不同模式可在UE或规范中被硬编码为具有SSB的不同SCS的一对一映射,而无需显式信令。此外,可假设SSB的SCS在用于同步光栅条目的每个允许的GSCN的3GPP规范中被硬编码。
在一些实施方案中,模式#2可用于960kHz SCS SSB,以便考虑到时隙持续时间相当短的事实在时隙内避免波束切换。另一方面,模式#1可被应用于480kHz SCS,这可能有利于SSB波束扫描延迟减少并降低UE功率消耗和用于小区搜索的延迟。
根据一些实施方案,可考虑各种另选方案以通过使用主信息块(MIB)或PBCH有效负载中的1位字段来指示两个SSB模式中的一个SSB模式。例如,根据一些实施方案,可利用MIB有效负载中的保留的1位字段“R”,重新利用1位字段“subCarrierSpacingCommon”(假设CORESET 0/SIB与SSB之间的相同SCS可用于指示SSB),和/或重新使用PBCH有效负载中的1位aA+5(假设用于高于52.6GHz频带的频率的uSSB≥uCORESET0和kSSB≤11,其中uSSB≥uCORESET0分别表示SSB和CORESET 0的数字)来指示对应SSB模式。
图16—通过PBCH发射的第二DMRS符号发信号通知的1位SSB模式索引
在一些实施方案中,1位SSB模式索引b(0)可通过利用例如[w0,w1,…,w23]来加扰PBCH的CRC位,如图16的1610所示。根据一些实施方案,在另一种方法中,可调制第二PBCH符号的DMRS序列以发信号通知1位SSB模式索引。例如,可基于小区ID
Figure BDA0003582089730000331
和SSB块索引(iSSB)并且使用等式
Figure BDA0003582089730000332
Figure BDA0003582089730000333
生成用于两个PBCH符号的DMRS序列。换句话说,用于两个不同的PBCH符号的DMRS序列可为相同的。
在一些实施方案中,可通过使用二进制相移键控(BPSK)调制1位信息位从而产生单个调制符号d(0)来指示或发信号通知1位SSB模式索引b(0),如图16的1620所示。然后调制符号d(0)可用于生成用于PBCH发射的参考符号,如图16所示。
图17—具有UL控制信令发射的DBTW窗口中的基于SSBTW的SSB模式的示例
根据一些实施方案,一组连续Nslot时隙间隙可被保留用于UL发射(例如,混合自动重复请求确认(HARQ-ACK)、信道状态信息(CSI)反馈或超可靠低延迟通信(URLLC)物理上行链路共享信道(PUSCH)调度)。如图17所示,SSB时隙可被示出为由具有模式1或模式2的SSB发射组成的时隙。此外,SSB突发发射窗口(SSBTW)可被示出为图17中的窗口1710,包括连续SSB时隙的第一值K1和连续时隙的第二值K2,而不具有SSB发射。此外,发现突发发射窗口(DBTW)可被示出为图17中的周期性窗口1710,该周期性窗口在第一S=N*(K1+K2)时隙中由连续“N”SSBTW组成。
因此,由K2时隙提供的符号的数目需要至少足够大以适配UL到DL切换、DL到UL切换操作以及允许的DL/UL发射(例如,物理上行链路控制信道(PUCCH))的总量。对应地,图17中的模式1可使用具有索引{2,9}+14*n,n=0,1,2,…,K1的SSBTW内的候选SSB的第一符号来限定,其中索引0对应于SSBTW中的第一时隙的第一符号。此外,图17中的模式2可使用具有索引2+14*n,n=0,1,2,…,K1的候选SSB的第一符号来限定,其中索引0对应于SSBTW中的第一时隙的第一符号。
图18—示例性的基于子时隙的SSB模式
在一些实施方案中,可引入SSB模式以提高资源效率并最小化用于小区搜索的功率消耗。例如,如图18所示,具有偶数的SSBTW中的最后SSB时隙1830可由第一半时隙中的一个SSB发射组成。另外,具有奇数的SSBTW中的第一SSB时隙1840可由一个SSB发射(而不是如在同一SSBTW中的其他SSB时隙中的两个SSB)组成。这样做时,UL/DL切换1810和1820可在时隙1830或1840的半时隙内执行,而不是为切换操作打孔两个时隙(假设UL/DL切换时间值小于或等于7μs(即用于960kHz SCS的半时隙))。
因此,图18中的用于SSB发射的K1和K2时隙的值可以多种方式限定。例如,根据一些实施方案,K1和K2的值可在规范中被硬编码,并且通常可被应用于所有新SCS(即480kHz和960kHz SCS)。附加地或另选地,在一些实施方案中,K1和K2的值可取决于SSB SCS,以确保在不同新SCS之间间隙模式在时间上是对准的。换句话说,K1和K2值可缩放(例如,乘以数字因子)以确保对应于新SCS的间隙模式之间的定时对准。
图19A和图19B—用于不同新SCS的示例性时间对准的SSBTW
图19A和图19B示出了根据一些实施方案的用于新480kHz和960kHz SCS的时间对准的SSBTW模式的两个示例。更具体地,图19a示出了被保留用于UL/DL切换和PUCCH/PUSCH发射的每个“K1+K2”时隙SSBTW的结束时的K2时隙。在图19A中进一步示出的是,<K1,K2>可被硬编码为<4,2>和<8,4>分别用于480kHz和960kHz SCS以对准间隙时隙。
在图19B中,假设参考时隙(例如,120kHz SCS时隙)可用作限定用于较大SCS的SSBTW的参考,则示出了用于480kHz SCS的K1+K2=4和用于240kHz SCS的K1+K2=8。在图19B中进一步示出的是,<K1,K2>可被硬编码为<2,2>或<4,4>可用于480kHz和960kHz SCS以对准间隙时隙。
用于无线通信中的发现突发发射窗口操作的方法和设备
如上所述,存在与将当前NR操作延伸到71GHz相关的许多研究和工作项目讨论。为了促进这些高频率下的NR操作,可能期望修改发现突发发射窗口中的SSB发射。特别地,将操作延伸到71GHz频率范围已引入了对此延伸中的发射进行特定限制的需要。例如,与5GHz和6GHz频带相比,52.6GHz频带和以上频带没有限制控制发射的数目,而是限制观察期内的发射的总持续时间。更具体地,在100ms的观察期内可允许没有执行LBT的高达10%控制帧发射的裕度。
