CN115443695A - 用于单播和/或组播的nr v2x侧链路功率节省 - Google Patents

用于单播和/或组播的nr v2x侧链路功率节省 Download PDF

Info

Publication number
CN115443695A
CN115443695A CN202180031036.4A CN202180031036A CN115443695A CN 115443695 A CN115443695 A CN 115443695A CN 202180031036 A CN202180031036 A CN 202180031036A CN 115443695 A CN115443695 A CN 115443695A
Authority
CN
China
Prior art keywords
wtru
configuration
drx
wtrus
peer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180031036.4A
Other languages
English (en)
Inventor
马蒂诺·M·弗雷达
贾耶·拉奥
黄祥杜
邓涛
李文一
吉斯伦·佩尔蒂埃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDAC Holdings Inc
Original Assignee
IDAC Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDAC Holdings Inc filed Critical IDAC Holdings Inc
Priority to CN202310505341.3A priority Critical patent/CN116528340A/zh
Publication of CN115443695A publication Critical patent/CN115443695A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文描述了可与用于单播和组播的新无线电(NR)车辆通信(V2X)侧链路功率节省相关联的系统、方法和工具。第一无线发射/接收单元(WTRU)可接收消息。该消息可指示一组配置组和/或一个或多个适用性选择参数。该WTRU可从第二WTRU接收第一指示。该第一指示可指示该第二WTRU与第一配置组和第一优先级组相关联。该第一WTRU可从第三WTRU接收第二指示。该第二指示可指示该第三WTRU与第二配置组和第二优先级值相关联。该第一WTRU可基于该第一指示和该第二指示从该组配置组中选择配置组。

Description

用于单播和/或组播的NR V2X侧链路功率节省
相关申请的交叉引用
本申请要求2020年4月8日提交的临时美国专利申请号63/006,944和 2020年12月15日提交的临时美国专利申请号63/125,694的权益,这些专利的公开内容全文以引用方式并入本文。
背景技术
使用无线通信的移动通信继续演进。第五代可称为5G。前代(传统) 移动通信可以是例如第四代(4G)长期演进(LTE)。
发明内容
本文描述了可与用于单播和组播的新无线电(NR)车辆通信(V2X) 侧链路功率节省相关联的系统、方法和工具。无线发射/接收单元 (WTRU)(例如,第一WTRU)可接收消息。该消息可指示一组配置组和/或一个或多个适用性选择参数。该第一WTRU可从第二WTRU接收第一指示。该第一指示可指示该第二WTRU与第一配置组相关联(例如,与第一数量的资源相关联)并与第一优先级组相关联。该第一配置组可属于该组配置组。该第一WTRU可从第三WTRU接收第二指示。该第二指示可指示该第三WTRU与第二配置组相关联(例如,与第二数量的资源相关联) 并与第二优先级值相关联。该第二配置组可属于该组配置组。该第一 WTRU可例如基于该第一指示和该第二指示从该组配置组中选择配置组,其中该配置组的该选择满足该一个或多个适用性选择参数。该第一WTRU 可向该第二WTRU和/或该第三WTRU发送所选择的配置组的指示(例如,第三指示)。该适用性选择参数可包括一个或多个资源阈值。满足该适用性选择参数可包括以下项中的一者或多者:将资源使用保持在资源阈值或低于资源阈值,或者在将该资源使用保持在该资源阈值或低于该资源阈值的同时使该资源使用最大化。例如,如果多于一个指示配置组满足该适用性选择参数,则该第一WTRU可基于最高优先级值来选择配置组。该适用性选择参数可包括以下项中的一者或多者:WTRU类别、WTRU电池功率、WTRU有源载波数或WTRU会话服务质量(QoS)。
附图说明
图1A是示出在其中一个或多个所公开的实施方案可得以实施的示例性通信系统的系统图。
图1B是根据实施方案的示出可在图1A所示的通信系统内使用的示例性无线发射/接收单元(WTRU)的系统图。
图1C是根据实施方案的示出可在图1A所示的通信系统内使用的示例性无线电接入网络(RAN)和示例性核心网络(CN)的系统图。
图1D是根据实施方案的示出可在图1A所示的通信系统内使用的另外一个示例性RAN和另外一个示例性CN的系统图。
图2是示出在PC5上建立安全第2层链路的示例的图。
图3是示出与配置组选择相关联的示例的图。
具体实施方式
图1A是示出在其中一个或多个所公开的实施方案可得以实现的示例性通信系统100的示意图。通信系统100可为向多个无线用户提供诸如语音、数据、视频、消息、广播等内容的多址接入系统。通信系统100可使多个无线用户能够通过系统资源(包括无线带宽)的共享来访问此类内容。例如,通信系统100可采用一个或多个信道接入方法,诸如码分多址接入 (CDMA)、时分多址接入(TDMA)、频分多址接入(FDMA)、正交 FDMA(OFDMA)、单载波FDMA(SC-FDMA)、零尾唯一字DFT扩展 OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、资源块滤波OFDM、滤波器组多载波(FBMC)等。
如图1A所示,通信系统100可包括无线发射/接收单元(WTRU) 102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交换电话网 (PSTN)108、互联网110和其他网络112,但应当理解,所公开的实施方案设想了任何数量的WTRU、基站、网络和/或网络元件。WTRU102a、 102b、102c、102d中的每一者可以是被配置为在无线环境中操作和/或通信的任何类型的设备。作为示例,WTRU 102a、102b、102c、102d(其中任何一个均可被称为“站”和/或“STA”)可被配置为传输和/或接收无线信号,并且可包括用户装备(UE)、移动站、固定或移动用户单元、基于订阅的单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型电脑、上网本、个人计算机、无线传感器、热点或Mi-Fi设备、物联网 (IoT)设备、手表或其他可穿戴设备、头戴式显示器(HMD)、车辆、无人机、医疗设备和应用(例如,远程手术)、工业设备和应用(例如,在工业和/或自动处理链环境中操作的机器人和/或其他无线设备)、消费电子设备、在商业和/或工业无线网络上操作的设备等。WTRU 102a、102b、 102c和102d中的任一者可互换地称为UE。
通信系统100还可包括基站114a和/或基站114b。基站114a、114b中的每一者可为任何类型的设备,其被配置为与WTRU 102a、102b、102c、 102d中的至少一者无线对接以促进对一个或多个通信网络(诸如CN 106/115、互联网110和/或其他网络112)的访问。作为示例,基站114a、 114b可为基站收发台(BTS)、节点B、演进节点B(eNB)、家庭节点 B、家庭演进节点B、下一代节点B(gNB)、NR节点B、站点控制器、接入点(AP)、无线路由器等。虽然基站114a、114b各自被描绘为单个元件,但应当理解,基站114a、114b可包括任何数量的互连基站和/或网络元件。
基站114a可以是RAN 104/113的一部分,该RAN还可包括其他基站和/或网络元件(未示出),诸如基站控制器(BSC)、无线电网络控制器 (RNC)、中继节点等。基站114a和/或基站114b可被配置为在一个或多个载波频率(其可被称为小区(未示出))上传输和/或接收无线信号。这些频率可在许可频谱、未许可频谱或许可和未许可频谱的组合中。小区可向特定地理区域提供无线服务的覆盖,该特定地理区域可为相对固定的或可随时间改变。小区可进一步被划分为小区扇区。例如,与基站114a相关联的小区可被划分为三个扇区。因此,在实施方案中,基站114a可包括三个收发器,即,小区的每个扇区一个收发器。在实施方案中,基站114a可采用多输入多输出(MIMO)技术并且可针对小区的每个扇区利用多个收发器。例如,可使用波束成形在所需的空间方向上发射和/或接收信号。
基站114a、114b可通过空中接口116与WTRU 102a、102b、102c、 102d中的一者或多者通信,该空中接口可为任何合适的无线通信链路(例如,射频(RF)、微波、厘米波、微米波、红外(IR)、紫外(UV)、可见光等)。可使用任何合适的无线电接入技术(RAT)来建立空中接口116。
更具体地讲,如上所指出,通信系统100可为多址接入系统,并且可采用一个或多个信道接入方案,诸如CDMA、TDMA、FDMA、OFDMA、 SC-FDMA等。例如,RAN 104/113中的基站114a和WTRU 102a、102b、 102c可实现诸如通用移动电信系统(UMTS)陆地无线电接入(UTRA)之类的无线电技术,其可使用宽带CDMA(WCDMA)来建立空中接口 115/116/117。WCDMA可包括诸如高速分组接入(HSPA)和/或演进的HSPA (HSPA+)之类的通信协议。HSPA可包括高速下行链路(DL)分组接入 (HSDPA)和/或高速UL分组接入(HSUPA)。
在实施方案中,基站114a和WTRU 102a、102b、102c可实现诸如演进的UMTS陆地无线电接入(E-UTRA)的无线电技术,其可使用长期演进 (LTE)和/高级LTE(LTE-A)和/或高级LTEPro(LTE-A Pro)来建立空中接口116。
在一个实施方案中,基站114a和WTRU 102a、102b、102c可实现诸如 NR无线电接入之类的无线电技术,其可使用新无线电(NR)来建立空中接口116。
在实施方案中,基站114a和WTRU 102a、102b、102c可实现多种无线电接入技术。例如,基站114a和WTRU 102a、102b、102c可例如使用双连接(DC)原理一起实现LTE无线电接入和NR无线电接入。因此,WTRU 102a、102b、102c所利用的空中接口可由多种类型的无线电接入技术和/或向/从多种类型的基站(例如,eNB和gNB)发送的发射来表征。
在其他实施方案中,基站114a和WTRU 102a、102b、102c可实现诸如 IEEE 802.11(即,无线保真(WiFi))、IEEE 802.16(即,全球微波接入互操作性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暂行标准2000(IS-2000)、暂行标准95(IS-95)、暂行标准856(IS-856)、全球移动通信系统(GSM)、GSM增强数据率演进(EDGE)、GSM EDGE (GERAN)等无线电技术。
图1A中的基站114b可为例如无线路由器、家庭节点B、家庭演进节点B或接入点,并且可利用任何合适的RAT来促进诸如商业场所、家庭、车辆、校园、工业设施、空中走廊(例如,供无人机使用)、道路等局部区域中的无线连接。在实施方案中,基站114b和WTRU 102c、102d可实现诸如IEEE 802.11之类的无线电技术以建立无线局域网(WLAN)。在实施方案中,基站114b和WTRU 102c、102d可实现诸如IEEE 802.15之类的无线电技术以建立无线个域网(WPAN)。在又一个实施方案中,基站114b和 WTRU 102c、102d可利用基于蜂窝的RAT(例如,WCDMA、 CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等)来建立微微小区或毫微微小区。如图1A所示,基站114b可具有与互联网110的直接连接。因此,基站114b可不需要经由CN 106/115访问互联网110。
RAN 104/113可与CN 106/115通信,该CN可以是被配置为向WTRU 102a、102b、102c、102d中的一者或多者提供语音、数据、应用和/或互联网协议语音技术(VoIP)服务的任何类型的网络。数据可具有不同的服务质量(QoS)要求,诸如不同的吞吐量要求、延迟要求、误差容限要求、可靠性要求、数据吞吐量要求、移动性要求等。CN 106/115可提供呼叫控制、账单服务、基于移动位置的服务、预付费呼叫、互联网连接、视频分发等,和/或执行高级安全功能,诸如用户认证。尽管未在图1A中示出,但是应当理解,RAN 104/113和/或CN 106/115可与采用与RAN 104/113相同的RAT或不同RAT的其他RAN进行直接或间接通信。例如,除了连接到可利用NR无线电技术的RAN 104/113之外,CN 106/115还可与采用GSM、 UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi无线电技术的另一RAN (未示出)通信。
CN 106/115也可充当WTRU 102a、102b、102c、102d的网关,以访问 PSTN 108、互联网110和/或其他网络112。PSTN 108可包括提供普通老式电话服务(POTS)的电路交换电话网络。互联网110可包括使用常见通信协议(诸如传输控制协议(TCP)、用户数据报协议(UDP)和/或TCP/IP 互联网协议组中的互联网协议(IP))的互连计算机网络和设备的全球系统。网络112可包括由其他服务提供商拥有和/或操作的有线和/或无线通信网络。例如,网络112可包括连接到一个或多个RAN的另一个CN,其可采用与RAN 104/113相同的RAT或不同的RAT。
通信系统100中的一些或所有WTRU 102a、102b、102c、102d可包括多模式能力(例如,WTRU 102a、102b、102c、102d可包括用于通过不同无线链路与不同无线网络通信的多个收发器)。例如,图1A所示的WTRU 102c可被配置为与可采用基于蜂窝的无线电技术的基站114a通信,并且与可采用IEEE 802无线电技术的基站114b通信。
图1B是示出示例性WTRU 102的系统图。如图1B所示,WTRU 102 可包括处理器118、收发器120、发射/接收元件122、扬声器/麦克风124、小键盘126、显示器/触摸板128、不可移动存储器130、可移动存储器132、电源134、全球定位系统(GPS)芯片组136和/或其他外围设备138等。应当理解,在与实施方案保持一致的同时,WTRU 102可包括前述元件的任何子组合。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心相关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列 (FPGA)电路、任何其他类型的集成电路(IC)、状态机等。处理器118 可执行信号编码、数据处理、功率控制、输入/输出处理和/或任何其他功能,这些其他功能使WTRU 102能够在无线环境中工作。处理器118可耦合到收发器120,该收发器可耦合到发射/接收元件122。虽然图1B将处理器118和收发器120描绘为单独的部件,但是应当理解,处理器118和收发器120可在电子封装或芯片中集成在一起。
发射/接收元件122可被配置为通过空中接口116向基站(例如,基站114a)发射信号或从基站接收信号。例如,在一个实施方案中,发射/接收元件122可以是被配置为发射和/或接收RF信号的天线。在一个实施方案中,发射/接收元件122可以是被配置为发射和/或接收例如IR、UV或可见光信号的发射器/检测器。在又一个实施方案中,发射/接收元件122可被配置为发射和/或接收RF和光信号。应当理解,发射/接收元件122可被配置为发射和/或接收无线信号的任何组合。
尽管发射/接收元件122在图1B中被描绘为单个元件,但是WTRU 102 可包括任何数量的发射/接收元件122。更具体地讲,WTRU 102可采用 MIMO技术。因此,在一个实施方案中,WTRU 102可包括用于通过空中接口116发射和接收无线信号的两个或更多个发射/接收元件122(例如,多个天线)。
收发器120可被配置为调制将由发射/接收元件122发射的信号并且解调由发射/接收元件122接收的信号。如上所指出,WTRU 102可具有多模式能力。例如,因此,收发器120可包括多个收发器,以便使WTRU 102能够经由多种RAT(诸如NR和IEEE 802.11)进行通信。
WTRU 102的处理器118可耦合到扬声器/麦克风124、小键盘126和/ 或显示器/触摸板128(例如,液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元)并且可从其接收用户输入数据。处理器118还可将用户数据输出到扬声器/麦克风124、小键盘126和/或显示器/触摸板128。此外,处理器118可从任何类型的合适存储器(诸如不可移动存储器130和 /或可移动存储器132)访问信息,并且将数据存储在任何类型的合适存储器中。不可移动存储器130可包括随机存取存储器(RAM)、只读存储器 (ROM)、硬盘或任何其他类型的存储器存储设备。可移动存储器132可包括用户身份模块(SIM)卡、记忆棒、安全数字(SD)存储卡等。在其他实施方案中,处理器118可从未物理上定位在WTRU 102上(诸如,服务器或家用计算机(未示出)上)的存储器访问信息,并且将数据存储在该存储器中。
处理器118可从电源134接收电力,并且可被配置为向WTRU 102中的其他部件分配和/或控制电力。电源134可以是用于为WTRU 102供电的任何合适的设备。例如,电源134可包括一个或多个干电池组(例如,镍镉 (NiCd)、镍锌(NiZn)、镍金属氢化物(NiMH)、锂离子(Li-ion) 等)、太阳能电池、燃料电池等。
处理器118还可耦合到GPS芯片组136,该GPS芯片组可被配置为提供关于WTRU 102的当前位置的位置信息(例如,经度和纬度)。除了来自GPS芯片组136的信息之外或代替该信息,WTRU 102可通过空中接口 116从基站(例如,基站114a、114b)接收位置信息和/或基于从两个或更多个附近基站接收到信号的定时来确定其位置。应当理解,在与实施方案保持一致的同时,该WTRU 102可通过任何合适的位置确定方法来获取位置信息。
处理器118还可耦合到其他外围设备138,该其他外围设备可包括提供附加特征、功能和/或有线或无线连接的一个或多个软件模块和/或硬件模块。例如,外围设备138可包括加速度计、电子指南针、卫星收发器、数字相机(用于照片和/或视频)、通用串行总线(USB)端口、振动设备、电视收发器、免提耳麦、
Figure BDA0003909327980000081
模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏播放器模块、互联网浏览器、虚拟现实和/或增强现实(VR/AR)设备、活动跟踪器等。外围设备138可包括一个或多个传感器,该传感器可为以下一者或多者:陀螺仪、加速度计、霍尔效应传感器、磁力计、方位传感器、接近传感器、温度传感器、时间传感器;地理位置传感器;测高计、光传感器、触摸传感器、磁力计、气压计、手势传感器、生物识别传感器和/或湿度传感器。
WTRU 102可包括全双工无线电台,对于该全双工无线电台,一些或所有信号的传输和接收(例如,与用于UL(例如,用于传输)和下行链路 (例如,用于接收)的特定子帧相关联)可为并发的和/或同时的。全双工无线电台可包括干扰管理单元,该干扰管理单元用于经由硬件(例如,扼流圈)或经由处理器(例如,单独的处理器(未示出)或经由处理器118)进行的信号处理来减少和/或基本上消除自干扰。在一个实施方案中, WRTU 102可包括半双工无线电台,对于该半双工无线电台,一些或所有信号的传输和接收(例如,与用于UL(例如,用于传输)或下行链路(例如,用于接收)的特定子帧相关联)。
图1C是示出根据一个实施方案的RAN 104和CN 106的系统图。如上所述,RAN 104可采用E-UTRA无线电技术通过空中接口116与WTRU 102a、102b、102c通信。RAN 104还可与CN 106通信。
RAN 104可包括演进节点B 160a、160b、160c,但是应当理解,RAN 104可包括任何数量的演进节点B,同时保持与实施方案一致。演进节点B 160a、160b、160c各自可包括一个或多个收发器以便通过空中接口116与 WTRU 102a、102b、102c通信。在实施方案中,演进节点B 160a、160b、 160c可实现MIMO技术。因此,演进节点B 160a例如可使用多个天线来向WTRU 102a发射无线信号和/或从WTRU 102a接收无线信号。
演进节点B 160a、160b、160c中的每一者可与特定小区(未示出)相关联,并且可被配置为处理无线电资源管理决策、切换决策、UL和/或DL 中的用户的调度等。如图1C所示,演进节点B 160a、160b、160c可通过 X2接口彼此通信。
图1C所示的CN 106可包括移动性管理实体(MME)162、服务网关 (SGW)164和分组数据网络(PDN)网关(或PGW)166。虽然前述元件中的每一者被描绘为CN 106的一部分,但应当理解,这些元件中的任何元件可由除CN运营商之外的实体拥有和/或操作。
MME 162可经由S1接口连接到RAN 104中的演进节点B 162a、162b、 162c中的每一者,并且可用作控制节点。例如,MME 162可负责认证 WTRU 102a、102b、102c的用户、承载激活/去激活、在WTRU 102a、 102b、102c的初始附加期间选择特定服务网关等。MME 162可提供用于在 RAN 104和采用其他无线电技术(诸如GSM和/或WCDMA)的其他RAN (未示出)之间进行切换的控制平面功能。
SGW 164可经由S1接口连接到RAN 104中的演进节点B 160a、160b、 160c中的每一者。SGW 164通常可向/从WTRU 102a、102b、102c路由和转发用户数据分组。SGW 164可执行其他功能,诸如在演进节点B间切换期间锚定用户平面、当DL数据可用于WTRU 102a、102b、102c时触发寻呼、管理和存储WTRU 102a、102b、102c的上下文等。
SGW 164可连接到PGW 166,该PGW可向WTRU 102a、102b、102c 提供对分组交换网络(诸如互联网110)的访问,以促进WTRU 102a、 102b、102c和启用IP的设备之间的通信。
CN 106可有利于与其他网络的通信。例如,CN 106可为WTRU 102a、 102b、102c提供对电路交换网络(诸如,PSTN 108)的访问,以有利于WTRU 102a、102b、102c与传统陆线通信设备之间的通信。例如,CN 106 可包括用作CN 106与PSTN 108之间的接口的IP网关(例如,IP多媒体子系统(IMS)服务器)或者可与该IP网关通信。另外,CN 106可向WTRU 102a、102b、102c提供对其他网络112的访问,该其他网络可包括由其他服务提供商拥有和/或运营的其他有线和/或无线网络。
尽管WTRU在图1A至图1D中被描述为无线终端,但是可以设想到,在某些代表性实施方案中,这种终端可(例如,临时或永久)使用与通信网络的有线通信接口。
在代表性实施方案中,其他网络112可为WLAN。
处于基础结构基本服务集(BSS)模式的WLAN可具有用于BSS的接入点(AP)以及与AP相关联的一个或多个站点(STA)。AP可具有至分配系统(DS)或将流量携带至和/或携带流量离开BSS的另一种类型的有线 /无线网络的接入或接口。源自BSS外部并通向STA的流量可通过AP到达并且可被传递到STA。源自STA并通向BSS外部的目的地的流量可被发送到AP以被传递到相应目的地。BSS内的STA之间的流量可通过AP发送,例如,其中源STA可向AP发送流量,并且AP可将流量传递到目的地 STA。BSS内的STA之间的流量可被视为和/或称为点对点流量。可利用直接链路建立(DLS)在源和目的地STA之间(例如,直接在它们之间)发送点对点流量。在某些代表性实施方案中,DLS可使用802.11e DLS或802.11z 隧道DLS(TDLS)。使用独立BSS(IBSS)模式的WLAN可不具有AP,并且 IBSS内或使用IBSS的STA(例如,所有STA)可彼此直接通信。IBSS通信模式在本文中有时可称为“ad-hoc”通信模式。
当使用802.11ac基础结构操作模式或相似操作模式时,AP可在固定信道(诸如主信道)上发射信标。主信道可为固定宽度(例如,20MHz宽带宽)或经由信令动态设置的宽度。主信道可为BSS的操作信道,并且可由 STA用来建立与AP的连接。在某些代表性实施方案中,例如在802.11系统中可实现载波侦听多路访问/冲突避免(CSMA/CA)。对于CSMA/CA,STA(例如,每个STA)(包括AP)可侦听主信道。如果主信道被特定STA侦听/检测和/或确定为繁忙,则特定STA可退避。一个STA(例如,仅一个站)可在给定BSS中在任何给定时间发射。
高吞吐量(HT)STA可使用40MHz宽的信道进行通信,例如,经由主 20MHz信道与相邻或不相邻的20MHz信道的组合以形成40MHz宽的信道。
极高吞吐量(VHT)STA可支持20MHz、40MHz、80MHz和/或 160MHz宽的信道。40MHz和/或80MHz信道可通过组合连续的20MHz信道来形成。可通过组合8个连续的20MHz信道,或通过组合两个非连续的 80MHz信道(这可被称为80+80配置)来形成160MHz信道。对于80+80配置,在信道编码之后,数据可通过可将数据分成两个流的段解析器。可单独地对每个流进行快速傅里叶逆变换(IFFT)处理和时间域处理。可将这些流映射到两个80MHz信道,并且可通过发射STA来发射数据。在接收STA 的接收器处,可颠倒上述用于80+80配置的操作,并且可将组合的数据发送到介质访问控制(MAC)。
802.11af和802.11ah支持低于1GHz的操作模式。相对于802.11n和802.11ac中使用的那些,802.11af和802.11ah中减少了信道操作带宽和载波。802.11af支持电视白空间(TVWS)频谱中的5MHz、10MHz和20MHz 带宽,并且802.11ah支持使用非TVWS频谱的1MHz、2MHz、4MHz、 8MHz和16MHz带宽。根据代表性实施方案,802.11ah可支持仪表类型控制/机器类型通信,诸如宏覆盖区域中的MTC设备。MTC设备可具有某些能力,例如有限的能力,包括支持(例如,仅支持)某些带宽和/或有限的带宽。MTC设备可包括电池寿命高于阈值(例如,以保持非常长的电池寿命)的电池。
可支持多个信道的WLAN系统以及诸如802.11n、802.11ac、802.11af 和802.11ah之类的信道带宽包括可被指定为主信道的信道。主信道可具有等于由BSS中的所有STA支持的最大公共操作带宽的带宽。主信道的带宽可由来自在BSS中操作的所有STA的STA(其支持最小带宽操作模式)设置和/或限制。在802.11ah的示例中,对于支持(例如,仅支持)1MHz模式的STA(例如,MTC型设备),主信道可为1MHz宽,即使AP和BSS 中的其他STA支持2MHz、4MHz、8MHz、16MHz和/或其他信道带宽操作模式。载波侦听和/或网络分配向量(NAV)设置可取决于主信道的状态。如果主信道繁忙,例如,由于STA(仅支持1MHz操作模式)正在向AP传输,即使大多数频段保持空闲并且可能可用,整个可用频段也可被视为繁忙。
在美国,可供802.11ah使用的可用频段为902MHz至928MHz。在韩国,可用频段为917.5MHz至923.5MHz。在日本,可用频段为916.5MHz至 927.5MHz。802.11ah可用的总带宽为6MHz至26MHz,具体取决于国家代码。
图1D是示出根据一个实施方案的RAN 113和CN 115的系统图。如上所指出,RAN113可采用NR无线电技术通过空中接口116与WTRU 102a、 102b、102c通信。RAN 113还可与CN 115通信。
RAN 113可包括gNB 180a、180b、180c,但是应当理解,在与实施方案保持一致的同时,RAN 113可包括任何数量的gNB。gNB 180a、180b、180c各自可包括一个或多个收发器以便通过空中接口116与WTRU 102a、 102b、102c通信。在实施方案中,gNB 180a、180b、180c可实现MIMO技术。例如,gNB 180a、108b可利用波束成形来向gNB 180a、180b、180c发射信号和/或从gNB 180a、180b、180c接收信号。因此,gNB 180a例如可使用多个天线来向WTRU102a发射无线信号和/或从WTRU 102a接收无线信号。在实施方案中,gNB 180a、180b、180c可实现载波聚合技术。例如, gNB 180a可向WTRU 102a(未示出)发射多个分量载波。这些分量载波的子集可在免许可频谱上,而其余分量载波可在许可频谱上。在实施方案中,gNB180a、180b、180c可实现协作多点(CoMP)技术。例如,WTRU 102a可从gNB 180a和gNB 180b(和/或gNB 180c)接收协作发射。
WTRU 102a、102b、102c可使用与可扩展参数集相关联的发射来与 gNB 180a、180b、180c通信。例如,OFDM符号间隔和/或OFDM子载波间隔可因不同发射、不同小区和/或无线发射频谱的不同部分而变化。WTRU 102a、102b、102c可使用各种或可扩展长度的子帧或传输时间间隔(TTI) (例如,包含不同数量的OFDM符号和/或持续变化的绝对时间长度)来与 gNB 180a、180b、180c通信。
gNB 180a、180b、180c可被配置为以独立配置和/或非独立配置与 WTRU 102a、102b、102c通信。在独立配置中,WTRU 102a、102b、102c 可与gNB 180a、180b、180c通信,同时也不访问其他RAN(例如,诸如演进节点B 160a、160b、160c)。在独立配置中,WTRU 102a、102b、102c 可将gNB 180a、180b、180c中的一者或多者用作移动性锚定点。在独立配置中,WTRU 102a、102b、102c可在未许可频带中使用信号与gNB 180a、 180b、180c通信。在非独立配置中,WTRU 102a、102b、102c可与gNB 180a、180b、180c通信或连接,同时也与其他RAN(诸如,演进节点B 160a、160b、160c)通信或连接。例如,WTRU 102a、102b、102c可实现 DC原理以基本上同时与一个或多个gNB 180a、180b、180c和一个或多个演进节点B 160a、160b、160c通信。在非独立配置中,演进节点B 160a、 160b、160c可用作WTRU 102a、102b、102c的移动性锚点,并且gNB 180a、180b、180c可提供用于服务WTRU 102a、102b、102c的附加覆盖和 /或吞吐量。
gNB 180a、180b、180c中的每一者可与特定小区(未示出)相关联,并且可被配置为处理无线电资源管理决策、切换决策、UL和/或DL中的用户的调度、网络切片的支持、双连接、NR和E-UTRA之间的互通、用户平面数据朝向用户平面功能(UPF)184a、184b的路由、控制平面信息朝向接入和移动性管理功能(AMF)182a、182b的路由等。如图1D所示,gNB 180a、180b、180c可通过Xn接口彼此通信。
图1D所示的CN 115可包括至少一个AMF 182a、182b、至少一个UPF 184a、184b、至少一个会话管理功能(SMF)183a、183b以及可能的数据网络(DN)185a、185b。虽然前述元件中的每一者被描绘为CN 115的一部分,但是应当理解,这些元件中的任一者可由除CN运营商之外的实体拥有和/或操作。
AMF 182a、182b可在RAN 113中经由N2接口连接到gNBs 180a、 180b、180c中的一者或多者,并且可用作控制节点。例如,AMF 182a、 182b可负责认证WTRU 102a、102b、102c的用户、网络切片的支持(例如,具有不同要求的不同PDU会话的处理)、选择特定SMF 183a、183b、注册区域的管理、NAS信令的终止、移动性管理等。AMF 182a、182b可使用网络切片,以便基于WTRU 102a、102b、102c所使用的服务的类型来为 WTRU 102a、102b、102c定制CN支持。例如,可针对不同的用例(诸如,依赖超高可靠低延迟(URLLC)接入的服务、依赖增强型移动宽带 (eMBB)接入的服务、用于机器类型通信(MTC)接入的服务等)建立不同的网络切片。AMF 162可提供用于在RAN 113与采用其他无线电技术 (诸如LTE、LTE-A、LTE-APro和/或非3GPP接入技术(诸如WiFi))的其他RAN(未示出)之间进行切换的控制平面功能。
SMF 183a、183b可经由N11接口连接到CN 115中的AMF 182a、 182b。SMF 183a、183b还可经由N4接口连接到CN 115中的UPF 184a、 184b。SMF 183a、183b可选择并控制UPF184a、184b,并且配置通过UPF 184a、184b进行的流量路由。SMF 183a、183b可执行其他功能,诸如管理和分配UE IP地址、管理PDU会话、控制策略实施和QoS、提供下行链路数据通知等。PDU会话类型可以是基于IP的、非基于IP的、基于以太网的等。