对于480kHz和960kHz SCS,具有20ms发现参考信号(DRS)周期性的64个波束可计数2.86%和1.43%的广播时间,该广播时间小于100ms观察窗口中的短控制信令的10%裕度。此外,当计算短控制信令广播时间时,根据一些实施方案,SS/PBCH符号仅可被计数并且SSB之间的正交频分复用(OFDM)符号不应被排除在计算中。因此,关于具有64SSB和20ms周期性的120kHz SCS,一个问题变得显而易见。更具体地,可使用0.125*8/14*32*5/100=11.43%来计算开销,该开销超过10%的限制。
关于52.6GHz频带以上的SSB发射,并且特别是对于需要先听后说(LBT)的未许可频带,可能期望支持至少用于120kHz SSB SCS的发现突发(DB)和发现突发发射窗口(DBTW)。更具体地,如果支持DB,则可能进一步期望确定包括在DB中的信号和信道(除了SS/PBCH块之外)。此外,如果支持DBTW,则可能另外期望结合支持机制以指示或告知针对空闲和连接模式UE启用/禁用DBTW。此外,可能期望确定如何支持在DBTW上没有任何先前信息的UE执行初始接入。另外,如果支持DBTW,则PBCH有效负载大小可小于或等于针对FR2指定的有效负载大小,DBTW的持续时间可小于或等于5ms,并且PBCH DMRS序列的数目可与FR2中的数目相同。
因此,本文所述的实施方案涉及一种用于有效地启用和/或禁用DBTW的机制,并且提供关于在初始接入之前DBTW的存在的辅助信息。下文所述的实施方案试图提供用于辅助UE的解决方案,使得UE能够有效地确定关于DBTW的存在并且相应地行动。另外,下文所述的实施方案试图提供用于经由用于指示候选SSB索引和准共址(QCL)关系的机制来辅助UE的解决方案,而不超过对PBCH有效负载大小的上述限制。
图20—在候选SCS中指示DPTW存在的方法
图20示出了根据一些实施方案的在候选SCS中指示DPTW存在的方法。
例如,在2002中,基站(BS)可向一个或多个用户装备(UE)发射多个同步信号块(SSB)。更具体地,同步信号可指示小区的小区检测/接入的一个或多个方面,诸如用于小区的定时同步(例如,符号、时隙、子帧和/或无线电帧级定时)。因此,UE可接收和测量这些SSB以尝试确定是否需要进行任何操作或配置改变来根据发射小区指示的参数支持与网络的附加通信。
作为2002的一部分,在2002a中,BS可包括指示发现突发发射窗口(DBTW)的存在的SSB或PBCH有效负载中的值。例如,发射可包括对应于GSCN索引的信息或值,这些GSCN索引继而可对应于DBTW的存在或不存在。附加地或另选地,来自BS的发射可包括被包括为经修改的位字段、DMRS符号或其他各种元素中的SIB4符号的信息,以指示DBTW的存在或不存在。换句话说,BS可明确地尝试向UE告知DBTW的存在以便允许UE响应于接收到该指示而采取适当的动作。
接下来,在2004中,BS可在DBTW中发射附加SSB。换句话说,基于从BS接收到的指示DBTW的存在的信息,UE可配置其未来的发射以支持所述DBTW,并且可能尝试通过执行小区附接程序来与网络(例如,基站)通信。
图21—120kHz和240kHz SCS
在NR中,120kHz和240kHz SSB可被指定为每个SSB突发具有64SSB的总最大值。另外,关于120kHz子载波间隔,每个SSB的起始位置可被限定为{4,8,16,20}+28n,其中n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。类似地,对于240kHz子载波间隔,每个SSB的起始位置可被限定为{8,12,16,20,32,36,40,44}+56n,n=0,1,2,3,5,6,7,8。图21示出了根据一些实施方案的含有其对应CORESET#0、SSB、SIB1和波束切换符号的5ms半帧中的120kHz和240kHz子载波间隔,以及5ms半帧中的2个时隙的扩展部分中的SSB起始位置的示例。
在一些实施方案中,DBTW的潜在存在可在每个频带基础上在规范中被硬编码,或者机制可用于提供用于给定频率的发现突发发射窗口(DBTW)存在的先验知识。换句话说,所提供的DBTW的先前知识可仅应用于由于区域LBT调节要求而指示DBTW的潜在存在的给定频带。
图22—基于GSCN值的预分配的DBTW存在指示
在一些实施方案中,用于指示DBTW的存在的机制可为基于GSCN的。例如,不同的同步光栅值(即全局同步信道号(GSCN))可被限定,并且可与不同的DBTW配置相关联。在一些实施方案中,两个GSCN可被保留用于组件载波(CC),如图22所示。如图所示,第一GSCN 2210可用于具有DBTW的SSB发射,而第二GSCN 2220可用于不具有DBTW的SSB发射。因此,当UE在对应的GSCN值上执行小区搜索时,可分别假设DBTW。
根据一些实施方案,附加地或另选地,具有DBTW的GSCN(图22中示出为1型GSCN)可由相对于不具有DBTW的GSCN(图22中示出为2型GSCN)的偏移值Δ确定。例如,单个偏移值可在用于特定频率范围的规范中被硬编码,并且/或者可针对频率范围内的每个频带限定不同的偏移值。
在涉及用于频带的多个GSCN的一些实施方案中,具有偶数的GSCN可用于1型GSCN以指示DBTW的存在,并且奇数GSCN数目可被保留用于2型GSCN以发射不具有DBTW的SSB。
附加地或另选地,可将2型GSCN的步长Δ2与可对应于1型GSCN的相对较大的GSCN步长Δ1进行比较,其中Δ1可被限定为Δ1=K*Δ1,K≥1的整数。
图22示出了前述实施方案中的至少一些实施方案。例如,如图22所示,关于选项22-1,根据一些实施方案,可在规范中预定义GSCN 2210和2220以与不同配置相关联(例如,具有或不具有DBTW)。附加地或另选地,代替指示用于1型的GSCN 2240,选项22-3示出了UE基于相对于同一CC中的2型GSCN 2230的预定义值对1型GSCN的推导。
此外,在与图22中示出的选项22-3有关的一些实施方案中,1型和/或2型GSCN可基于如前所述的偶数或奇数GSCN值在UE侧已知。附加地或另选地,图22示出了选项22-4,其中1型GSCN的步长是2型GSCN的K倍,并且在规范中被硬编码。
图23-通过重新利用PBCH有效负载的现有字段的DBTW存在指示