UPF 184a、184b可经由N3接口连接到RAN 113中的gNB 180a、 180b、180c中的一者或多者,这些gNB可向WTRU 102a、102b、102c提供对分组交换网络(诸如互联网110)的访问,以促进WTRU 102a、102b、 102c和启用IP的设备之间的通信。UPF 184、184b可执行其他功能,诸如路由和转发分组、实施用户平面策略、支持多宿主PDU会话、处理用户平面QoS、缓冲下行链路分组、提供移动性锚定等。
CN 115可有利于与其他网络的通信。例如,CN 115可包括用作CN 115 与PSTN 108之间的接口的IP网关(例如,IP多媒体子系统(IMS)服务器)或者可与该IP网关通信。另外,CN 115可向WTRU 102a、102b、102c 提供对其他网络112的访问,该其他网络可包括由其他服务提供商拥有和/ 或运营的其他有线和/或无线网络。在实施方案中,WTRU 102a、102b、102c可通过UPF 184a、184b经由至UPF 184a、184b的N3接口以及UPF 184a、184b与本地数据网络(DN)185a、185b之间的N6接口连接到DN 185a、185b。
鉴于图1A至图1D以及图1A至图1D的对应描述,本文参照以下中的一者或多者描述的功能中的一个或多个功能或全部功能可由一个或多个仿真设备(未示出)执行:WTRU102a-d、基站114a-b、演进节点B 160a-c、 MME 162、SGW 164、PGW 166、gNB 180a-c、AMF182a-b、UPF 184a-b、 SMF 183a-b、DN 185a-b和/或本文所述的任何其他设备。仿真设备可以是被配置为模仿本文所述的一个或多个或所有功能的一个或多个设备。例如,仿真设备可用于测试其他设备和/或模拟网络和/或WTRU功能。
仿真设备可被设计为在实验室环境和/或运营商网络环境中实现其他设备的一个或多个测试。例如,该一个或多个仿真设备可执行一个或多个或所有功能,同时被完全或部分地实现和/或部署为有线和/或无线通信网络的一部分,以便测试通信网络内的其他设备。该一个或多个仿真设备可执行一个或多个功能或所有功能,同时临时被实现/部署为有线和/或无线通信网络的一部分。仿真设备可直接耦合到另一个设备以用于测试目的和/或可使用空中无线通信来执行测试。
该一个或多个仿真设备可执行一个或多个(包括所有)功能,同时不被实现/部署为有线和/或无线通信网络的一部分。例如,仿真设备可在测试实验室和/或非部署(例如,测试)有线和/或无线通信网络中的测试场景中使用,以便实现一个或多个部件的测试。该一个或多个仿真设备可为测试装备。经由RF电路系统(例如,其可包括一个或多个天线)进行的直接RF 耦合和/或无线通信可由仿真设备用于发射和/或接收数据。
新无线电(NR)支持使用未许可频带(例如,高达52.6GHz)。NR可使用未许可频带来支持更高的频率(例如,从52.6GHz到71GHz)。例如,NR可实施高数据速率增强移动宽带(eMBB)、移动数据卸载、短距离高数据速率设备到设备(D2D)通信和工业物联网(IoT)。高于52.6GHz的频率范围可包含较大的频谱分配和较大的带宽。在高于52.6GHz 的频率上的传输可能会经历高相位噪声、大传播损耗、低功率放大器效率和/或强功率谱密度监管要求。例如,通过考虑对去往/来自其他节点的潜在干扰、假设基于波束的操作并遵守适用于52.6GHz和71GHz之间频率的未许可频谱的监管要求,可增强信道接入。
车辆通信(V2X)是WTRU借此可直接彼此通信的一种通信模式。对于V2X操作,存在多种场景。在覆盖范围内场景的示例中,WTRU可从网络接收帮助,以开始传输和接收V2X消息。在覆盖范围外场景的示例中, WTRU可使用预先配置的参数来开始传输和接收V2X消息。
在LTE和新无线电(NR)中可支持V2X通信。v2X的前身或传统可为设备到设备(D2D)通信。V2X通信服务可由多个(例如,四个)不同类型组成:车辆到车辆(V2V)、车辆到基础设施(V2I)、车辆到网络 (V2N)和/或车辆到行人(V2P)。在V2V的示例中,车辆WTRU可彼此直接通信。在V2I的示例中,车辆WTRU可与路边单元(RSU)和/或eNB 通信。在V2N的示例中,车辆WTRU可与核心网络(CN)通信。在V2P 的示例中,车辆WTRU可与具有特殊条件(例如,低电池容量)的WTRU 通信。
可分配V2X资源(例如,在LTE中)。LTE在V2X通信中可具有多个(例如,两个)操作模式(例如,模式3和模式4)。在模式3的示例中,网络可为WTRU提供针对V2X侧链路(SL)传输的调度分配。在模式 4的示例中,WTRU可从配置/预先配置的资源池中自主地选择资源。V2XLTE可支持多个(例如,两个)类别的资源池(例如,接收池和传输池)。可监测接收池以接收V2X传输。WTRU可使用V2X传输池来选择传输资源(例如,在模式4中)。配置为处于模式3的WTRU可不使用发射池。
可向WTRU(例如,半静态地)发信号通知资源池(例如,在LTE 中)(例如,经由无线电资源控制(RRC)信令)。WTRU(例如,在模式4中)可例如在从(例如,RRC)配置的传输池中选择资源之前使用感测。LTE V2X可能不支持动态资源池重新配置。池配置可(例如,仅)经由系统信息块(SIB)和/或(例如,专用)RRC信令来承载。
新无线电(NR)可支持V2X接入技术。NR可指下一代无线系统。NR 系统可支持例如增强型移动宽带(eMBB)和超高可靠性和低延迟通信 (URLLC)。
NR可支持增强型V2X(eV2X)通信。eV2X可支持用于安全和非安全场景的服务(例如,传感器共享、自动驾驶、车辆编队、远程驾驶等)。不同的eV2X服务可能具有不同的性能要求(例如,3ms延迟)。
车辆编队可使车辆能够动态地组成一组一起行驶。编队中的车辆可从 (例如,前方)车辆接收周期性数据,以例如进行编队操作。数据(例如,信息)可允许车辆之间的距离变得极小,例如,转换为时间的间隙距离可能非常低(例如,亚秒)。车辆编队应用可允许(例如,后方)车辆自主驾驶。
高级驾驶可实现半自动或完全自动驾驶。可假定更长的车辆间距离。 (例如,每个)车辆和/或RSU可与附近的车辆共享从本地(例如,车辆) 传感器获得的数据,从而允许车辆协调其轨迹或操纵。(例如,每个)车辆可与附近的车辆共享驾驶意图。高级驾驶可支持更安全的行驶、避免碰撞和/或提高交通效率。
扩展传感器可使得能够在车辆、RSU、行人设备和/或V2X应用服务器之间交换例如通过本地传感器采集的原始和/或已处理数据和/或实时视频数据。车辆可增强对超出车辆传感器所能检测到的范围的车辆环境的感知,以提供对局部情况有的更全面观察。
远程驾驶可使远程驾驶员或V2X应用程序能够为例如无法自己驾驶的乘客操作远程车辆或操作位于危险环境中的远程车辆。例如,当变化有限且路线可预测时(诸如公共交通),可使用基于云计算的驾驶。对于该用例组,可考虑访问基于云的后端服务平台。
可为NR V2X提供服务质量(QoS)。在一个示例中,可通过邻近服务 (ProSe)每分组优先级(PPPP)支持PC5上的QoS。应用层可使用PPPP 标记分组,PPPP可指示(例如,所需的)QoS水平。可从PPPP导出分组延迟预算(PDB)。
性能指标参数可包括例如以下项中的一者或多者:有效载荷(例如,字节);传输速率(例如,消息/秒);最大端到端延迟(例如,以ms为单位);可靠性(例如,百分比);数据速率(兆位每秒(Mbps));最小 (例如,所需)通信范围(米)。
在一个示例中,对于基于PC5的V2X通信和基于Uu的V2X通信可应用同一组服务要求。QoS特性可用5G QoS标识符(5QI)表示。
PC5和Uu的统一QoS模型(例如,使用5QI用于PC5上的V2X通信)可为应用层提供一致的方式来指示QoS要求,而不管使用的链路如何。
可能存在多个(例如,三个)不同类型的流量:广播、多播和单播 (例如,考虑到支持5GS V2X的WTRU)。
用于Uu的QoS模型可用于单播类型的流量。在示例中,(例如,每个)单播链路可被视为承载。QoS流可与单播链路/承载相关联。5QI中定义的QoS特性和附加参数(例如,数据速率)可能适用。最小(例如,所需)通信范围可被视为附加参数(例如,专用于PC5)。
类似的考虑可能适用于多播流量,其可被视为单播的特殊情况(例如,具有多个定义的流量接收器)。
承载概念可能不适用于广播流量。例如,根据应用程序的(例如,要求),(例如,每个)消息可能相对于其他消息具有不同的特性。5QI可以与PPPP和/或ProSe每分组可靠性(PPPR)所使用类似的方式使用(例如,用来对每个分组进行标记)。5QI可用于表示PC5广播操作的(例如,所需的)(例如,所有)特性,例如延迟、优先级、可靠性等。可为PC5使用定义一组V2X广播专用5QI(例如,V2X QoS指示符(VQI))。
例如,在建立一对一通信过程时,可协商PC5 QoS参数(例如,在 WTRU之间)。例如,在PC5 QoS参数协商程序之后,可在两个方向上使用相同的QoS。
本文描述了可与用于单播和组播的新无线电(NR)车辆通信(V2X) 侧链路功率节省相关联的系统、方法和工具。无线发射/接收单元 (WTRU)(例如,第一WTRU)可接收消息。该消息可指示一组配置组和/或一个或多个适用性选择参数。该第一WTRU可从第二WTRU接收第一指示。该第一指示可指示该第二WTRU与第一配置组相关联(例如,与第一数量的资源相关联)并与第一优先级组相关联。该第一配置组可属于该组配置组。该第一WTRU可从第三WTRU接收第二指示。该第二指示可指示该第三WTRU与第二配置组相关联(例如,与第二数量的资源相关联) 并与第二优先级值相关联。该第二配置组可属于该组配置组。该第一 WTRU可例如基于该第一指示和该第二指示从该组配置组中选择配置组,其中该配置组的该选择满足该一个或多个适用性选择参数。该第一WTRU 可向该第二WTRU和/或该第三WTRU发送所选择的配置组的指示(例如,第三指示)。该适用性选择参数可包括一个或多个资源阈值。满足该适用性选择参数可包括以下项中的一者或多者:将资源使用保持在资源阈值或低于资源阈值,或者在将该资源使用保持在该资源阈值或低于该资源阈值的同时使该资源使用最大化。例如,如果多于一个指示配置组满足该适用性选择参数,则该第一WTRU可基于最高优先级值来选择配置组。该适用性选择参数可包括以下项中的一者或多者:WTRU类别、WTRU电池功率、WTRU有源载波数或WTRU会话服务质量(QoS)。
可基于例如以下项中的一者或多者来选择活动状态配置(例如,在链路建立期间):从网络获得的配置;与服务质量(QoS)流和/或侧链路无线承载(SLRB)的关联;一个或多个决策规则(例如,当多个配置相关联时);Uu配置方面;无线发射接收单元(WTRU)类型或链路类型; WTRU位置;和/或对对等WTRU能力的依赖性。
WTRU可基于例如以下项中的一者或多者来监测(例如,独立地监测)侧链路(例如,仅测链路)的活动会话(例如,每个活动会话)的活动行为:时间和/或频率资源;与侧链路控制信息(SCI)的盲解码相关联的属性;或SCI中携带的信息。
多个发射器(Tx)WTRU可与在接收器(Rx)WTRU处允许的资源配置组相关联。
激活指示符可激活、去激活和/或改变在WTRU处配置的一个或多个活动行为和/或解码行为。激活指示符可启用一个或多个(例如,一组)配置的激活行为。可在相关联资源中定期地和/或周期性地传输激活指示符。可在激活会话和/或活动行为时传输激活指示符。关于数据空间的WTRU行为可被配置为节省功率。多个Tx WTRU可使用公共或专用激活空间和专用数据空间。
Rx WTRU可通知对等WTRU活动行为改变。Rx WTRU可例如在组播和/或广播传输中向多个对等WTRU发送活动改变通告。
Rx WTRU可确认活动状态改变指示(例如,通告)。Rx WTRU可确认活动状态改变指示(例如,在组播中)。
WTRU可基于对等WTRU的建议的/配置的活动和/或行为来确定其活动和/或行为。WTRU可被配置为具有与对等WTRU相同(例如,基本上类似)的活动和/或行为。WTRU可被配置为使用/可使用对等WTRU的活动行为配置的子组。WTRU可被配置为使用/可使用DRX配置参数,该DRX 配置参数为对等WTRU的DRX配置参数的函数。WTRU可被配置为使用/ 可使用DRX配置参数,该DRX配置参数可被限制为由对等WTRU的参数值(例如,相同参数或不同参数)定义的值的子组。WTRU及其对等体可确定和/或改变公共DRX活动行为/配置中的一组接收/传输资源。
WTRU可基于不同的标准来选择活动状态配置参数(例如,不同的活动状态配置参数)。WTRU可实现一个或多个触发,用于向对等WTRU发送DRX配置、DRX释放指示、DRX启用指示和/或DRX禁用指示。WTRU 可确定对等WTRU所建议的DRX配置的适用性。WTRU可触发(例如,隐式地触发)DRX配置的启用、禁用和/或释放。
Tx WTRU可基于由TX WTRU关于相关联配置组的数据传输引起的延迟和/或QoS损失来确定发送到对等Rx WTRU的优先级(例如,与DRX配置组相关联的优先级)。
图2是示出在PC5上建立安全第2层链路的示例的图。
参与一对一通信的WTRU可例如在链路建立程序期间协商PC5 QoS参数。WTRU-1可向WTRU-2发送直接通信请求消息,以例如触发互相认证。该消息可包括所请求的PC5 QoS参数。WTRU-2可发起互相认证。 WTRU-2可在响应消息中包括所接受的PC5 QoS参数。
例如,对于处于连接模式的WTRU,可在NR Uu中实现非连续接收 (DRX)。例如,对于处于RRC_CONNECTED的WTRU,可为NR Uu中的功率节省指定CONNECTED模式DRX。DRX可以基于WTRU处所配置的唤醒时间的调度。例如,如果WTRU在WTRU的唤醒时间期间接收到物理下行链路控制信道(PDCCH)调度,WTRU可保持唤醒一定时间,直到没有接收到进一步的调度。例如,WTRU可被配置有以下参数中的一个或多个参数:drx-onDurationTimer、drx-SlotOffset、drx-InactivityTimer、drx- RetransmissionTimerDL、drx-RetransmissionTimerUL、drx- LongCycleStartOffset、drx-ShortCycle、drx-ShortCycleTimer、drx-HARQ- RTT-TimerDL或drx-HARQ-RTT-TimerUL。
Drx-onDurationTimer可以是DRX循环开始时的时长(例如,持续时间)。Drx-SlotOffset可以是启动drx-onDurationTimer之前的延迟。Drx- InactivityTimer可以是以下PDCCH时机之后的时长(例如,持续时间):在该时机中PDCCH传输指示用于介质访问控制(MAC)实体的上行链路 (UL)或下行链路(DL)传输。Drx-RetransmissionTimerDL可以是直到接收到DL重传之前的最大时长(例如,持续时间)。Drx- RetransmissionTimerDL可以是每DL混合自动重传请求(HARQ)过程的,例如,广播过程除外。Drx-RetransmissionTimerUL可以是直到接收到对UL 重传的授权之前的最大时长(例如,持续时间)。Drx- RetransmissionTimerUL可以是每UL HARQ过程的。Drx-LongCycleStartOffset可以是长DRX循环。Drx-ShortCycle可以是短DRX循环。Drx-StartOffset可定义长DRX循环和/或短DRX循环开始的子帧。Drx- ShortCycleTimer可以是短DRX循环之后的时长(例如,持续时间)。Drx- HARQ-RTT-TimerDL可以是WTRU(例如,MAC功能、MAC实体等)预期HARQ重传的DL分配之前的最小时长(例如,持续时间)。Drx-HARQ- RTT-TimerDL可以是每DL HARQ过程的,例如,广播过程除外。Drx- HARQ-RTT-TimerUL可以是WTRU(例如,MAC功能、MAC实体等)预期UL HARQ重传授权之前的最小时长(例如,持续时间)。Drx-HARQ- RTT-TimerUL可以是每UL HARQ过程的。
配置有DRX的WTRU可确定WTRU的活动时间(例如,WTRU主动监测PDCCH的时间)。
例如,活动时间可包括(例如,如果配置DRX循环)drx- onDurationTimer、drx-InactivityTimer、drx-RetransmissionTimerDL、drx- RetransmissionTimerUL或ra-ContentionResolutionTimer(如本文所述)中的一者或多者和正在运行的时间。