图23示出了根据一些实施方案的重新利用PBCH有效负载中的现有字段作为指示DBTW存在的方式的示例性方法。例如,MIB中的保留的位字段“R”可用于指示用于对应频带的DBTW的存在。更具体地,根据一些实施方案,当R字段被设置为“0”时,其可指示UE禁用DBTW,并且如果R字段被设置为“1”,则其可指示UE启用DBTW。
在一些实施方案中,同一SCS可用于SSB和相关联的CORESET0。因此,带有相同的限制,PBCH有效负载中的1位“subCarrierSpacingCommon”字段可被重新利用以指示DBTW的存在,使用“0”和“1”分别指示禁用/启用DBTW。
类似地,根据一些实施方案,通过限制SSB与相关联的CORESET0之间的相同SCS,“ssb-SubcarrierOffset”(即,kSSB)的1位最低有效位(LSB)可被重新利用以借助于“0”和“1”值来指示DBTW的存在。此外,SSB与总体资源块网格之间的频域偏移可通过使用“ssb-SubcarrierOffset”的三个最高有效位(MSB)被限制为偶数(即0,2,4,…,14),也如图24所示。
在一些实施方案中,“pdcch-ConfigSIB1”中的“controlResourceSetZero”的1位MSB可被重新利用以考虑到仅八个项目用于{SSB,PDCCH}={120,120}kHz配置的事实,指示DBTW的存在。附加地或另选地,“pdcch-ConfigSIB1”中的“searchSpaceZero”的三个MSB中的一个MSB可用于考虑到模式-3用于SSB和CORESET#0复用的条件,指示DBTW的存在。
附加地或另选地,根据一些实施方案,1位“dmrs-TypeA-Position”也可在假设固定值(即,pos2或pos3)的情况下被重新利用,该固定值可在用于该频率范围的规范中被硬编码。由于在该频率范围内不利用LTE因为它是重束形成的系统,因此pos2可能足以用于PDCCH发射。下面的样品代码块示出了上述关于重新利用PBCH有效负载中的现有字段的实施方案中的至少一些实施方案。
示例代码块:
MIB::=SEQUENCE{
SystemFrameNumber BIT STRING(SIZE(6)),
subCarrierSpacingCommon ENUMERATED{scs15or60,scs30or120},
ssb-SubcarrierOffset INTEGER(0..15),
dmrs-TypeA-Position ENUMERATED{pos2,pos3},
pdcch-ConfigSIB1 PDCCH-ConfigSIB1
cellBarred ENUMERATED{barred,notBarred},
intraFreqReselection ENUMERATED{allowed,notAllowed},
DBTW ENUMERATED{enabled}
}
PDCCH-ConfigSIB1::=SEQUENCE{
controlResourceSetZero ControlResourceSetZero,
searchSpaceZero SearchSpaceZero
}
图24—使用PBCH发射的第二DMRS符号发信号通知的DBTW存在
图24示出了根据一些实施方案的使用PBCH发射的第二DMRS符号以便指示DBTW的存在。例如,1位DBTW存在信息b(0)可通过利用加扰序列诸如[w0,w1,…,w23]以加扰PBCH的CRC位来携载,如图24的2410所示。在另一种方法中,根据一些实施方案,可调制第二PBCH符号的DMRS序列。例如,可基于小区ID
Figure BDA0003582089730000401
和SSB块索引(iSSB)并且使用等式
Figure BDA0003582089730000402
Figure BDA0003582089730000403
生成用于两个PBCH符号的DMRS序列。换句话说,用于两个不同的PBCH符号的DMRS序列可为相同的。
在一些实施方案中,可通过调制信息位从而产生单个调制符号d(0)来指示或发信号通知1位DBTW存在信息b(0),如图24中的2420所示。然后调制符号d(0)可用于生成用于PBCH发射的参考符号,如图24所示。
图25—由SIB4指示的ARFCN中的DBTW存在和相关联的Q值
图25示出了根据一些实施方案的如SIB4所指示的多个ARFCN中的DBTW的存在和相关联的Q值。换句话说,可在不同的较高层信号中提供关于DBTW的存在和Q的值(如果启用DBTW)的信息。例如,对于异频小区重选,可通过使用系统信息块4(SIB4)针对每个列出的载波明确地提供DBTW的存在和对应Q值。图25示出了根据一些实施方案的SIB4配置的一个示例,以提供明确的DBTW存在信息,诸如启用的DBTW和特定Q值。更具体地,图26的2520示出了在AFRCN#1、#2和#3上启用的DBTW分别具有2、4和8的Q值。
此外,对于SCell添加和/或修改,用于每个SCell的DBTW的存在可包括在sCellToAddModList中并且可单独地在用于SCell或SCG的sCellConfigCommon和sCellConfigDedicatedIE中的提供Q值(如果启用DBTW)。
在涉及IDLE、非活动和连接状态中的相邻小区的无线电资源管理(RRM)测量的一些实施方案中,DBTW存在和对应Q值可在SIB(例如,用于同频相邻小区的SIB2和用于同频小区重选的SIB3)和/或用于服务小区的专用RRC信令measObjectNR中广播。
此外,在一些实施方案中,可从用于列出的相邻小区的服务小区发信号通知公共Q值,该公共Q值可覆盖由SIB消息发信号通知的值。另外,可假设DBTW窗口在初始接入程序期间存在,除非在初始接入之后通过广播SIB信息或专用无线电资源控制(RRC)信令由基站(例如,gNB)禁用。此外,根据一些实施方案,关于DBTW是否被启用或禁用的这种信息可作为小区信息的一部分存储,并且然后在UE的小区选择程序中利用。
候选SSB索引和QCL关系
在一些实施方案中,参数“Q”可用于指示由ssbFrequency指示的频率上的candidatesSSB位置之间的准共址(QCL)关系,用于具有共享频谱信道接入的操作。例如,一组整数值可在针对Q信令诸如<32,64>的规范中被硬编码。附加地或另选地,根据一些实施方案,可引入分数值以支持DL SSB波束数目的更细粒度。