例如,活动时间可(例如,附加地或另选地)包括(例如,如果配置 DRX循环)调度请求(例如,经由PUCCH传输而发送的)未决时的时间 (例如,如本文所述)。
例如,活动时间可(例如,附加地或另选)包括(例如,如果配置 DRX循环)尚未接收到PDCCH传输的时间(例如,指示在成功接收到针对MAC实体未选择的前导码的随机接入响应之后,尚未接收到使用MAC 实体的小区无线电网络临时标识符(C-RNTI)寻址的新传输的PDCCH传输(例如,如本文所述))。
可实现部分感测和随机选择(例如,在LTE V2X中)。
部分感测可以是功率节省机制(例如,供行人WTRU使用)。WTRU (例如,具有部分感测)可例如由上层配置,例如在资源选择窗口[T1,T2] 中具有最小数量的候选子帧。当在本文提及时,WTRU由网络和/或上层配置有某些参数、行为或信息和/或WTRY从网络和/或上层获得某些参数、行为或信息可包括WTRU基于从网络接收的配置信息(例如,经由一个或多个配置消息,诸如一个或多个RRC消息、一个或多个PDCCH消息、DCI 等)和/或基于由WTRU确定的信息来确定参数、行为或信息(例如, WTRU可预先配置有信息和/或WTRU可基于其自身的功能(诸如但不限于较高层功能)来确定信息)。当在本文提及时,上层可包括但不限于介质访问控制(MAC)层、无线电链路控制(RLC)层、分组数据汇聚协议 (PDCP)层、无线电资源控制(RRC)层、一个或多个应用层等中的一者或多者。当在本文提及时,WTRU接收或获得配置可包括WTRU接收配置信息或WTRU接收指示配置的配置信息。当在本文提及时,WTRU建议、发信号通知、选择或提供配置可包括WTRU传输配置信息或WTRU传输指示配置的配置信息。
例如,WTRU可选择具体子帧。WTRU可在感测窗口中对距候选子帧具有整数个预留周期的子帧(例如,仅对子帧)执行感测,这可能会减少 WTRU需要在感测窗口中执行感测的资源量。
WTRU(例如,行人WTRU)可在资源池上执行随机选择。例如,如果资源池被配置用于随机选择,则WTRU可执行资源选择(例如,无需考虑感测过程期间的任何感测结果)。
可支持单播和组播(例如,在NR V2X中)。LTE V2X可基于(例如,可仅支持)广播传输。在示例中,L2目的地ID(例如,每个L2目的地ID)可与广播服务相关联。对广播服务感兴趣的WTRU(例如,所有 WTRU)可监测向相关联L2目的地ID的传输。
可支持单播和组播(例如,在NR V2X中)。在单播的示例中,一对 WTRU可(例如,首先)建立PC5 RRC连接(例如,使用上层处的信令)。例如,如果建立了连接,则可交换针对单播链路配置的接入层 (AS)层参数(例如,使用PC5-RRC)。单播链路可受益于链路监测(例如,检测无线电链路故障(RLF))、HARQ反馈、信道状态指示符 (CSI)反馈和/或功率控制的使用,以例如提高侧链路传输/接收的效率。例如,组播可包括向一组WTRU的传输,例如,其中该组被分配公共L2目的地ID(例如,与该组相关联)。对于组播可能不执行链路建立。组播可受益于(例如,在AS层处)HARQ反馈(例如,仅HARQ反馈)的使用。在(例如,组播HARQ选项1的)示例中,RX WTRU(例如,所有RX WTRU)可共享相同的HARQ反馈资源,并且例如如果要传输否定确认 (NACK),则可进行传输(例如,仅传输)。在(例如,组播HARQ选项2的)示例中,RXWTRU(例如,每个RX WTRU)可具有例如由组内的成员ID确定的反馈资源(例如,独立反馈资源)。RX WTRU可在 WTRU的反馈资源中针对所接收的组播传输(例如,每个所接收的组播传输)传输ACK/NACK。
例如,如果(例如,当)在给定频带中,例如在传输接收方面(例如,控制资源/数据资源的解码)、在时间方面(例如,通过在某些符号、时隙等期间不接收和/或不解码)和/或在频率方面(例如,通过调谐到尽可能小的一组资源)使用不同的优化进行操作,WTRU可降低其功耗。优化可基于WTRU的传输活动。在示例中,例如,如果配置有载波聚合(例如,频率),则在Uu接口上操作的WTRU可被配置有用于非连续接收 PDCCH传输(例如,时间)的DRX,和/或可改变活动带宽部分(BWP) (例如,频率),和/或可改变活动载波的数量。功率节省机制可处于gNB 的控制下(例如,对于Uu接口)。
在时域中实现功率节省(例如,对于侧链路信道)的优化可涉及例如在时隙方面选择性地监测和解码侧链路资源。频域中的优化(例如,对于侧链路信道)可涉及例如根据资源池来选择性地监测和/或解码侧链路资源。
分布式系统可包括其中多个WTRU可彼此通信的Sidelink信道。 WTRU活动行为(例如,开启/睡眠配置文件)可在时间和/或频率上在 WTRU之间同步(例如,在分布式系统中),例如,无论广播、组播和/或单播是否可用于传输。对于支持多播和/或广播传输的系统,同步可能适用于Uu。
本文描述了例如使用控制信道接收(例如,物理侧链路(SL)控制信道(PSCCH))和/或SL资源选择的各方面来实现分布式系统中的对等 WTRU之间的同步(例如,侧链路操作)的系统、方法和工具。
提供了用于单播和/或组播流量的侧链路(SL)非连续接收(DRX)的系统、方法和工具。
WTRU中的活动行为可与涉及WTRU传输和/或接收行为(例如,在时间/频率资源方面)的方面相关联,以例如节省功率。关联(例如,和功率节省)可在例如WTRU可监测(例如,可以预期监测)以下项的时间段内发生:物理SL共享信道(PSSCH);时间、持续时间、定时器等和/或与监测和非监测之间的转换相关的条件以及与转换相关的相关联行为(例如, Rx池的改变);可以在给定活动状态中监测的一组资源(例如,资源池) 等。
在可能存在传输/接收相关活动(例如,预期传输/接收相关活动时(例如,时间)和/或在可能存在传输/接收相关活动处(例如,频率),可例如通过在子信道/时隙中(例如,仅在子信道/时隙中)为WTRU中的前端电路供电来实现功率节省。在其他非活动情况下,前端电路可能会断电。在示例中,Tx WTRU(例如,具有调度用于传输的数据)和Rx WTRU(例如,具有配置的唤醒/睡眠持续时间)可在单播链路中将它们的活动行为彼此对齐,以满足传输QoS要求,同时实现功率节省。WTRU可例如通过在前端通电时减少解码(例如,减少时间/频率资源、盲解码尝试等)来实现功率节省。
WTRU可具有多个正在进行的会话。会话可包括例如以下项中的一者或多者:单播链路;PC5 RRC连接;活动组播会话(例如,WTRU可被配置有用于传输/接收的组播L2 ID,和/或可具有在WTRU处从上层配置的组信息);组播PC5-RRC连接;与中继WTRU的PC5-RRC连接;与正在中继流量的WTRU的PC5-RRC连接;上层服务;或具体活动行为(例如,与开启持续时间、不活动定时器等相关联的DRX配置)。
正在进行的会话可对应于可在WTRU处被配置用于传输/接收的广播服务(例如,L2ID)。
会话可例如通过以下项中的一者或多者来识别:目的地L2/L1 ID(例如,由Rx/TxWTRU在接收/传输中使用);一对源/目的地L2/L1 ID;成员 ID(例如,用于组播);中继ID或中继链路ID(例如,用于中继);单播链路ID(例如,用于同一对WTRU之间的多个链路);或者一个或多个优先级值,例如,或与一个或多个优先级相关联的传输。
例如,由PC5 RRC连接(例如,由源/目的地L2 ID标识的PC5 RRC连接)表示的单播链路可以是会话的示例(例如,如本文的示例中所述)。
可为单播链路提供DRX配置。例如,在PC5上的链路建立/配置信令期间,可配置DRX(例如,用于单播链路)。在示例中,一对WTRU可在链路建立和/或链路配置期间交换与DRX相关的配置(例如,任何配置),作为PC5-RRC信令的一部分。例如,如果下面描述的相关联因素(例如,任何相关联因素)改变,则WTRU可触发重新配置信令以重新配置侧链路活动行为配置。该配置可由例如定时器、资源池、模式等组成(例如,如本文所讨论的并且与活动行为有关)。
例如,可在链路建立期间选择活动状态配置。活动状态(例如, DRX)配置可由TxWTRU选择,并且可被提供给Rx WTRU(例如,在侧链路配置消息中)。Rx WTRU可接受或拒绝该配置,并且可在响应消息中发送接受/拒绝指示。例如,如果Rx WTRU拒绝活动状态配置,则Tx WTRU可假设Rx WTRU不执行活动状态行为,并且单播链路仍可建立。例如,在拒绝的情况下(例如,在Rx WTRU拒绝活动状态配置的情况下), Tx WTRU可实现不同的活动状态配置。例如,在Rx WTRU拒绝活动状态配置的情况下,Rx WTRU可根据资源池执行(例如,始终执行)对侧链路的监测。Rx WTRU可提供另选的活动状态组态。在示例中,Rx WTRU可提供所选择的活动状态配置(例如,Rx WTRU的所选择的活动状态配置),该配置可例如在侧链路配置消息的确认/肯定确认中提供给Tx WTRU。在示例中,Tx WTRU可以选择允许活动状态配置的子组,并将所选择的子组发送给Rx WTRU。Rx WTRU(例如,给定该活动状态配置的子组)可选择一个或多个活动状态配置并将所选择的一个或多个活动状态配置(例如,由Rx WTRU选择的一个或多个活动状态配置的指示)发送到Tx WTRU。Tx WTRU和/或Rx WTRU可遵守所选择的活动状态配置(例如,在Tx WTRU和Rx WTRU之间的交换之后)。WTRU(例如,Rx WTRU和 /或TxWTRU)可通知网络由对等WTRU选择或提供的活动状态配置。
WTRU(例如,Rx和/或Tx WTRU)可选择一个或多个配置以便提供给对等WTRU和/或可接受或拒绝由对等WTRU建议和/或配置的配置。 WTRU可例如基于以下项中的一者或多者这样做:从网络和/或从一个或多个上层获得的配置;与服务质量(QoS)流和/或侧链路无线承载(SLRB) 的关联;与L2源和/或目的地ID的关联;与多个对等WTRU相关联的配置的共性;与一个或多个侧链路(SL)测量的关联;一个或多个决策规则 (例如,如果多个配置相关联);多个配置的组合;Uu配置方面;WTRU 类型和/或链路类型;WTRU位置;或对对等WTRU能力的依赖性。
在基于从网络和/或一个或多个上层获得的配置来选择活动状态配置的示例中,Tx和/或Rx WTRU可例如在与对等WTRU的单播链路建立/配置期间从网络获得活动状态配置。Tx WTRU可(例如,在发送侧链路配置消息之前)从网络接收活动状态配置,并且可将该配置转发到对等WTRU。Rx WTRU可(例如,在接收到侧链路配置时)从网络请求活动状态配置。该请求可包括例如在侧链路配置消息中所接收的一个或多个参数(例如,所有参数或参数的子组)。Tx和/或Rx WTRU可在建立单播链路时从一个或多个上层获得活动状态配置。WTRU(例如,Tx或Rx WTRU)可例如在与单播链路相关联的AS层参数的配置期间将这种配置发送到对等WTRU。 WTRU可从网络和/或一个或多个上层获得一组活动状态配置。WTRU可例如从所获得的由网络和/或上层提供的一组活动状态配置中选择(例如,进一步选择)基于本文描述的其他标准(例如,一个或多个其他参数)的一个或多个所选择的活动状态配置,其中术语标准可与本文的单数或复数使用相关联。
在基于与QoS流和/或SLRB的关联来选择活动状态配置的示例中, WTRU可配置有(例如,通过系统信息块(SIB)、专用信令,预先配置或者一个或多个上层)一个或多个活动状态配置,例如,用于a)由WTRU配置的QoS流(例如,每个QoS流)和/或由WTRU配置的SLRB。WTRU可例如基于配置的QoS流和/或SLRB确定要提供给对等WTRU和/或由WTRU 本身使用的活动状态配置。例如,WTRU可配置有QoS流/SLRB与允许的 (例如,一组)活动状态配置(例如,DRX参数、活动状态资源池等)之间的关联。WTRU可被配置有被允许或被限制的活动状态配置的一个或多个属性(例如,允许的DRX参数的最大值/最小值)。WTRU可从一组允许配置和/或从其相关联的DRX配置满足允许或受限参数的一组配置中选择用于经由PC5-RRC传输的配置。在示例中,WTRU可在RRC信令期间提供活动状态配置(例如,所有活动状态配置),并且可在一个活动状态配置和另一活动状态配置之间改变(例如,动态地,如本文所述)。
在基于与L2源和/或目的地ID的关联来选择活动状态配置的示例中, WTRU可配置有(例如,由一个或多个上层)一个或多个活动状态配置和/ 或与基于L2源和/或目的地ID的活动状态配置相关联的允许或限制参数。 WTRU可(例如,在发起服务、配置与此类L2源和/或目的地ID相关联的承载和/或发起与此类一对L2源和目的地ID的单播链路时)选择相关联的活动状态配置。
在基于与不同对等WTRU相关联的配置的共性来选择活动状态配置的示例中,WTRU可选择多个配置中的一个或多个配置,这可导致在WTRU 处活动的配置(例如,所有配置)具有最共性(例如,配置可与不同的单播链路相关联)。例如,当WTRU根据多个DRX配置(例如,此类配置中的每个配置可与不同的单播链路相关联)来监测资源时,可根据使WTRU 监测的资源的数量最小化来测量共性。例如,WTRU可基于规则(例如,基于QoS和/或SLRB)确定一个或多个可接受的配置,并且可基于它们的共性从这些一个或多个可接受的配置中选择配置。例如,WTRU可配置有配置可接受的一组QoS流和/或SLRB配置,并且可基于所建立的QoS流和 /或SLRB来确定可接受的配置。WTRU可为单播链路(例如,特定的单播链路)选择配置,该配置使WTRU所涉及的多个单播链路(例如,所有单播链路)之间的共性最大化。
在基于与一个或多个SL测量的关联来选择活动状态配置的示例中, WTRU可配置有用于给定SL测量的一个或多个允许配置(例如,信道忙碌率(CBR)、信道占用率(CR)、侧链路参考信号接收功率(SL RSRP)、侧线信道状态信息(SL CSI)或类似测量)。例如,WTRU可被配置有用于给定CBR或CBR范围的允许配置。例如,如果CBR高于/低于 (预先)配置的阈值(例如,配置的或预先配置的阈值),则WTRU可被配置为禁用/启用DRX(或DRX配置)。
在基于决策规则(例如,如果多个配置相关联)和/或多个配置的组合来选择活动状态配置的示例中,WTRU可例如基于预先配置的组合规则和/ 或配置的组合来从多个独立的活动状态配置(例如,两个独立的活动状态配置)中确定共同/单个配置,并且例如如果满足组合规则,则确定/传输 (例如,仅)共同/单个配置。例如,公共配置可包括选择以下项中的一者或多者:时间、持续时间、定时器等的最低值/最高值;资源的最小组/最大组;周期的最小值/最大值;偏移的最小值/最大值;或使一组公共/不同子通道、时隙等最小化/最大化的资源。WTRU可配置有一组QoS流和/或 SLRB,其相关联的活动状态配置可使用规则来组合/不能使用规则来组合。
在基于Uu配置方面选择活动状态配置的示例中,例如,如果WTRU 在覆盖范围内和/或已连接,则WTRU可基于WTRU的Uu配置来确定单播链路的活动状态配置。例如,WTRU可确定是否配置活动状态和/或确定可基于WTRU的Uu配置来配置的允许/选择配置。Uu配置可与以下中的任一者相关联:Uu DRX配置;Uu流量类型和/或专用无线电承载(DRB)配置,或UuMulti-RAT Dual Connectivity(MR-DC)配置。
在与Uu DRX配置相关联的Uu配置的示例中,WTRU可选择可与当前配置的Uu DRX循环对齐的侧链路单播活动状态配置(例如,使得Uu上的活动时间可与对等WTRU对侧链路的监测一致)。WTRU可选择使Uu和 PC5之间的共性最大化的侧链路单播活动状态配置。
在与Uu流量类型和/或DRB配置相关联的Uu配置的示例中,例如,如果配置有一个或多个Uu承载类型和/或流量类型,则WTRU可不提供侧链路活动配置(例如,无侧链路DRX)。
在与Uu MR-DC配置相关联的Uu配置的示例中,WTRU可例如根据 WTRU当前是否配置有MR-DC来确定是否提供侧链路活动配置。
在基于WTRU类型和/或链路类型来选择活动状态配置的示例中, WTRU可例如基于WTRU类型和/或链路类型来确定是否在对等WTRU处配置活动状态和/或可能的配置。WTRU类型和/或链路类型可例如在链路建立期间/之前由上层提供。例如,WTRU可与特定类型(例如,中继 WTRU、远程WTRU、车辆WTRU等)相关联,针对该特定类型可提供或不提供活动状态配置和/或允许活动状态配置的子组。上层可提供特定链路的标识(例如,用于WTRU到WTRU中继的中继链路、用于WTRU到网络中继的中继链路和/或多跳中继链路)。WTRU可配置有提供或不提供活动状态配置和/或允许活动状态配置的子组的规则。WTRU类型和/或链路类型可由对等WTRU提供(例如,经由能力交换,或经由在单播链路建立之前/期间的先前消息)。
在基于WTRU位置选择活动状态配置的示例中,WTRU可例如根据 WTRU或对等WTRU的位置(例如,区ID)来确定是否用活动状态配置或要使用的配置来配置对等WTRU。例如,WTRU可(预先)配置(例如,配置或预先配置)有特定位置/区ID的限制/配置,并且可提供与位置/区ID 相关联的配置(例如,经由PC5-RRC信令)。
在基于对WTRU和/或对等WTRU的能力的依赖性来选择活动状态配置的示例中,WTRU可例如根据是否支持配置和/或WTRU支持哪种配置来确定是否为对等WTRU配置活动状态配置或要使用的配置,例如,可经由侧链路能力交换来发信号通知。例如,如果要为DRX激活、使用和/或启用某个配置,则WTRU可根据WTRU是否支持该配置或所得的一组配置来确定是否向对等WTRU配置和/或建议该配置(例如,在WTRU具有多个有效配置的情况下,其中每个配置都可与相应的单播链路相关联)。
在基于与资源池的关联来选择活动状态配置的示例中,WTRU可配置有用于资源池的一个或多个活动状态配置、一个或多个DRX配置等(例如,对于与WTRU相关联的每个资源池)。WTRU可从与为WTRU配置的给定Tx池和/或给定Rx池相关联的配置中选择一个或多个配置。
WTRU可被配置为基于一个或多个标准(例如,一个或多个参数)来拒绝由对等WTRU建议的配置(例如,单个配置),例如,类似于在本文提供的示例中用于选择配置(例如,从一组允许的和/或配置的配置中)的那些标准。例如,第一WTRU可从由网络提供的一组配置组或一组预定义配置中选择配置组。第一WTRU可以基于本文描述的标准来执行此选择。第一WTRU可例如经由侧链路消息(例如,PC5-RRC重新配置消息)向第二WTRU发送和/或指示所选择的配置组。第二WTRU可评估所选择的配置组(例如,配置组中包括的配置)的适用性并且可执行以下项中的一者或多者。
在示例中(例如,如果配置组中的配置在第二WTRU处适合),第二 WTRU可确认配置的使用(例如,通过例如向第一WTRU发送配置完成消息)。在示例中(例如,如果配置组中的配置在第二WTRU处不适合),第二WTRU可例如通过向第一WTRU发送配置失败消息来拒绝配置,和/或可例如在配置失败消息中指示拒绝或配置失败的原因(例如,DRX配置失败)。第二WTRU可指示(例如,在配置失败消息中)配置失败的原因,诸如不满足哪个条件(例如,与本文描述的决策标准相关联的条件)。在第一WTRU和第二WTRU之间的配置失败之后,可能发生以下项中的一者或多者。第一WTRU和第二WTRU可在无DRX的情况下在单播链路上继续操作(例如,通信)。在示例中,第一WTRU和第二WTRU可通过使用先前的DRX配置(例如,激活或使用的先前DRX配置等)经由单播链路继续操作(例如,通信)。单播链路可被拆除(例如,在配置失败之后)。第一WTRU可选择替代配置并重复配置过程(例如,在配置失败之后)。第一WTRU和/或第二WTRU可回退到默认DRX配置,例如与组播和/或广播相关联的配置,或者(预先)配置的默认配置(例如在配置失败之后)。在示例中(例如,如果配置在第二WTRU处不适合),第二 WTRU可选择配置并向第一WTRU发送或指示所选择的配置(例如,经由配置失败消息)。
例如,如果配置被同意(例如,由WTRU和对等WTRU)用于单播链路,则WTRU可启用或禁用配置。WTRU可释放配置。如本文所述, WTRU可例如经由信令(例如显式信令)来启用或禁用配置。例如,作为本文描述的事件(例如,任何事件)的结果,WTRU可释放配置。
WTRU可被配置为基于对等WTRU的建议/配置的活动和/或行为来被构造为确定其活动和/或行为。单播链路中的WTRU(例如,每个WTRU) 可以是Tx WTRU或Rx WTRU。WTRU的活动行为可与WTRU(例如,Rx WTRU)监测侧链路的时间/资源周期相关联。WTRU(例如,TxWTRU) 可基于其对等WTRU(例如,Rx WTRU)的活动行为来执行传输。例如,如果同时考虑Tx和Rx行为,则为两个WTRU(例如,两个对等WTRU) 独立配置活动和/或行为可能导致WTRU(例如,给定WTRU)的低效节能。例如,如果Tx WTRU想要传输信息(例如,根据对等WTRU的活动行为),则Tx WTRU打开RF前端可能会造成低效率。例如,如果Tx WTRU预期将接收信息(例如,从对等WTRU),则Tx WTRU打开RF前端可能会造成低效率。
WTRU可被配置为基于对等WTRU的活动和/或行为(例如,一个或多个DRX配置)(例如,作为函数)来确定其活动和/或行为(例如,其 DRX配置)。在示例中,WTRU可以(例如,经由PC5 RRC信令)接收与对等WTRU相关联的活动和/或行为(例如,Rx活动和/或行为)的指示,并且可相应地(例如,基于所接收的指示)导出和/或确定其自身的活动和/ 或行为(例如,Rx活动和/或行为)。在示例中,WTRU(例如,Rx WTRU)可从对等WTRU(例如,经由DRX建议)接收WTRU应该具有的其活动和/或行为(例如,Rx活动和/或行为)的指示,并且可基于WTRU自身的活动和/或行为(例如,如从对等WTRU所接收的)来确定对等 WTRU的活动和/或行为(例如,Rx活动和/或行为)。WTRU(例如,Rx WTRU)可向对等WTRU发送所确定的活动和/或行为的指示/建议。WTRU 可部署以下技术中的一种或多种技术来确定WTRU和/或对等WTRU的活动和/或行为。
WTRU可被配置为具有与对等WTRU相同的(例如,基本上类似)活动和/或行为(例如,配置)。在示例中,WTRU可根据由对等WTRU选择、建议和/或发信号通知的活动和/或行为来确定其活动和/或行为(例如,直接地)。这些活动和/或行为可包括例如WTRU的Rx活动和/或行为 (例如,WTRU的完整DRX配置,由WTRU监测的时隙模式,与DRX相关的一组时间、持续时间、定时器等),并且WTRU可基于对等WTRU所选择和/或使用的活动和/或行为(例如,Rx活动和/或行为)来确定这些活动和/或行为。例如,第一WTRU可选择Rx活动行为(例如,基于SLRB 配置和/或从对等WTRU所接收的另一配置)。第一WTRU可向对等WTRU 发送/指示Rx活动行为。对等WTRU可以由第一WTRU选择/指示的相同 (例如,基本上类似的)活动行为来操作。在示例中,第一WTRU可向对等WTRU发送/指示多个潜在活动和/或行为(例如,其可如本文所述来选择)。对等WTRU可选择第一WTRU的一个或多个潜在活动和/或行为(例如,如本文所述),并在对等WTRU的操作中实现所选择的一个或多个活动和/或行为(例如,用于Rx监测)。对等WTRU可向第一WTRU发送/指示由对等WTRU选择的活动和/或行为。第一WTRU可在第一WTRU的操作中实现所选择的活动和/或行为(例如,如对等WTRU所指示的),例如用于RX监测。
WTRU可被配置为使用对等WTRU的活动和/或行为(例如,配置)的子组。WTRU可基于由对等WTRU选择/发信号通知的配置的子组来确定其活动和/或行为。WTRU可基于由对等WTRU针对其自身的Rx活动和/或行为使用/选择的参数来确定与WTRU的Rx活动和/或行为相关联的一个或多个参数(例如,DRX循环或周期性、DRX偏移等)。例如,WTRU可将诸如DRX循环(例如,DRX周期性)和/或偏移(例如,起始SFN或时隙) 的参数设置为DRX循环(例如,DRX周期性)和/或由对等WTRU针对对等WTRU自身的Rx活动和/或行为选择/发信号通知的偏移。WTRU可独立地(例如,不基于对等WTRU的参数)或基于本文描述的其他机制/选项来确定其他DRX配置参数(例如,开启持续时间、不活动时间/持续时间/定时器等)。
WTRU可被配置成根据对等WTRU的活动和/或行为(例如,对等 WTRU的DRX配置参数)来确定其活动和/或行为(例如,DRX配置参数)。例如,WTRU在其Rx监测操作中使用的DRX配置参数(例如,Rx 监测行为)的值(例如,设置为与之相同的值)来确定其DRX配置参数的值(例如,其可与Rx监测行为相关联)。例如,WTRU可将其DRX循环设置为对等WTRU的DRX循环的整数倍(例如,反之亦然),将DRX开启持续时间和/或要监测的资源数量设置为大于或小于对等WTRU的DRX 开启持续时间和/或要监测的资源数量的值(例如,受到以上或以下量的限制),将DRX偏移设置为大于或小于对等WTRU的DRX偏移的值(例如,WTRU可选择其DRX开启持续时间,使得其与对等WTRU的DRX开启持续时间不重叠但在时间上相邻)等。
WTRU可被配置为将配置参数(例如,DRX配置参数)限制为由对等 WTRU针对相同参数或不同参数定义的值(例如,值的子组)。例如, WTRU可基于由对等WTRU定义、确定和/或配置的允许值的子组(例如,基于由对等WTRU选择的值)来确定DRX配置参数的值(例如,其可与 RX监测相关联)。例如,WTRU可(预先)配置(例如,配置或预先配置)有由对等WTRU选择(例如,由对等WTRU在其自身的DRX操作中使用)的允许DRX循环(例如,允许的DRX周期性)的子组。允许值的子组可以取决于本文描述的其他因素(例如,WTRU能力、QoS、SL测量等)。
WTRU和/或其对等体(例如,其对等WTRU)可被配置为基于WTRU 与其对等体(例如,其对等WTRU)之间的共同活动、行为和/或配置(例如,DRX活动、行为和/或配置)来确定和/或改变接收和/或传输资源(例如,一组接收和/或传输资源)。例如,两个对等WTRU可定义与传输和/或接收相关联的共同活动行为(例如,定义WTRU中的一个WTRU的Rx活动或行为的共同DRX配置)。对等WTRU可将与共同配置相关联的资源划分为(例如,进一步划分为)例如第一WTRU使用的Rx资源、第二WTRU 使用的Rx资源等。WTRU可限于使用(例如,仅使用)与对等WTRU相关联的Rx资源向对等WTRU进行传输。例如,可针对单播链路中涉及的第一WTRU和第二WTRU(例如,针对两个对等WTRU)定义共同开启持续时间(例如,共同DRX开启持续时间),并且可在开启持续时间(例如,连续开启持续时间)内为任一WTRU(例如,每个WTRU)分配一组Rx资源。第一WTRU可使用(例如,仅使用)分配给第一WTRU的Rx资源来执行例如与单播链路相关联的接收。第一WTRU可使用(例如仅使用)分配给第二WTRU(例如,对等WTRU)的Rx资源来执行例如与单播链路相关联的传输。这可允许第一WTRU和/或第二WTRU在给定对等WTRU正在主动监测侧链路(例如,第一WTRU和第二WTRU之间的单播链路)的有限时间的情况下避免半双工(例如,传输和接收之间的冲突)。
WTRU可被配置为例如静态地(例如,响应于WTRU或对等WTRU对单播链路的(重新)配置)确定与公共DRX配置(例如,WTRU和对等 WTRU之间的公共DRX配置)相关联的Rx/Tx资源。例如,WTRU可针对其自身和/或对等WTRU确定一组Tx/Rx资源,并经由侧链路消息传送(例如,侧链路配置消息传送)发送/指示资源。WTRU可例如通过与对等 WTRU的信令来动态地改变/确定其Rx/Tx资源。
WTRU可基于一个或多个允许的、(预先)配置的(例如,配置的或预先配置的)和/或预定的配置来确定一组资源(例如,包括Tx/Rx的分区/ 模式)。WTRU可基于以下项中的一者或多者来选择这些配置。WTRU可基于QoS、SLRB配置和/或一个或多个已建立的QoS流来选择配置。例如, WTRU可基于建立的SLRB和/或建立的WTRU和/或对等WTRU的QoS流来选择Tx/Rx分区/模式。WTRU可基于资源池配置来选择配置。例如, WTRU可配置有WTRU可利用(例如,当前利用)的资源池的一个或多个允许的分区/模式。WTRU可基于L2 ID和/或与WTRU和/或对等WTRU相关联的服务来选择配置。WTRU可基于HARQ反馈时间线来选择配置。例如,WTRU可基于与WTRU被配置为在其上执行Rx的物理侧链路反馈信道(PSFCH)相关联的时隙来确定一个或多个允许的Tx时隙(例如, WTRU可将允许的Rx时隙确定为对应于对等WTRU被配置为执行Rx的时隙的PSFCH时隙)。WTRU可基于WTRU的数据负载和/或WTRU的缓冲区中可用于传输的数据量来选择配置。例如,WTRU可基于WTRU缓冲区中可用于传输的数据量来选择Tx/Rx分区/模式(例如,在DRX循环开始时、在开启持续时间期间、在时间、持续时间、定时器等到期时或在与单播链路相关联的WTRU的RX活动或行为期间的其他时间)。例如,由于 WTRU的数据负载或缓冲数据量的增加或减少,WTRU可改变或请求分区的改变。
WTRU可被配置为基于不同的标准选择不同的活动状态配置参数。 WTRU可基于不同的标准和/或使用不同的方法(例如,本文进一步描述) 来选择与活动状态配置相关联的不同参数。如本文所讨论的,WTRU可使用标准和/或方法来确定DRX配置的给定参数的适用性。例如,WTRU可基于第一标准来确定DRX循环、活动的周期性和/或类似参数,并且可基于第二标准确定活动时间、活动的持续时间和/或类似参数。
WTRU可基于与单播链路相关联的一个或多个L2 ID和/或基于QoS标准来选择DRX循环。例如,响应于WTRU选择DRX循环,WTRU可基于 CBR/CR/RSRP的测量和/或类似的侧链路测量来确定活动周期和/或不活动时间/持续时间/定时器。
WTRU可以例如由上层配置有一个或多个允许的DRX循环(例如,允许的DRX循环可与一个或多个已建立的QoS流相关联)。WTRU可例如由网络配置,每个DRX循环具有一个或多个允许的开启持续时间(例如,允许的激活周期),这可进一步取决于本文描述的标准(例如,其他标准)。
WTRU可配置有一个或多个触发,用于向对等WTRU发送DRX配置和/或用于向对等WTRU发送释放DRX、启用DRX和/或禁用DRX的指示。例如,第一WTRU(例如,第一Tx或RXxWTRU)可基于以下触发中的一个或多个触发向对等WTRU发送DRX配置(例如,建议的配置、选择的配置等),释放当前活动的DRX配置的指示或请求,禁用或启用当前配置的DRX配置的指示或请求等。
触发可包括与小区移动性相关联的触发。例如,触发可与切换 (HO)、小区重新选择和/或覆盖范围状态的改变(例如,从覆盖范围内改变为覆盖范围外或反之亦然)相关联。在小区移动性导致WTRU处的允许配置发生变化并且当前配置并非允许配置中的一个配置(例如,给定 WTRU的当前承载组、L2 ID等)的情况下,WTRU可发送配置(例如,到对等WTRU)。
触发可包括与对等WTRU的承载建立、承载重新配置和/或承载释放相关联的触发。例如,触发可与WTRU触发承载建立、承载重新配置、承载释放或在WTRU完成(例如,成功完成)这些操作时触发的相关联。例如,如果一个或多个触发导致允许DRX和/或改变允许的DRX,则WTRU 可发送配置(例如,发送到对等WTRU)。例如,SLRB重新配置可能导致创建/释放对DRX配置的适用性的限制,例如,这可能触发DRX配置的传输。例如,如果单播链路当前没有DRX配置和/或承载(例如,在建立承载时不允许DRX的承载)被释放,则WTRU可发送DRX(重新)配置(例如,到对等WTRU)和/或可触发DRX被启用(例如,在对等WTRU 处)。例如,如果建立的新QoS流导致新SLRB的建立,则WTRU可发送配置(例如,请求改变配置)或者可请求释放当前配置的活动配置。如本文所述,此类决策可基于QoS和/或SLRB配置。
触发可包括与承载建立、承载重新配置、承载释放和/或与另一个 WTRU的DRX配置改变相关联的触发。触发可与和另一WTRU相关联的类似承载事件相关联和/或在与另一WTRU的DRX配置改变时相关联。发送配置的决定可基于多个活动/启用配置的兼容性,如本文所述。
触发可包括与从对等WTRU接收能力信息和/或能力改变相关联的触发。能力信息和/或能力改变可使对象的DRX配置在WTRU和/或对等 WTRU处有效或无效。
触发可包括与WTRU能力的改变相关联的触发。WTRU可接收其能力改变的指示(例如,来自上层)。能力改变可与允许的功率节省配置、允许的功耗量等的改变有关。
触发可包括与配置所依赖的SL测量(例如,CBR测量、SL RSRP、SL CSI等)的改变相关联的触发,如本文所述。
触发可包括与WTRU类型/类别相关联的触发。例如,WTRU可配置有可允许或禁止DRX配置的传输的具体类型/类别(例如,除了本文定义的其他标准之外)。
触发可包括与其他单播链路的存在相关联的触发,例如,其可配置有 DRX。WTRU可例如在与对等WTRU的链路建立期间或之后,基于WTRU 是否具有与其他WTRU的一个或多个单播链路和/或此类单播链路是否配置有DRX,基于与一个或多个单播链路相关联的优先级(例如,其中可确定优先级),向对等WTRU传输DRX配置和/或DRX建议,如本文所述。例如,如果单播链路的数量、SLRB的数量和/或与其他对等WTRU的活动 QoS流的数量高于阈值,则WTRU可发送DRX配置和/或建议。例如,如果与其他对等WTRU的单播链路(例如,配置有DRX的单播链路)的数量高于阈值,则WTRU可发送DRX配置和/或建议。例如,如果存在与其他对等WTRU的一个或多个单播链路具有高于阈值的优先级,则WTRU可发送DRX配置和/或建议。例如,如果与对等WTRU的单播链路(例如,与配置有DRX的对等WTRU的所有单播链路)的优先级(例如,优先级的平均值)的函数高于阈值,则WTRU可发送DRX配置和/或建议。