关于指示由ssbFrequency指示的频率上的candidatesSSB位置之间的准共址(QCL)关系,重新利用PBCH有效负载中的现有字段可提供用于指示与参数“Q”的所述关系的机制。此外,在一些实施方案中,如果候选Q值大于2,则DBTW信令的PBCH有效负载中的多于一个现有字段可被重新利用。例如,根据一些实施方案,1位“subCarrierSpacingCommon”字段和ssb-SubcarrierOffset的1位LSB可共同地用于指示2位Q值。
此外,可利用加扰序列诸如[w0,w1,…,w23]来加扰PBCH的CRC位,如图24的2410所示。此外,在2位的情况下,除了在图24的2410中限定的序列之外,还可限定两个附加的加扰序列。
附加地或另选地,根据一些实施方案,可基于Q值来调制第二PBCH符号的DMRS序列。此外,在先前提及的2位Q值的示例中,QPSK调制而不是BPSK调制可用于d(0),如图24的2420所示。
在一些实施方案中,DBTW的持续时间可小于或等于5ms。因此,DMTW内的候选SSB的最大数目可被限定为
Figure BDA0003582089730000421
其中
Figure BDA0003582089730000422
用于120kHz SSB SCS。
可利用多种方法来确定相对于平均增益和准共址“A型”和“D型”特性是准共址的候选SSB(在下文中称为QCLed候选SSB)。例如,根据一些实施方案,在DBTW内,用作不具有LBT的短控制信令的L1个SSB和具有LBT操作的L2个SSB发射的组合可假设在UE侧。
在一个实施方案中,L1=56,占比0.125*8/14*28=2ms,假设SSB周期为20ms,进一步占比100ms观察周期的10%。因此,对于配对的Q值和L2,可能需要满足关系
Figure BDA0003582089730000423
以支持L=L1+L2DL物理波束。对应地,Q的值可被发信号通知并且还可指示一对<L1,L2,Q>值诸如<L1=48,L2=16,Q=2>或<L1=56,L2=8,Q=3>以便支持高达L=64物理波束,如图26所示。
在一些实施方案中,一旦已获得由基站(例如,gNB)发信号通知的Q值,该对<L1,L2,Q>值可在规范中被硬编码,并且UE可导出<L1,L2>值。
例如,如图26的2610所示,L1=56SSB在5ms DRS窗口内具有固定位置,并且保持在对应于L2=8SSB的短控制信令规则下,其中Q=3,并且。另外,如图26的2620所示,L1=48SSB在5ms DRS窗口内具有固定位置,并且保持在对应于L2=16SSB的短控制信令规则下,其中Q=2。
在一些实施方案中,DB可包括限定在DBTW内并与占空比相关联的一组信号和/或信道。例如,DB可包括SSB、调度SIB1物理下行链路控制信道(PDCCH)的CORESET#0、SIB1PDSCH和/或非零功率信道状态信息资源集(NZP-CSI-RS)。然而,基站(例如,gNB)调度器可决定在不具有LBT操作的情况下选择信道/信号。换句话说,基站可应用对应于10%控制帧发射的限制的短控制信号豁免,而不执行在100ms的观察期内满足的LBT。
此外,半帧中的候选SS/PBCH块可在从0到
Figure BDA0003582089730000431
的时间上以升序被索引为“L”,并且UE可假设或已知服务小区中的SS/PBCH块在相同DBTW内或跨DBTW为准共址QCLed候选SSB。
例如,根据一些实施方案,作为第一选项,(L mod Q)的一个值可在SS/PBCH块之间相同,并且因此所述SS/PBCH块可为准共址QCLed候选SSB。附加地或另选地作为第二选项,如果
Figure BDA0003582089730000432
的一个值在SS/PBCH块之间相同,则所述SS/PBCH块可为准共址QCLed候选SSB。
此外,对于上述第一和第二选项,“Q”参数的物理含义可根本上不同。例如,在第一选项中,Q的值可等于物理波束的数目(例如,<56,64>),而在第二选项中,Q的值可限定给定DL波束的重复次数的数目。
图27—用于频率范围(FR)3的时间偏移的SSB发射
图27示出了根据一些实施方案的5ms DBTW窗口内的时间偏移的SSB发射的示例。例如,如图27所示,每个块可由两个SSB块组成,在5ms DBTW窗口内共有80个候选SSB,其中40个块索引从0到39。关于选项2710,可假设由网络(例如,基站或gNB)发信号通知Q=64。对应地,第一候选SSB索引0~15可具有带索引64~79的QCLed SSB候选。
附加地或另选地在选项2720中,可假设由网络或基站发信号通知Q=2。对应地,第一候选SSB索引0~39具有带索引40~79的QCLed SSB候选。
众所周知,使用个人可识别信息应遵循公认为满足或超过维护用户隐私的行业或政府要求的隐私政策和做法。具体地,应管理和处理个人可识别信息数据,以使无意或未经授权的访问或使用的风险最小化,并应当向用户明确说明授权使用的性质。
可以各种形式中的任一种形式来实现本公开的实施方案。例如,可将一些实施方案实现为计算机实现的方法、计算机可读存储器介质或计算机系统。可使用一个或多个定制设计的硬件设备诸如ASIC来实现其他实施方案。可使用一个或多个可编程硬件元件诸如FPGA来实现其他实施方案。
在一些实施方案中,非暂态计算机可读存储器介质可配置为使得其存储程序指令和/或数据,其中如果由计算机系统执行该程序指令,则使得计算机系统执行一种方法,例如本文所述的方法实施方案中的任一种方法实施方案,或本文所述的方法实施方案的任何组合,或本文所述的任何方法实施方案中的任一者的任何子集或此类子集的任何组合。
在一些实施方案中,设备(例如,UE 106)可被配置为包括处理器(或一组处理器)和存储器介质,其中存储器介质存储程序指令,其中该处理器被配置为从存储器介质中读取并执行该程序指令,其中该程序指令是可执行的以实施本文所述的各种方法实施方案中的任一种(或本文所述的方法实施方案的任何组合,或本文所述的方法实施方案中的任一种的任何子集、或此类子集的任何组合)。可以各种形式中的任一种来实现该设备。
通过将用户装备(UE)在下行链路中接收的每个消息/信号X解释为由基站发射的消息/信号X,并且将UE在上行链路中发射的每个消息/信号Y解释为由基站接收的消息/信号Y,本文所述的用于操作UE的方法中的任何方法可以成为用于操作基站的对应方法的基础。
虽然已相当详细地描述了上面的实施方案,但是一旦完全了解上面的公开,许多变型和修改对于本领域的技术人员而言将变得显而易见。本公开旨在使以下权利要求书被阐释为包含所有此类变型和修改。

Claims (44)

1.一种用户装备(UE),包括:
天线;
无线电部件,所述无线电部件能够操作地耦接到所述天线;和
处理元件,所述处理元件能够操作地耦接到所述无线电部件;
其中所述UE被配置为:
监测下行链路频率位置以检测来自蜂窝基站的同步块(SSB),其中在监测所述下行链路频率位置时,所述UE被配置为在计算SSB频率位置时使用至少一个步长;
响应于监测到所述下行链路频率位置,确定由所述蜂窝基站使用的用于一个或多个SSB发射的子载波间隔,其中至少部分地基于在计算所述SSB频率位置时使用的所述至少一个步长来确定所述一个或多个SSB发射的所述子载波间隔;
在与所述蜂窝基站通信时利用所述一个或多个SSB发射的所确定的子载波间隔。
2.根据权利要求1所述的UE,
其中在监测所述下行链路频率位置时,所述UE被配置为在计算所述SSB频率位置时使用多个步长。
3.根据权利要求1所述的UE,
其中在监测所述下行链路频率位置时,所述UE被配置为使用第一步长来计算用于第一组SSB子载波间隔的频率位置,并且使用第二步长来计算用于第二组SSB子载波间隔的频率位置。
4.根据权利要求1所述的UE,
其中在监测所述下行链路频率位置时,所述UE被配置为使用第一步长来计算用于根据蜂窝通信标准强制的第一组SSB子载波间隔的频率位置,并且使用第二步长来计算用于根据所述蜂窝通信标准可选的第二组SSB子载波间隔的频率位置。
5.根据权利要求4所述的UE,
其中在监测所述下行链路频率位置时,所述UE被配置为针对根据所述蜂窝通信标准可选的所述第二组SSB子载波间隔中的多个SSB子载波间隔中的每个SSB子载波间隔使用相应不同的第二步长。
6.根据权利要求4所述的UE,
其中所述第二组SSB子载波间隔包括480kHz和960kHz。
7.根据权利要求1所述的UE,
其中在监测所述下行链路频率位置时,所述UE被配置为在计算用于SSB的所有可能的子载波间隔的频率位置时使用单个步长,所述所有可能的子载波间隔包括根据蜂窝通信标准强制的SSB子载波间隔和根据所述蜂窝通信标准可选的SSB子载波间隔。
8.根据权利要求7所述的UE,
其中支持的全局同步信道号(GSCN)被分成多个组,并且其中SSB子载波间隔与GSCN组之间的关联在蜂窝通信标准中指定;
其中SSB子载波间隔与GSCN组之间的所述关联的指定提供降低的SSB检测复杂性。
9.根据权利要求8所述的UE,
其中多个GSCN被拆分成N个组,其中每组GSCN被保留用于频带内的支持的子载波间隔。
10.根据权利要求9所述的UE,
其中所述N个组中的每个组包括所述多个GSCN中的一个或多个GSCN,并且其中所述一个或多个GSCN包括一个或多个连续编号的GSCN索引。
11.根据权利要求9所述的UE,
其中所述N组中的每个组包括所述多个GSCN中的一个或多个GSCN,并且其中所述一个或多个GSCN包括一个或多个非连续编号的GSCN索引。
12.根据权利要求1所述的UE,
其中在监测所述下行链路频率位置时,所述UE被配置为基于以下项来计算频率位置:
用于所有可能的SSB子载波间隔的单个步长;
在确定用于不同SSB子载波间隔的同步信号参考时的具有所述单个步长的不同频移值和/或不同起始位置。
13.根据权利要求1所述的UE,
其中在监测所述下行链路频率位置时,所述UE被配置为基于包括所述单个步长以及所述频移值和频率起始位置中的至少一者的等式来计算所述SSB频率位置。
14.根据权利要求1所述的UE,
其中在监测所述下行链路频率位置时,所述UE被进一步配置为至少部分地基于从所述蜂窝基站接收到的用于每个列出的载波的系统信息块4(SIB4)来确定一个或多个可选SSB子载波间隔。
15.根据权利要求1所述的UE,
其中在监测所述下行链路频率位置时,所述UE被进一步配置为至少部分地基于与被配置为用于小区全局标识(CGI)报告的所述基站的小区对应的一个或多个偏移值来确定一个或多个可选SSB子载波间隔的SSB频率位置。
16.根据权利要求1所述的UE,
其中在监测所述下行链路频率位置时,所述UE被进一步配置为至少部分地基于针对目标小区的测量相关信息元素(IE)或接收到的针对辅小区(SCell)添加或修改消息的IE来确定一个或多个可选SSB子载波间隔的SSB频率位置。
17.一种蜂窝基站,包括:
天线;
无线电部件,所述无线电部件能够操作地耦接到所述天线;和
处理元件,所述处理元件能够操作地耦接到所述无线电部件;
其中所述蜂窝基站被配置为:
根据周期性模式发射作为物理广播信道(PBCH)有效负载的一部分的同步信令,其中在所述周期性模式的至少一个周期子集中,发射各自包括多个SS块(SSB)的一个或多个SS突发,其中每个SS突发包括在两个连续SSB之间被保留用于波束切换的至少一个符号。
18.根据权利要求17所述的蜂窝基站,
其中对于所述多个SSB中一个或多个SSB内的半帧,第一周期性模式的第一符号包括根据等式{2,9}+14*n,n=0,1,2,…,31的用于候选SSB的索引,并且第二周期性模式的第一符号包括根据所述等式2+14*n,n=0,1,2,…,63的用于候选SSB的索引。
19.根据权利要求17所述的蜂窝基站,
其中每个SS突发包括在单个时隙中被保留用于SSB波束切换的两个符号,使得不同发射波束能够用于两个连续SSB。
20.根据权利要求17所述的蜂窝基站,
其中所述周期性模式为系统信息块1(SIB1)提供附加资源,使得能够在单个时隙中使用相同的模拟波束发射所述SS块、相关联的CORESET 0和SIB1消息而无需进行波束切换。
21.根据权利要求17所述的蜂窝基站,
其中所述蜂窝基站被配置为使用多个SSB模式中的一个或多个SSB模式,其中所述模式中的每个模式在蜂窝通信规范中被限定并且具有与SSB的不同子载波间隔的一对一映射。
22.根据权利要求17所述的蜂窝基站,
其中所述蜂窝基站被配置为使用多个SSB模式中的一个或多个SSB模式,其中所述蜂窝基站被配置为向UE提供信令以指示所述多个SSB模式中的一个SSB模式。
23.根据权利要求22所述的蜂窝基站,
其中所述信令包括主信息块(MIB)有效负载中的保留的1位字段“R”,以指示相应SSB模式。