触发可包括与从对等WTRU接收/不接收DRX配置和/或DRX配置的相应适用性相关联的触发。此类触发可使WTRU传输DRX配置。此类触发可被认为是WTRU在从对等WTRU接收到DRX配置时拒绝DRX配置的一个或多个条件。例如,如果WTRU从对等WTRU接收到不包括DRX配置的配置(例如,SLRB配置或另一配置),则WTRU可向对等WTRU发送DRX配置。例如,如果对等WTRU(例如,基于本文描述的规则)决定不选择或传输DRX配置,则WTRU可选择和/或确定DRX配置。
WTRU可从对等WTRU确定建议的DRX配置的适用性。例如,如果 WTRU从对等WTRU接收到不满足在接收WTRU处为这种配置的适用性定义的标准(例如,一个或多个参数)的配置,则WTRU可向对等WTRU发送DRX配置。例如,如果配置不适用于接收WTRU,则WTRU可拒绝来自对等WTRU的建议DRX配置。WTRU可基于适用性标准选择由对等 WTRU发送的多个建议DRX配置中的一个或多个建议DRX配置。Tx WTRU可基于适用性标准选择多个(预先)配置的DRX配置中的一个或多个DRX配置以发送到对等WTRU。
本文描述的适用性可以是(例如,可被确定为)受监测资源的数量和/ 或受监测资源的模式的函数。例如,如果DRX配置导致接收WTRU监测超过(预先)配置或阈值(例如,(预先)配置或预定义的最大阈值)的多个资源(例如,结合针对与其他WTRU的其他单播链路监测的资源),则可认为DRX配置不合适。例如,如果接收WTRU预期或不预期监测的一个或多个资源(例如,与PSCCH传输相关联)导致与另一资源或另一组资源(例如,定义为接收资源的Uu资源、定义为Tx资源的SL资源等)发送冲突,则可认为DRX配置不合适。例如,如果采用DRX配置或配置组导致 WTRU超过WTRU处的配置或配置组的允许数量,则可认为DRX配置或配置组不合适。允许的数量可取决于例如上层配置、L2 ID、QoS流/承载配置、CBR/CR/RSRP测量、WTRU缓冲区中用于传输的当前数据量等。
本文所述的适用性可以是(例如,可被确定为)配置的WTRU能力的函数。例如,如果基于WTRU的能力和/或配置,采用所接收的DRX配置导致受监测资源的数量超过受监测资源的最大数量,则所接收的DRX配置可能被认为不合适。
本文描述的适用性可以是(例如,可被确定为)在WTRU处重叠的 RX资源和TX资源的量的函数。例如,如果采用所接收的DRX配置导致 WTRU超过预期WTRU能够同时传输和接收的资源的最大数量(例如,在活动时间),则所接收的DRX配置可能被认为不合适。此类的最大资源数量可取决于以下项中的一者或多者(例如,关于与DRX配置相关联的链路,和/或可能已配置DRX的其他正在进行的链路/WTRU):上层配置、L2 ID、QoS流/承载配置、CBR/CR/RSRP测量、WTRU缓冲区中用于传输的当前数据量等。
本文描述的适用性可以是(例如,可被确定为)给定WTRU已配置有 (例如,与DRX相关联)的对等WTRU和/或单播链路的数量的函数。例如,如果采用所接收的DRX配置导致在接收WTRU处超过启用DRX的对等WTRU的数量,则可认为所接收的DRX配置不合适。
本文描述的适用性可以是(例如,可被确定为)建议的DRX配置与一个或多个配置的DRX配置(例如,已配置的DRX配置)的共性的函数。共性可被测量为和DRX配置相关联的一个或多个参数的差异,和/或一个或多个参数的值是否是另一配置中对应参数的函数。例如,如果偏移(例如,DRX偏移)的差异小于阈值(例如,此类阈值可取决于WTRU的能力),则配置可能是合适的。例如,如果DRX循环(例如,包括在配置中)是一个或多个其他配置的DRX循环的函数(例如,倍数),则配置可能是合适的。
本文描述的适用性可以是(例如,可被确定为)与DRX配置和/或配置组相关联的任何两个事件和/或资源之间的时间的函数。例如,WTRU可基于DRX配置中的资源与另一DRX配置中的资源之间的差异来确定配置组和/或DRX配置是否合适(例如,如果差异低于(预先)配置的阈值,则可认为配置组和/或DRX配置是合适的)。
本文描述的适用性可以是(例如,可被确定为)在WTRU处(例如,在任一WTRU处)配置的QoS配置、SLRB配置和/或QoS流的函数。QoS 配置、SLRB配置和/或QoS流可与WTRU和对等WTRU之间的单播链路相关联,或者可与不同的链路(例如,单播链路)和/或会话(例如,单播、组播或广播会话)相关联。例如,DRX配置(例如,具体DRX配置)可能被认为不适合于给定的SLRB配置。WTRU可被配置有可能适用于给定 SLRB配置的一组DRX配置和/或配置组。例如,当从对等WTRU接收DRX 配置或配置组时,WTRU可基于此类DRX配置是否已被配置为对于WTRU 的SLRB是允许的(例如对,于任何WTRU的已建立的SLRB)来确定此类DRX配置和/或配置组是否是允许的。SLRB可与同一对等WTRU、与另一对等WTRU、或与WTRU感兴趣的组播和/或广播传输/接收相关联。WTRU可基于在该WTRU处可能对传输/接收有效的SLRB配置的组合(例如,任何组合),可被配置有一组允许或不允许的DRX配置和/或配置组。
可基于本文描述的标准的组合(例如,任何组合)来确定配置的适用性。例如,WTRU可应用第一标准来确定DRX配置的适用性并基于第二标准定义与该确定相关联的阈值。WTRU可基于满足的多个标准(例如,多个参数)来确定DRX配置的适用性。
WTRU可配置有用于启用、禁用或释放(例如,隐式启用、禁用或释放)DRX配置的触发。WTRU可利用与本文所述类似的触发来启用或禁用 (例如,隐式地启用或禁用)DRX配置(例如,无需向对等WTRU显式地发信号通知启用或禁用)。WTRU可利用与本文所述类似的触发来释放 DRX配置(例如,配置的DRX配置)。
WTRU可例如响应于QoS流的建立而禁用(例如,隐式地禁用)DRX 配置(例如,在非DRX模式下操作,其中WTRU可以连续方式(例如,在所有时间)监测PSCCH),由此QoS流可被指示(例如,由网络或更高层)为与非DRX模式相关联(例如,DRX被禁用)。WTRU可以响应于WTRU建立SLRB(例如,新的SLRB)而禁用(例如,隐式地禁用)DRX 配置,其中SLRB可以非DRX模式来配置(例如,DRX被禁用)。例如,如果WTRU释放被配置为禁用DRX的SLRB和/或没有其他配置的SLRB禁用DRX,则WTRU可禁用(例如,隐式地禁用)DRX配置。例如,WTRU 可在释放SLRB时启用DRX,该SLRB由来自上层的指示、来自对等WTRU 的指示、WTRU处的RLF确定和/或导致释放SLRB的其他事件引起。
WTRU可响应于例如由对等WTRU创建要对其禁用DRX的SLRB而禁用(例如,隐式地禁用)DRX配置。WTRU可响应于接收到DRX配置的一个或多个参数(例如,RX相关参数)而禁用DRX配置。例如,如果 SLRB被配置为禁用DRX,如果对等WTRU没有其他已配置的SLRB禁用DRX(例如,或要求禁用DRX)等,则WTRU可响应于对等WTRU的 SLRB的释放而启用DRX配置。
WTRU可在与一个或多个对等单播WTRU相关联的测量/报告的SL CBR、RSRP和/或CQI改变时和/或在对等WTRU接收到此类测量时启用或禁用(例如,隐式地启用或禁用)DRX。在任一情况下,例如,如果测量值高于或低于配置的阈值,则WTRU可隐式地启用或禁用DRX配置。在任一情况下,例如,如果测量值改变一定量,WTRU可隐式启用或禁用DRX 配置。
可在多个单播和/或组播链接的上下文中配置活动行为。
在示例中(例如,在WTRU具有多个正在进行的会话的情况下),每个会话可配置有用于WTRU的独立活动行为以及(例如,因此)用于Tx WTRU的独立传输机会。Rx WTRU可(例如,为了通过具有独立活动行为的多个会话可靠地接收数据)组合多个活动单播链路(例如,所有活动单播链路)上的活动行为,例如,以导出可与多个相关联的Tx WTRU(例如,所有相关联的Tx WTRU)对准和/或同步的统一Rx活动行为。组合的 DRX配置文件可允许支持不同的侧链路进程。例如,如果WTRU需要在与正在进行的会话的每个活动行为的联合相关联的时间/资源处执行侧链路监测,则组合的DRX配置文件可减少在支持具有不同流量特性(例如,非周期性、突发等)的侧链路过程时实现的功率节省。
WTRU可针对活动会话(例如,每个活动会话)的活动行为来监测侧链路(例如,仅独立地监测侧链路)。
在示例中,WTRU可在给定的时间/频率资源上针对活动的会话(例如,仅针对会话)执行活动行为(例如,Tx/Rx),这可由每个会话的活动行为来确定。例如,Rx WTRU可配置有一组用于接收的资源(例如,资源池)和/或配置有用于一个或多个链路/会话的Rx活动行为(例如,L2 ID、单播/组播链路等)。WTRU可对与活动的会话相关联(例如,仅相关联) 的资源池(例如,基于RX活动行为)执行PSCCH监测。例如,如果Rx活动行为(例如,Rx活动行为中的每个Rx活动行为)表示会话可能变为活动或非活动时的调度,则Rx WTRU可使用活动行为来确定资源池以监测侧链路控制信息(SCI)和数据的存在(例如,针对某一开启持续时间)。
WTRU可为多个会话中的每个会话维护活动行为(例如,独立的活动行为),例如,其中一个会话的不活动行为可能不会影响另一会话的不活动行为。例如,多个会话中的每个会话都可具有例如关于类似DRX的行为的一组(例如,单独的或独立的)时间、持续时间、定时器、计数器等。例如,会话(例如,每个会话)可与单独的或独立的开启持续时间、不活动时间、持续时间、定时器等相关联。例如,第一会话的数据的接收可重置与第一会话相关联的计数器/定时器,而不影响与第二会话相关联的计数器/定时器。例如,WTRU在转换到DRX之前要监测的时间/频率资源的数量的计数器可对与为会话配置的资源池相关联(例如,仅相关联)的时间/ 频率资源的数量进行计数。
本文描述了支持WTRU例如通过针对给定时间/资源监测会话(例如,独立地监测一个会话)来实现功率节省益处的系统、方法和工具。会话可能在例如以下方面与不同的监测行为相关联:时间和/或频率资源、与SCI 的盲解码相关联的属性或SCI中携带的信息。
监测行为可基于时间和/或频率资源(诸如单独的时间/频率资源集)而变化。例如,可为一个或多个会话配置资源池。WTRU可监测一个或多个会话的资源池(例如,在给定时间可能是活动的)。在示例中,会话可配置有可能发生传输(例如,第一非活动时间)的一组和/或多个子信道。 WTRU可例如在给定时间和/或在给定资源池内监测与活动会话(例如,仅活动会话)相关联的一组子信道。
监测行为可基于与SCI的盲解码相关联的属性(例如,SCI格式、加扰、编码、与SCI解码、搜索空间和/或SCI的其他解码属性相关联的循环冗余校验(CRC))而变化。
例如,会话可配置有不同的SCI格式。WTRU可监测与活动会话相关联的SCI格式,例如可由活动行为来确定。例如,会话可配置有不同格式的 SCI2(例如,第二阶段SCI)。SCI1(例如,第一阶段SCI)可指示SCI2 的SCI格式。如果SCI1指示SCI2的SCI格式与活动会话相关联,则WTRU 可解码SCI2。
例如,会话可与不同的加扰、编码和/或CRC相关联(例如,与SCI解码相关联)。WTRU可假设加扰、编码和/或CRC与一个或多个活动会话 (例如,仅一个或多个活动会话)相关联。
例如,会话可与不同的搜索空间和/或用于解码SCI的其他属性相关联。WTRU可执行与活动会话(例如,仅活动会话)相关联的搜索空间的解码。
监测行为可基于SCI中携带的信息而变化。例如,SCI中的指示可能是显式的。例如,可利用在SCI1中传输的具体索引和/或标识符来配置会话。该索引可标识会话或会话组。例如,如果SCI1包括对其中解码SCI1的时间 /频率资源有效的会话的索引,则WTRU可解码SCI2。
多个Tx WTRU可与在Rx WTRU处允许的资源配置组相关联。在示例中,例如,如果多个Tx WTRU向一个Rx WTRU进行传输,则为每个Tx WTRU(例如,以及为与Tx WTRU相关联的每个会话)配置独立DRX行为可能不会转化为显著的功率节省。Rx WTRU可频繁地监测多个无关的 (例如,在时间/频率上)和/或不相关的时隙/资源池,以了解与每个配置的会话/TxWTRU相关联的活动的存在。
例如,如果向Rx WTRU进行传输,则Tx WTRU可与要使用的配置组相关联。在本文提供的一个或多个示例中,配置组可与本文提及的活动状态配置互换使用。配置组可包括资源池内的一个或多个资源池、一组或多组时隙和/或一组或多组子信道。配置组可与索引或类似标识符相关联。 WTRU可例如通过映射到配置组来确定资源池、一组或多组时隙和/或一组或多组子信道。映射可以是(预先)配置的(例如,配置的或预先配置的)和/或预定义的。Rx WTRU可配置有多个配置组。(例如,每个)配置组可与索引值或标识符(例如,配置组ID)相关联。可为与Rx WTRU建立单播链路的Tx WTRU分配配置组索引。用于关联配置组的粒度可以是例如每个WTRU、每个会话/L2 ID(例如,源和/或目的地L2 ID)和/或每个逻辑信道(LCH)。与同一Rx WTRU通信的多个Tx WTRU可与公共配置组索引相关联,这可减少Rx WTRU的整体解码负担。
WTRU可例如经由专用信令(例如,对于RRC连接场景)从网络接收配置组或一组配置组,该专用信令在系统信息块(SIB)中指示(例如,对于RRC空闲/不活动场景),和/或WTRU可被预先配置(例如,对于覆盖范围外场景)。WTRU可基于与对等WTRU的协调(例如,在单播链路 (重新)配置期间)来确定配置组或一组配置组。例如,第一Tx和/或Rx WTRU可从在单播链路的侧链路配置期间协调的配置组中选择资源池。Tx 和/或Rx WTRU(例如,第一Tx和/或Rx WTRU)可在链路(重新)配置期间使用相同的配置组来与第二Rx和/或Tx WTRU协调。
在示例中,Rx WTRU中允许的配置组的索引可例如在单播链路(重新)配置期间被指示给Tx WTRU。Tx WTRU可例如基于标准(例如,参数)来确定一个或多个合适的配置组,该标准可包括与传输特性(例如,流量配置文件、优先级、QoS和/或本文定义的另一标准)的匹配。Tx WTRU可向Rx WTRU发送例如所选择的一个或多个配置组索引。例如,Rx WTRU可将TxWTRU与配置组相关联并发送确认消息,该确认消息可包含为Tx WTRU选择的一个或多个配置组索引。例如,当配置DRX时, Tx WTRU可假设与其传输相关联的所选择的配置组将达到Rx WTRU。
Rx WTRU可根据Tx WTRU的优先级和/或一个或多个配置组的优先级来选择一个或多个配置组。在示例中,Tx WTRU可(例如,在单播链路 (重新)配置期间)向Rx WTRU指示传输特性(例如,流量配置文件、优先级等)。例如,Rx WTRU可例如基于标准(例如,参数)将TxWTRU 与Rx WTRU中允许的至少一个配置组相关联,该标准可包括与Tx WTRU 所指示的流量配置文件相关联的优先级和/或适用性。Rx WTRU可发送确认消息,该确认消息包含为TxWTRU选择的配置组索引。
Rx WTRU可执行以下操作中的一个操作(例如,如果Rx WTRU中允许的现有配置组不适于与Tx WTRU相关联):与Tx WTRU重新协商(例如,基于Tx WTRU的优先级),拒绝连接建立,或禁用功率节省/DRX。在示例中,Rx WTRU可例如基于Tx WTRU的优先级与Tx WTRU(例如,一个Tx WTRU)重新协商。例如,与Tx WTRU相关联的优先级(例如,已建立的QoS流和/或SLRB的优先级)可用于为Tx WTRU选择和/或配置新的配置组,和/或修改现有配置组与其他Tx WTRU之间的关联。例如,可将低优先级Tx WTRU分配给较少的配置组,并且可将高优先级Tx WTRU 容纳在允许的配置组内。
在本文描述的示例中,由Tx WTRU传输的优先级可以是以下中的任一者,或者可从以下中的任一者或它们的组合中导出。优先级可包括与Tx WTRU处的流量相关联的优先级和/或类似的QoS参数(例如,WTRU所建立的SLRB的最高优先级)。优先级可包括由较高层为WTRU配置的优先级(例如,其可指示一个或多个配置组对Tx WTRU在功率节省方面的重要性)。优先级可基于在Tx WTRU处处于活动状态的依赖关系的数量,其中依赖关系可与在TxWTRU处处于活动状态和/或配置有DRX的多个单播链路(例如,与相应的WTRU)相关联。该依赖性可与被配置用于在Tx WTRU处传输或接收的多个SLRB相关联。优先级可基于与不同对等 WTRU相关联的DRX配置的共性。例如,可基于作为Tx WTRU的对等体的其他WTRU的不同DRX配置之间的重叠时隙的数量来确定优先级。