24.根据权利要求22所述的蜂窝基站,
其中所述信令包括重新利用subCarrierSpacingCommon字段来指示相应SSB模式。
25.根据权利要求22所述的蜂窝基站,
其中所述信令包括重新利用物理广播信道(PBCH)有效负载中的字段来指示相应SSB模式。
26.根据权利要求22所述的蜂窝基站,
其中所述信令包括通过选择用于扰码循环冗余校验(CRC)位的扰码序列来指定的SSB模式索引。
27.根据权利要求22所述的蜂窝基站,
其中所述信令包括调制第二物理广播信道(PBCH)符号的解调参考信号(DMRS)序列。
28.根据权利要求17所述的蜂窝基站,
其中所述蜂窝基站被配置为发射多个连续SSB突发发射窗口,其中每个SSB突发发射窗口包括K1个连续SSB时隙,然后是被保留用于其他上行链路和/或下行链路发射的K2个连续时隙。
29.根据权利要求28所述的蜂窝基站,
其中,在偶数的SSB发射窗口中,所述SSB发射窗口的最后SSB时隙仅在所述最后时隙的第一半部中包括一个SSB发射。
30.根据权利要求28所述的蜂窝基站,
其中,在奇数的SSB发射窗口中,所述SSB发射窗口的第一SSB时隙仅包括一个SSB发射,其中所述同一SSB发射窗口中的其他SSB时隙具有两个SSB发射。
31.根据权利要求28所述的蜂窝基站,
其中K1和K2的值取决于SSB子载波间隔,以确保在不同新子载波间隔之间间隙模式在时间上是对准的。
32.一种用户装备(UE),包括:
天线;
无线电部件,所述无线电部件能够操作地耦接到所述天线;和
处理元件,所述处理元件能够操作地耦接到所述无线电部件;
其中所述UE被配置为:
监测下行链路频率位置以检测作为来自蜂窝基站的物理广播信道(PBCH)有效负载发射的一部分的一个或多个同步信号块(SSB),其中所述一个或多个SSB包括能够由所述UE在确定发现突发发射窗口(DBTW)的存在或不存在时使用的信息。
33.根据权利要求32所述的UE,
其中所述信息包括对应于一个或多个全球同步信道号(GSCN)的一个或多个值。
34.根据权利要求33所述的UE,
其中所述UE被进一步配置为使用所述一个或多个值确定偏移值和/或步长。
35.根据权利要求33所述的UE,
其中所述一个或多个值在蜂窝通信规范中被预定义或被硬编码。
36.根据权利要求32所述的UE,
其中所述PBCH有效负载包括指示DBTW的所述存在或所述不存在的一个或多个位字段。
37.根据权利要求36所述的UE,
其中所述一个或多个位字段包括以下中的至少一者:主信息块(MIB)中的保留的位字段R、1位subCarrierSpacingCommon字段、ssbSubcarrierOffset字段的最低有效位(LSB)、searchSpaceZero字段的三个最高有效位(MSB)中的一个最高有效位和1位dmrs-TypeA-Position字段。
38.根据权利要求32所述的UE,
其中所述PBCH有效负载包括能够由所述UE在确定所述DBTW的所述存在或所述不存在时使用的一个或多个解调参考信号(DMRS)符号。
39.根据权利要求32所述的UE,
其中利用一个或多个系统信息块4(SIB4)元素来针对每个列出的载波明确地指示DBTW的所述存在或所述不存在。
40.根据权利要求32所述的UE,
其中所述PBCH有效负载包括指示参数Q的一个或多个值的一个或多个位字段,并且其中所述参数Q进一步指示候选SSB频率位置之间的准共址(QCL)关系。
41.根据权利要求40所述的UE,
其中所述参数Q的所述一个或多个值能够由所述UE在确定对应于先听后说(LBT)和非LBT操作的候选SSB发射的一个或多个最大数目时使用。
42.根据权利要求40所述的UE,
其中所述参数Q的所述一个或多个值对应于物理波束的数目或下行链路波束的重复次数的数目。
43.根据权利要求32所述的UE,
其中所述一个或多个SSB包括利用DBTW限定以及与占空比相关联的一组信号和信道中的至少一者。
44.根据权利要求41所述的UE,
其中在DBTW持续时间内,利用非LBT操作发射一个或多个第一L1个候选SSB,然后是利用LBT操作发射一个或多个L2个候选SSB,并且
其中至少基于DBTW窗口内的候选SSB的总数目和与所述DBTW窗口相关联的Q值来确定L1和L2的值。
CN202180005772.2A 2021-04-06 2021-04-06 无线通信中的同步信号和物理广播信道块发射 Pending CN115443699A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/085541 WO2022213240A1 (en) 2021-04-06 2021-04-06 Synchronization signal and physical broadcast channel block transmission in wireless communication

Publications (1)

Publication Number Publication Date
CN115443699A true CN115443699A (zh) 2022-12-06

Family

ID=83545076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180005772.2A Pending CN115443699A (zh) 2021-04-06 2021-04-06 无线通信中的同步信号和物理广播信道块发射

Country Status (7)

Country Link
US (1) US20230276385A1 (zh)
EP (1) EP4091375A4 (zh)
JP (1) JP7373064B2 (zh)
KR (1) KR20220139852A (zh)
CN (1) CN115443699A (zh)
BR (1) BR112022006553A2 (zh)
WO (1) WO2022213240A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220361125A1 (en) * 2021-05-04 2022-11-10 Qualcomm Incorporated Synchronization signal block burst with multiple subsets

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190306832A1 (en) * 2018-03-28 2019-10-03 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for ss/pbch block
CN111183683A (zh) * 2017-07-25 2020-05-19 三星电子株式会社 用于未许可的新无线电频谱的同步信号块时间位置和同步信号突发集构成的装置和方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2731360C1 (ru) * 2017-06-15 2020-09-02 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ передачи и приема блока сигнала синхронизации и устройство для него
JP2020500453A (ja) * 2017-09-11 2020-01-09 エルジー エレクトロニクス インコーポレイティド シンクラスタによってssbを受信する方法及びユーザ装置
CN111357230B (zh) * 2017-09-11 2023-06-02 瑞典爱立信有限公司 统一的ul和dl波束指示
US20200287678A1 (en) * 2017-09-29 2020-09-10 Convida Wireless, Llc Time and frequency tracking reference signals in new radio
US10925041B2 (en) * 2017-10-09 2021-02-16 Qualcomm Incorporated Common indexing for uplink physical resource blocks
CN109803442B (zh) * 2017-11-17 2023-02-10 华为技术有限公司 一种同步信号的发送方法、网络设备及终端设备
JP7184893B2 (ja) * 2017-11-27 2022-12-06 ノキア テクノロジーズ オサケユイチア 無線ネットワーク用の結合ビーム報告
US11070333B2 (en) * 2017-12-21 2021-07-20 Samsung Electronics Co., Ltd. Method and apparatus for SS/PBCH block frequency location indication
EP4344334A3 (en) * 2018-02-13 2024-06-05 Samsung Electronics Co., Ltd. Method and device for communicating synchronization signal
US10826758B2 (en) * 2018-02-14 2020-11-03 Asustek Computer Inc. Method and apparatus for control resource monitoring considering beam failure recovery in a wireless communication system
CN116709525A (zh) * 2018-05-11 2023-09-05 Oppo广东移动通信有限公司 一种信息的指示方法及装置、计算机存储介质
US20190393980A1 (en) * 2018-06-22 2019-12-26 Mediatek Inc. Method for NR Radio Link Monitoring (RLM) and Evaluation Period Determination
US11051234B2 (en) * 2018-11-14 2021-06-29 Qualcomm Incorporated Control search space overlap indication
KR20210104130A (ko) * 2018-12-19 2021-08-24 지티이 코포레이션 동기화 신호 송신
US11445460B2 (en) * 2018-12-20 2022-09-13 Qualcomm Incorporated Flexible configuration of synchronization signal block time locations
TWI844612B (zh) * 2019-01-09 2024-06-11 美商內數位專利控股公司 實施具有增強可靠性的傳輸及接收方案的方法及無線傳輸/接收單元
CN111586746B (zh) * 2019-02-15 2022-01-14 华为技术有限公司 配置信息的方法和装置
US11903069B2 (en) * 2019-08-16 2024-02-13 Intel Corporation Beam failure recovery in secondary cells
US11316645B2 (en) * 2019-08-29 2022-04-26 Samsung Electronics Co., Ltd. Method and apparatus for RMSI reception from a neighboring cell
US11736218B2 (en) * 2019-10-07 2023-08-22 Intel Corporation Obtaining neighbor cell control channel resources in unlicensed bands
US10879990B1 (en) * 2019-11-27 2020-12-29 Qualcomm Incorporated Dynamic beam switching