在本文描述的示例中,由Tx WTRU传输的优先级可以是以下中的任一者,或者可从以下中的任一者或它们的组合中导出。可基于Tx WTRU所监测(例如,当前所监测)的资源的总数/百分比(例如,如果考虑配置有对等WTRU的多个DRX循环(例如,所有DRX循环)的组合)和/或该值与最大值的接近度来确定优先级。例如,针对DRX行为而监测的资源的总数/ 总量最接近最大值的Tx WTRU可被配置有更高的优先级。该最大值可基于来自上层的信令和/或WTRU能力来确定。可基于Tx WTRU使用和/或需要的侧链路传输功率(例如,平均、总、最小或最大传输功率)来确定优先级以达到其对等WTRU中的一个或多个对等WTRU(例如,经由单播消息传送)。优先级可基于配置为SLRB配置的一部分的值来确定,或者可基于这种配置值的函数来确定。例如,WTRU可被配置有与SLRB配置(例如,每个SLRB配置)相关联的SLRB值和/或权重,并且WTRU可基于与一个或多个已建立的SLRB(例如,对应于DRX被激活的链路的所有已建立的 SLRB)相关联的总权重或平均权重来导出优先级。
在本文描述的示例中,由Tx WTRU传输的优先级可以是以下中的任一者,或者可从以下中的任一者或它们的组合中导出。可基于对DRX配置/配置组满足Tx WTRU的QoS要求(例如,对于Tx WTRU处的给定流量模式)的程度的测量来确定优先级。在示例中,Tx WTRU可基于Tx WTRU 的预期流量模式与DRX配置的资源模式的接近程度来确定优先级。接近度可通过以下项中的一者或多者来测量。接近度可通过预期传输时间(例如,Tx WTRU的流量模式)和DRX配置之间的时间差来测量。可通过对可能在与DRX配置和/或配置组相关联的活动周期内发生的传输机会和/或预期传输的预期百分比的测量来测量接近度。可通过与具体流量模式相关联的数据需要延迟的时间量来测量接近度,例如,以便在对应于DRX配置的活动周期中发送数据。可通过预期的重传次数和/或所需重传次数的减少来测量接近度,例如,如果使用相关联的DRX配置来传输流量模式,则可能会遇到这种情况。接近度可通过包括本文导出的值的优先级来测量,或者根据本文的测量和优先级值之间的映射来测量,例如,其中映射可以是 (预先)配置的。优先级、映射和/或值可取决于和/或由CBR调整。例如,WTRU经历的CBR可确定与数据到达相比的延迟量。
在本文描述的示例中,由Tx WTRU传输的优先级可以是以下中的任一者,或者可从以下中的任一者或它们的组合中导出。可基于对DRX配置/配置组满足Tx WTRU的QoS要求(例如,对于Tx WTRU处的给定流量模式)的程度的测量来确定优先级。例如,如果传输模式被限制在DRX配置内的传输,则Tx WTRU可基于在传输或传输模式中引入的延迟量来确定优先级。例如,Tx WTRU可被配置为附加延迟和/或接近度(例如,如本文所述)到优先级值的映射。例如,优先级值可根据DRX配置引起的绝对附加延迟。例如,Tx WTRU可基于可通过DRX配置实现或已通过DRX配置实现的可靠性的量,和/或DRX配置引起的可靠性损失的测量来确定优先级。例如,Tx WTRU可配置有QoS和开启持续时间到优先级的长度之间的映射。与DRX配置相关联的QoS和开启持续时间的长度的组合(例如,每个组合)可映射到优先级。在示例中,映射可反映可靠性的损失,例如,其中最高优先级与不会导致可靠性损失的配置相关联。
Tx WTRU可向Rx WTRU发送一组DRX配置。在示例中,DRX配置可表示系统中可能的DRX配置(例如,所有可能的DRX配置)或允许Tx WTRU满足其QoS要求(例如,QoS延迟要求)的(预先)配置的DRX配置(例如,所有(预先)配置的DRX配置)。Tx WTRU可将优先级与一个或多个DRX配置相关联(例如,与每个DRX配置相关联)。在示例中, Tx WTRU可确定DRX配置的优先级,例如,其中DRX配置由资源的周期性和/或时间偏移来表示。Tx WTRU可基于通过根据DRX配置进行传输而在传输中引入的所测量的平均/最小/最大延迟来确定DRX配置的优先级。例如,延迟可以是DRX配置中预期传输时间和资源定时之间的时间差的度量。Tx WTRU可(预先)配置有延迟值(例如,每个延迟值)的优先级值。例如,高优先级可能与较低的延迟相关联。
WTRU可例如基于以下标准中的一个或多个标准来确定配置组或一组配置组的适用性(例如,配置组是否可在WTRU处使用,该组配置组是否可同时在WTRU处被激活等):功率节省能力(例如,Rx WTRU可根据功率节省能力选择一组配置组);WTRU类型/能力/类别(例如,其可为静态的,或者在WTRU操作期间可动态改变);剩余的WTRU电池功率; WTRU上的活动载波数;或在Tx/Rx WTRU处的每个会话中建立的承载/流的QoS。
在基于WTRU类型/能力/类别确定一组配置组的适用性的示例中, WTRU的类别可使用一个规则来(预先)配置(例如,配置或预先配置),该规则定义配置组的最大数量、跨配置组中的一个或多个配置组 (例如,所有配置组)监测的资源的最大数量和/或配置组之间允许的差异 (例如,不重叠的资源的数量)。例如,WTRU的类别可使用一个规则来 (预先)配置(例如,配置或预先配置),该规则定义WRTU在活动或不活动状态下可以主动监测的资源的最大数量/密度。例如,如果该组配置组要监测的资源的数量低于针对WTRU类别配置的最大值,则WTRU可确定其是否可激活多个配置组。WTRU可基于WTRU处的静态配置来确定其能力、类别和/或类型。WTRU可动态地(例如,从上层)接收其能力、类别和/或类型的指示。例如,WTRU可接收动态能力的指示(例如,索引)。 WTRU可配置有索引与资源的最大允许数量/密度、允许的配置组和/或可在 WTRU处激活的配置组的允许数量/组合之间的映射。
在基于剩余WTRU电池功率确定一组配置组的适用性的示例中, WTRU可接收(例如,从上层)剩余电池功率的指示,并且可将此类剩余电池功率映射到要监测的资源的最大数量和/或所激活的配置组的最大密度。
在基于与Tx/Rx WTRU处的会话(例如,每个会话)相关联的已建立承载和/或流的QoS确定一组配置组的适用性的示例中,WTRU(例如,Tx WTRU)可建立和/或配置有已建立的SLRB和适当的配置组之间的映射。 WTRU(例如,Tx WTRU)可建立和/或配置有活动QoS流和/或已建立的 SLRB与合适的配置组之间的映射。WTRU(例如,Rx WTRU)可从Tx WTRU接收激活的QoS流和/或建立的SLRB,并且可建立和/或配置有活动的QoS流和/或建立的SLRB与合适的配置组之间的映射。
图3示出了与选择配置组(例如,在帧内)相关联的示例。WTRU (例如,Rx WTRU)可接收一组配置组(例如,从网络)和/或WTRU可以监测的最大资源数量的指示(例如,基于上层信令和/或WTRU能力)。 WTRU可从一个或多个其他WTRU(例如,从Rx WTRU配置有单播链路的每个Tx WTRU)接收配置组和/或相关联的优先级。WTRU可例如在从对等WTRU接收到配置组时,基于优先级和最大资源数量的配置来选择允许的配置组(例如,跨所有Tx WTRU)。例如,WTRU可选择一个或多个配置组,使得可不超过WTRU可以监测的最大资源数量。WTRU可按优先级顺序选择配置组。WTRU可例如在此类选择之后通知发起配置组的传输的 Tx WTRU和/或已配置有配置组的其他Tx WTRU以下信息的全部或一部分:对配置组使用的确认、应选择替代配置组的指示、应改变当前配置的配置组的指示和/或WTRU(例如,Rx WTRU)选择的配置组。
在本文描述的示例中,WTRU(例如,Rx WTRU)可通过例如基于相关联的优先级和/或可以监测的最大资源量(例如,资源界限或资源极限) 确定所接收的活动配置组是否适合与对等Tx WTRU通信来选择活动配置组。该活动配置可包括一个或多个SL资源和/或与监测和/或接收来自对等 Tx WTRU的数据传输相关联的活动行为的指示(例如,SL资源上的DRX 配置文件)。当选择该活动配置组时,Rx WTRU可执行以下项中的一者或多者。
Rx WTRU可从第一对等Tx WTRU接收关于活动配置组的信息(例如,活动配置组的ID)、与对等WTRU相关联的优先级值和/或为对等 WTRU建立的SLRB。
Rx WTRU可例如基于以下标准(例如,一个或多个参数)确定所接收的活动配置组是否适合与第一对等Tx WTRU通信。如果用于支持第一对等 Tx WTRU的活动配置组和现有的第二对等Tx WTRU的活动配置组的资源总数小于或等于最大资源界限(例如,其可被配置),则可为第一对等 WTRU选择从第一对等WTRU所接收的配置组,同时为第二对等Tx WTRU保留现有的配置组。Rx WTRU可组合该第一对等Tx WTRU和第二对等Tx WTRU的活动配置组,使得可以最大化重叠资源的数量。如果与第一对等 Tx WTRU和第二对等Tx WTRU的活动配置组相关联的资源总数超过最大资源界限,则可为第一对等Tx WTRU和第二对等Tx WTRU选择从第一对等Tx WTRU所接收的配置组(例如,如果第一对等Tx WTRU的优先级高于第二对等Tx WTRU的优先级)。如果与第一对等Tx WTRU和第二对等 Tx WTRU的活动配置组相关联的资源总数超过最大资源界限,则可为第一对等Tx WTRU和第二对等Tx WTRU选择第二对等Tx WTRU的现有配置组(例如,如果第二对等Tx WTRU的优先级高于第一对等Tx WTRU的优先级)。
Rx WTRU可向一个或多个对应的对等Tx WTRU发送选择消息或确认消息,该选择消息或确认消息包括关于所选择的活动配置组的信息(例如,所选择的活动配置组的ID)。
Tx WTRU和Rx WTRU之间的活动可以是同步的(例如,在单播或组播中)。初始链路建立期间的发射/接收可以是同步的和/或协调的。例如,如果WTRU中的活动行为改变,则可通知对等WTRU改变(例如,用于更新和重新排列活动行为)。活动行为的改变可取决于正在传输的数据量,以例如使功率节省最大化。用于Rx WTRU和Tx WTRU之间的活动状态的同步的过程(例如,隐式过程)可能是不适当的。例如,如果WTRU正在向/从多个WTRU进行发射/接收,则与同步相关联的信令可能会受到限制。
激活指示符可激活、去激活和/或改变在WTRU处配置的一个或多个活动行为和/或解码行为。在示例中,WTRU可例如基于激活指示符的接收来激活一个或多个活动行为(例如,独立的活动行为)。激活指示符可在与实际数据传输相同的资源中传输。激活指示符可(例如,另选地)在单独的一组资源(例如,经配置的资源池)中传输,该组资源在本文可称为激活空间。
例如,WTRU的解码活动可分解为多个空间(例如,两个空间),包括例如激活空间和数据空间,Rx WTRU可分别使用这些空间来监测和/或解码激活指示符和/或从对等WTRU接收数据。Tx WTRU可使用来自激活空间的资源来例如发送激活指示符以例如允许后续数据传输。例如,如果Rx WTRU配置有用于各个会话的不同资源池,则激活指示符可用于激活为会话配置的已识别资源。
可例如在以下项中的一者或多者发送激活指示符:PSCCH传输(例如,两级SCI或单级SCI中的第一级或第二级SCI);PSSCH传输(例如, SL MAC控制元素(CE)、PC5-RRC、数据和/或周期性指示符);PDCCH 传输(例如,用于基于网络的激活的DCI);物理下行链路共享信道 (PDSCH)传输(例如,用于基于网络的激活的MAC CE、RRC);或物理信道传输(例如,新的物理信道传输)。例如,激活指示符可表示物理信道(例如,新的物理信道),并且可包括资源池中的一个或多个符号/时隙传输(例如,资源池内的时间/频率中的一组符号,或者单独的资源池)。
激活空间可用于接收(例如,仅接收)激活指示符和/或用于接收激活指示符和数据传输。激活空间可为例如以下项中的一者或多者:资源池中的多个时隙;具有可配置数量的子信道和物理资源块(PRB)的独立资源池;或者资源池的子区域(例如,在每个资源池内具有可配置数量的子信道/PRB)。可在数据空间中发送激活指示符。
Tx WTRU可经由单播/组播连接与多个Rx WTRU相关联。激活指示符可经由单播传输(例如,根据链路优先化和/或排序标准)发送(例如,单独发送)到Rx WTRU(例如,每个RxWTRU)。在示例中,例如,如果与第一Rx WTRU相关联的优先级值高于与第二Rx WTRU相关联的优先级值,则可在第二Rx WTRU之前选择第一Rx WTRU来发送激活指示符。
激活指示符可包括(例如,隐式地或显式地包括)以下项中的一者或多者:正在激活的会话、数据空间信息、定时器信息、释放指示;激活行为或交互传输的索引。
激活指示符可包括被激活的一个或多个会话(例如,一个或多个单播链路的标识)。例如,激活指示符可包括要在Rx WTRU处激活的单播链路的源/目的地L2 ID。
激活指示符可包括数据空间信息。例如,激活指示符可识别用于接收与L2 ID相关联的数据的一个或多个第二资源池。WTRU可(预先)配置 (例如,配置或预先配置)有一个或多个资源池以针对L2 ID(例如,每个 L2 ID)激活。激活指示符中的或与激活指示符相关联的一个或多个L2 ID 可指示(例如,隐式地指示)将由WTRU监测的资源池。
激活指示符可包括时间、持续时间或定时器信息。例如,激活指示符可指示一个或多个第二资源池可被使用和/或可保持激活的持续时间(例如,在转换到DRX之前)。
激活指示器可包括释放指示。例如,激活指示符可指示释放一个或多个第二资源池(例如,或针对第二资源池执行DRX)例如持续一定的持续时间的命令。
激活指示符可包括可由激活指示符激活或去激活的激活行为的索引 (例如,在多个预先配置的激活行为中)。
激活指示符可包括交互传输。例如,如果Rx WTRU已接收到(例如,可靠地接收到)激活指示符并改变了Rx WTRU的活动行为,则激活指示符可包括对Rx WTRU响应和/或提供反馈的请求(例如,在激活第二资源池之后)。激活指示符可指示响应/反馈的模式,其可包括例如HARQ反馈和/ 或CSI反馈。
在示例中,例如,如果在一个或多个相关联的激活空间中的激活指示符内检测到对应的L2 ID或等效标识符,则可激活L2 ID的数据空间以接收数据。公共激活空间可由多个Tx WTRU共享,以激活由Tx WTRU共享的一个或多个数据空间。例如,在激活指示符在激活空间中传输之后,SCI和数据可在数据空间中传输。例如,激活指示符可包括第一级SCI,该第一级 SCI可识别数据空间。在数据空间中发送的SCI可包括第二级SCI,该第二级SCI可用于解码在数据空间中传输的数据。
激活指示符可启用配置的激活行为(例如,一组配置的激活行为中的一个激活行为)。在示例中,WTRU可发送激活指示符以改变Rx WTRU的活动行为(例如,在多个配置的活动行为之间)。多个配置的活动行为例如可以是预先配置的、由网络配置的和/或在PC5-RRC链路配置期间配置的。激活指示符可指示要在Rx WTRU处激活的具体配置(例如,经由指代可经由PC5-RRC信令提供的配置中的配置的ID)。WTRU可例如基于以下事件中的一个或多个事件来触发配置的激活:数据的到达(例如,在具体 SLRB处)、数据的传输(例如,与一个或多个SLRB相关联的所有数据)、WTRU状态的改变、所测量的侧链路拥塞的改变、达到某个时间/持续时间的到期/定时器的到期(例如,与本文描述的一个或多个事件相关联)。
WTRU可例如基于数据的到达(例如,在具体SLRB处)来触发配置的激活。例如,WTRU可在用于具体SLRB和/或LCH的传输(例如,在一个或多个WTRU缓冲区中)的数据到达时发送激活指示符。WTRU可配置有SLRB和活动行为配置之间的关联(例如,在对等WTRU处使用)。WTRU可在数据到达SLRB时激活活动行为(例如,适当的活动行为)。
WTRU可例如基于数据(例如,与一个或多个SLRB相关联的所有数据)的传输(例如,成功传输)来触发配置的激活。例如,如果WTRU的缓冲区(例如,与一个或多个SLRB相关联)中的数据(例如,所有数据) 已被传输,则WTRU可发送激活指示符以改变配置。
WTRU可例如基于WTRU状态的改变来触发配置的激活。WTRU可例如在WTRU覆盖范围和/或WTRU连接状态(例如,RRC_CONNECTED、 RRC_IDLE、RRC_INACTIVE、覆盖范围外)改变时发送激活指示符。 WTRU可例如在WTRU处的中继/非中继状态之间改变时(例如,WTRU开始/停止作为中继操作)向对等WTRU发送激活指示符。
WTRU可例如基于所测量的侧链路拥塞的改变来触发配置的激活。 WTRU可例如在侧链路上的拥塞改变时(例如,基于由WTRU测量的信道忙碌率(CBR),例如达到或超过阈值)发送激活指示符。WTRU可被配置有针对CBR范围(例如,每个CBR范围)的活动状态配置。例如,如果所测量的CBR从第一范围(例如,与第一活动状态配置相关联)改变到第二范围(例如,与第二活动状态配置相关联),则WTRU可发送激活指示符以改变活动状态。
WTRU可例如基于定时器的到期(例如,与本文描述的一个或多个事件相关联)来触发配置的激活。WTRU可例如在某个时间之后发送激活指示符,在该时间之后其他事件中的一个或多个事件可能已经生效(例如,一段时间)。例如,WTRU可例如在数据(例如,与一个或多个SLRB相关联的所有数据)的传输(例如,成功传输)时确定第一时间,确定第一持续时间,启动定时器等。WTRU可确定第二时间,确定第二持续时间,重置定时器等(例如,每次新数据到达时)。例如,如果达到某个时间、持续时间到期、定时器到期等,则WTRU可发送激活指示符。例如,在接收到用于传输的新数据(例如,与一个或多个SLRB相关联)时,WTRU可确定时间、确定持续时间、启动定时器。例如,如果在预定时间段内没有接收到新数据(例如,与相同的一个或多个SLRB相关联),则WTRU可重置时间、持续时间、定时器等。例如,在达到某个时间、持续时间到期、定时器到期等时,WTRU可发送激活指示符。
可在相关联资源中定期地和/或周期性地传输激活指示符。例如,可在相关联的一组资源中周期性地发送激活指示符。激活指示符可以指示当前处于活动状态的相关联数据空间。WTRU可监测(例如,定期监测)激活空间。激活指示符可激活可与会话相关联的资源池和/或一组资源(例如, L2 ID)。例如,如果当前正在传输激活指示符,则WTRU可监测相关联的资源。例如,只要激活指示符存在于激活空间中,WTRU就可监测相关联的资源。WTRU可(例如,在存在激活会话的激活指示符的情况下)监测与会话相关联的资源。例如,在不存在激活指示符的情况下(例如,对于与激活空间相关联的资源的一个或多个实例)和/或在激活指示符中不存在会话标识符的情况下(例如,对于与激活空间相关的资源的一个或多个实例),WTRU可不监测与会话相关联的资源。
例如,可在激活会话和/或活动行为时传输激活指示符。在示例中,例如,在接收到识别会话的激活指示符时,WTRU可监测与会话相关联的一组资源。WTRU可例如基于与会话的活动行为相关的条件来继续监测会话的资源。例如,WTRU可(例如,在会话的激活之后)确定与不活动相关联的时间、与不活动相关联的时间段、启动与会话的接收相关联的不活动定时器等。WTRU可(例如,如果达到某个时间、时间段到期、定时器到期等)去激活会话(例如,停止监测会话或会话的活动行为),例如,直到下一次接收到激活指示符。
可配置关于数据空间的WTRU行为。WTRU可监测激活空间,例如,同时保持数据空间不活动,以例如节省功率。在示例中,例如,如果激活空间包括来自对等WTRU的激活指示符,则可认为单播链路处于活动状态。例如,如果没有检测到激活指示符,则WTRU可在数据空间上转换到 DRX。WTRU可(例如,如果检测到激活指示符)激活一个或多个对应的数据空间以在单播链路上接收数据(例如,数据的子序列接收)。
在示例中,与一个或多个活动会话相关联的活动数据空间可包括 WTRU监测与活动会话(例如,每个活动会话)相关联的资源(例如,资源池形式的所有资源)。WTRU可例如使用本文描述的方法来监测(例如,仅监测)对应资源中的活动会话。
在一个示例中,活动数据空间可包括激活一个或多个会话。会话(例如,每个会话)可具有相关联的活动行为(例如,DRX配置或类似的活动行为)。例如,只要会话被激活指示符激活,WTRU就可例如根据激活的会话的活动行为来执行信道监测。
多个Tx WTRU可使用公共和/或专用激活空间和/或专用数据空间。在示例中,多个Tx WTRU和/或会话可配置有不同的激活资源。WTRU可监测与资源的会话中的每个会话相关联的激活资源(例如,活动或不活动)。在示例中,激活空间对于多个Tx WTRU和/或会话可以是公共的。例如,在不同单播链路(例如,L2 ID)上与Rx WTRU相关联的多个Tx WTRU可访问公共激活空间,该公共激活空间可用于例如在发送数据之前向Rx WTRU发送(例如,单独发送)激活指示符。公共激活空间可被配置有不同的DRX配置文件(例如,开启持续时间和/或DRX持续时间),该配置文件可例如相对于相关联的Tx WTRU的要求进行定制,例如,以实现激活指示符的及时传输。例如,用于公共激活空间的DRX配置文件可包括例如以与具有最低延迟界限要求的Tx WTRU相匹配的周期性重复出现的唤醒间隔。
例如,如果发送激活指示符,则来自公共激活空间的资源(例如,资源池内的时隙和/或子信道)可构成供Tx WTRU(例如,每个Tx WTRU) 使用的传输机会。例如,可基于不同的属性来确定公共激活空间的资源,这些属性可包括Tx WTRU/单播链路的数量、会话的数量、L2 ID的流量特性和/或激活指示符的类型(例如,周期性、单次等)。例如,可在单播链路建立期间配置/重新配置公共激活空间。网络可例如经由专用RRC和/或 SIB向Tx WTRU指示公共激活空间(例如,在覆盖范围内场景中)。使用公共激活空间可提高资源使用效率。例如,如果Rx WTRU支持大量单播链路,则激活空间可能因接收到大量激活指示符而变得过载。例如,可控制公共激活空间中的负载水平,以使得WTRU能够识别(例如,明确地识别)需要激活的会话。
例如,可通过以下项中的一者或多者来控制公共激活空间中的负载水平:随机选择、基于感测的选择、优先级(例如,基于优先级的选择)、时间限制(例如,基于时间限制的选择),WTRU位置(例如,基于 WTRU位置的选择)或与激活空间内的每个会话相关联的资源。在随机选择的示例中,Tx WTRU可从激活空间中随机选择一个或多个资源,以将激活指示符发送到Rx WTRU。在基于感测的选择的示例中,Tx WTRU可例如基于对可用资源的感测和选择从激活空间中选择一个或多个资源。在基于优先级的选择的示例中,Tx WTRU可例如基于要在数据空间中传输的数据的优先级来确定一个或多个资源。在基于时间限制的选择的示例中,Tx WTRU可例如基于实例/时间段、计数器/时间窗口等(例如,与会话、 WTRU和/或要在数据空间中传输的数据相关联)的(预先)配置的数量来确定一个或多个资源。在基于WTRU位置的选择的示例中,Tx WTRU可例如基于Tx WTRU的当前位置来确定激活空间中的一个或多个资源。在基于与激活空间内的每个会话相关联的资源的选择的示例中,Tx WTRU可例如通过在与会话相关联的资源(例如,时间/频率)上进行传输来激活会话。
WTRU可基于随机选择来确定公共激活空间内的资源。在示例中(例如,使用对于多个L2 ID是公共的激活空间),传输机会可由Tx WTRU (例如,每个Tx WTRU)例如通过随机地/推测地选择资源来确定。Tx WTRU可从公共激活空间(例如,基于竞争)选择一个或多个资源(例如,许多资源)以例如使用以下选择标准中的一个或多个选择标准(例如,选择参数)来发送激活指示符:未加权分布或加权分布。在未加权分布的示例中,可为公共激活空间内的资源(例如,所有资源)分配相等/均匀的权重值。例如,可随机地选择一个或多个资源来发送激活指示符。随机选择可导致Tx WTRU(例如,所有Tx WTRU)具有相等的概率来发送激活指示符。在加权分布的示例中,可为公共激活空间内的资源分配权重值,该权重值可例如基于规则来确定。例如,规则可允许分配的权重值与 L2 ID的LCH优先级值成比例,这可能导致具有高优先级数据的Tx WTRU 比具有低优先级数据的Tx WTRU更早地访问资源和发送激活指示符的概率更高。
WTRU可基于优先级来确定公共激活空间内的资源。在示例中(例如,使用对于多个L2 ID是公共的激活空间),传输机会可由Tx WTRU (例如,每个Tx WTRU)例如基于优先级规则来确定。公共激活空间可被细分为不同的资源集,例如,其中资源集(例如,每个资源集)可被分配给优先级值。不同的Tx WTRU可例如基于传输的优先级来识别用于发送激活指示符的资源。Tx WTRU可在公共激活空间中(例如,代替激活指示符)发送(例如,直接发送)数据,以例如用于高于阈值(例如,配置的阈值)的高优先级传输。
WTRU可基于时间限制来确定公共激活空间内的资源。在示例中(例如,使用对于多个会话是公共的激活空间),传输机会可由Tx WTRU(例如,每个Tx WTRU)基于时间限制来确定。Tx WTRU(例如,每个Tx WTRU)可配置有例如时间窗口限制,以选择资源并发送激活指示符。例如,具有被调度用于在数据空间中传输的数据的Tx WTRU可访问Tx WTRU的分配时间窗口,以将激活指示符发送到Rx WTRU。
WTRU可基于位置确定公共激活空间内的资源。在示例中(例如,使用对于多个L2ID是公共的激活空间),传输机会可由Tx WTRU(例如,每个Tx WTRU)例如基于Tx WTRU的位置来确定。例如,Tx WTRU(例如,每个Tx WTRU)可配置有用于资源选择的映射(例如,在区与来自公共激活空间的资源的分区之间)。具有被调度用于在数据空间中传输的数据的TxWTRU可确定位置(例如,Tx WTRU的位置),并且可识别要用于向Rx WTRU发送激活指示符的资源(例如,基于位置)。
激活空间内的资源可与对应的会话和/或服务相关联。在示例中,激活空间中的一个或多个资源(例如,子信道、时隙、符号等)可与会话相关联。Tx WTRU可例如通过在激活空间中的相关联资源中进行传输来激活会话。Rx WTRU可监测与会话相关联的激活空间资源中的传输,以例如确定要激活的一个或多个数据空间,以用于与会话、服务和/或L2 ID相关联的数据的接收(例如,后续接收)。
Rx WTRU可通知一个或多个对等WTRU关于活动行为改变。在示例中,例如,如果RxWTRU的活动行为状态发生改变(例如,与一个或多个会话相关联),则Rx WTRU可向经由单播和/或组播链路连接的一个或多个相关联的Tx WTRU发送通告消息。Rx WTRU可在确定(例如,仅在确定之后)相关联的Tx WTRU不在传输并且处于接收模式之后发送活动改变通告,以例如增加(例如,确保)Tx WTRU接收并且不错过传输(例如,由于半双工约束)的概率。例如,Rx WTRU可例如基于从Tx WTRU/网络接收到结束标记指示和/或基于内部跟踪,例如通过具有预先配置和/或约定的定时/资源来发送活动改变通告。Tx WTRU可(例如,在接收到活动改变通告之后)更新对应于Rx WTRU的活动行为,这可用于确定发送数据的传输机会(例如,后续传输机会)。可例如响应于来自对等WTRU的激活指示来发送通告消息。可针对相同的会话或不同的会话、WTRU、承载等发送通告消息。指示可表示针对多个会话的活动状态改变。例如,Tx WTRU 2(例如,在接收到与Tx WTRU 1的会话相关联的通告之后)可改变与TxWTRU 2和Rx WTRU的会话的传输相关的定时。通告消息(例如,与会话、WTRU、承载等的激活消息相关联)可改变(例如,隐式地改变)Tx WTRU针对另一会话进行的WTRU传输的定时。RxWTRU可在没有接收到激活消息的情况下传输通告消息(例如,基于Rx WTRU处的活动行为的自主的和/或数据相关的改变)。
可例如通过以下项中的一者或多者触发Rx WTRU进行的活动行为改变通告的传输:偏离配置的活动行为、活动/不活动持续时间结束、达到某个时间、不活动定时器重置或位置改变。
在偏离配置的活动行为的示例中,具有第一Tx WTRU和第二Tx WTRU的配置的预期活动行为(例如,DRX循环)的Rx WTRU例如由于接收到来自第一Tx WTRU的活动改变指示和/或数据,可改变Rx WTRU的活动行为。基于来自第一Tx WTRU的活动改变指示和/或数据改变Rx WTRU的活动行为可导致激活与第一Tx WTRU相关联的一个或多个资源池以接收数据。例如,如果Rx WTRU在与第二Tx WTRU相关联的资源池上改变其活动行为,则Rx WTRU可向第二Tx WTRU发送通告(例如,通知第二Tx WTRU关于活动行为状态的改变)。
在活动/不活动持续时间结束的示例中,Rx WTRU可在与会话(例如,会话中的一个或多个会话)相关联的开启持续时间结束时或DRX/休眠持续时间结束时发送活动改变通告。
在重置时间、持续时间、不活动定时器等的示例中,其中可以不活动定时器为例,Rx WTRU可例如在重置不活动定时器的事件之后发送活动行为改变通告。例如,Rx WTRU可在接收到数据(例如,用于另一会话)之后发送活动行为改变通告,这可重置不活动定时器(例如,与会话相关联)。在示例中,处于不活动状态的Rx WTRU(例如,在配置的资源池中没有执行用于接收数据的接收)可维持不活动定时器,该不活动定时器可由一个或多个相关联的Tx WTRU跟踪。例如,如果触发(例如,接收到来自网络的指示和/或链路拥塞水平的改变的指示,诸如CBR减少某个值)导致重置不活动定时器,则Rx WTRU可向相关联的Tx WTRU发送通告(例如,发信号通知Rx WTRU的活动行为的改变)。
在位置改变的示例中,Rx WTRU可被配置有可以禁止转换到不活动状态的一个或多个地理位置/区。例如,如果Rx WTRU移动到需要从不活动状态改变为活动状态的区,则可向相关联的Tx WTRU发送通告(例如,通知状态改变)。
活动行为改变通告(例如,由Rx WTRU发送)可包括例如以下项中的一者或多者:状态改变、L2源/目的地ID、持续时间、资源池、引起通告 (例如,触发通告的传输)的条件和/或触发、或者转发或中继请求。
活动行为改变通告可包括状态改变。在示例中,可例如基于到DRX/睡眠的转换来指示不活动状态。例如,可基于进入开启持续时间/唤醒来指示活动状态。
活动行为改变通告可包括L2源/目的地ID。例如,Rx WTRU可在活动状态指示中列出一个或多个受影响的L2 ID。Tx WTRU可例如基于对活动状态指示的接收来确定活动或不活动(例如,当前活动或不活动)的L2 ID。
活动行为改变通告可包括持续时间。例如,可在通告中指示时间段 (例如,开始和停止时隙),以例如发信号通知活动改变有效的持续时间。
活动行为改变通告可包括资源池。例如,配置用于接收数据的一个或多个资源池可在通告中指示给相关联的Tx WTRU。
活动行为改变通告可包括引起通告(例如,触发通告的传输)的一个或多个条件和/或触发。例如,可在对一个或多个Tx WTRU的通告中指示可以监测以改变和/或重置指示状态的条件/触发(例如,来自网络/Tx WTRU 的活动改变指令的接收和/或链路/负载条件的改变)。
活动行为改变通告可包括转发/中继请求。例如,如果活动行为改变将被中继到网络和/或另一WTRU,则通告可包括对Tx WTRU的请求以将活动改变信息转发到预期目的地(例如,网络节点和/或L2目的地ID)。
活动改变通告可(例如,为了更高的可靠性)指示来自Tx WTRU的轮询/交互传输。在示例中,轮询/交互传输可(例如,由Tx WTRU)作为 HARQ或数据PDU中的ACK/NACK反馈来发送,以例如确认在Tx WTRU 处接收和/或肯定确认由Rx WTRU指示的活动状态改变。
例如,如果Rx WTRU经由单播/组播连接与多个Tx WTRU相关联,则可经由单播传输向Tx WTRU(例如,每个Tx WRTU)发送(例如,单独发送)活动行为改变通告。例如,如果与第一Tx WTRU相关联的优先级高于与第二Tx WTRU相关联的优先级,则Rx WTRU可在第二TxWTRU之前选择第一Tx WTRU来发送活动改变通告。例如,优先级可表示从每个 TX WTRU所接收的数据的优先级。
可例如经由以下项中的一者或多者来发送单播传输:PSCCH传输(例如,在两级SCI中的第一级或第二级SCI中,或在单级SCI中);PSFCH 传输(例如,如果启用HARQ,则在HARQACK/NACK反馈中);PSSCH 传输(例如,在SL MAC CE、PC5-RRC、数据中、在MAC PDU中存在填充位的情况下和/或在周期性指示符中);物理上行链路共享信道 (PUSCH)传输(例如,在MAC CE、RRC、和/或用于向网络指示的数据中);或新的物理信道传输(例如,其可包括资源池中的一个或多个符号/ 时隙)。
例如,如果在向相关联的Tx WTRU传输活动改变通告和/或其他传输 (例如,ACK/NACK反馈)时指示L2 ID,则位于Rx WTRU的通信范围内的Tx WTRU可窃听和偷听来自RxWTRU的传输(例如,以确定Rx WTRU 的活动行为)。位于通信范围内的Tx WTRU可例如基于一个或多个推断规则来推断(例如,直接推断)对应于Tx WTRU和相关联资源池的L2 ID的活动行为,该推断规则可在相关联Tx WTRU中配置为确定Tx WTRU是否可在对应于Tx WTRU的L2ID的资源池中执行传输。在示例中,可为在Tx WTRU和Rx WTRU之间配置的主要L2 ID(例如,每个主要L2 ID)配置一组一个或多个次L2 ID。例如,如果Tx WTRU经由Rx WTRU进行的传输偷听到次L2 ID中的至少一个次L2 ID或它们的组合,则Tx WTRU可确定(例如,隐式地推断)Rx WTRU已改变与主L2 ID相关联的资源池的活动行为并且Rx WTRU准备好接收来自TxWTRU的传输。
RX WTRU可经由组播/广播传输向多个对等WTRU发送活动改变通告。在示例中,RxWTRU可经由组播/广播控制消息向多个Tx WTRU发送活动改变通告(例如,同时或并发地)。选择广播传输模式的决定可基于一个或多个条件。在示例中,WTRU可例如基于以下条件中的一个或多个条件发送广播活动改变通告:一个或多个Tx WTRU的传输模式、传输范围内多个Tx WTRU的存在、或与广播相关联的延迟。
WTRU可例如基于一个或多个Tx WTRU的传输模式来发送广播活动改变通告。例如,相关联的Tx WTRU的一个或多个Tx WTRU可能不在传输中并且可能在时隙/资源池中处于接收模式,在该时隙/资源池中授权可用于广播传输。
WTRU可例如基于传输范围内多个Tx WTRU的存在来发送广播活动改变通告。例如,如果在Rx WTRU处使用公共传输功率设置,则位于传输范围内的多个Tx WTRU可接收和解