US11622340B2 (en) * 2019-12-20 2023-04-04 Samsung Electronics Co., Ltd. Method and apparatus for SS/PBCH block patterns in higher frequency ranges
CN112566234A (zh) * 2020-11-24 2021-03-26 中兴通讯股份有限公司 同步广播信号配置方法、装置、节点和存储介质
US20240049195A1 (en) * 2021-01-05 2024-02-08 Ntt Docomo, Inc. Terminal, base station and communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111183683A (zh) * 2017-07-25 2020-05-19 三星电子株式会社 用于未许可的新无线电频谱的同步信号块时间位置和同步信号突发集构成的装置和方法
US20190306832A1 (en) * 2018-03-28 2019-10-03 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for ss/pbch block
CN111919411A (zh) * 2018-03-28 2020-11-10 三星电子株式会社 支持ss/pbch块的大子载波间隔的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"R1-2100429 DISCUSSIONS ON INITIAL ACCESS ASPECTS FOR NR OPERATION FROM 52.6GHZ TO 71GHZ", 3GPP TSG_RAN\\WG1_RL1, 18 January 2021 (2021-01-18), pages 2 - 2 *
"R1-2101453_8.2.1_INITIAL ACCESS ASPECTS FOR NR FROM 52.6GHZ TO 71 GHZ": "53", 3GPP TSG_RAN\\WG1_RL1, 19 January 2021 (2021-01-19), pages 2 *

Also Published As

Publication number Publication date
BR112022006553A2 (pt) 2022-11-01
EP4091375A1 (en) 2022-11-23
JP2023523483A (ja) 2023-06-06
EP4091375A4 (en) 2023-05-03
WO2022213240A1 (en) 2022-10-13
KR20220139852A (ko) 2022-10-17
US20230276385A1 (en) 2023-08-31
JP7373064B2 (ja) 2023-11-01

Similar Documents

Publication Publication Date Title
KR102476242B1 (ko) 2-단계 랜덤 액세스
US12132553B2 (en) UE uplink panel selection framework
EP3697167A1 (en) 2-step random access
CN116711430A (zh) 无线通信中的参考信号传输的动态适应
US12127176B2 (en) Uplink transmission support for reduced capability devices in wireless communications
KR102501134B1 (ko) 무선 통신들에서의 유연한 다운링크 제어 신호 모니터링
US20230276361A1 (en) New Radio Low Power Wakeup Radio
US11917464B2 (en) 5G NR efficient FR1/FR2 operation
US20240322985A1 (en) Scheduling for Multiple PDSCH/PUSCH Operations
CN111586805B (zh) 用于未许可频谱中蜂窝突发检测的方法、装置和存储介质
JP7373064B2 (ja) 無線通信における同期信号及び物理ブロードキャストチャネルブロック送信
US12120737B2 (en) Channel access scheme enhancements
WO2023070436A1 (en) Physical random access channel enhancements in new radio
WO2022056651A1 (en) Symbol level beam sweeping configuration
CN115486173A (zh) 新无线电未许可频谱中的改进的辅小区激活机制
KR20220088913A (ko) 그룹 페이징에 대한 pdcch 향상
US20230276499A1 (en) DL Control Resources Sets and RACH Procedure during Initial Access
WO2024207193A1 (en) System and method for determining switching period location for uplink transmit switching
US12149966B2 (en) Symbol level beam sweeping capability reporting
WO2024148532A1 (en) Methods and apparatus for physical layer (l1) measurements on neighboring cells without gap
WO2022056657A1 (en) Symbol level beam sweeping capability reporting
CN118945861A (zh) 侧链路物理信道增强
CN116897558A (zh) 用于无线通信中初始接入消息上的设备类型和信道状态信息反馈的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination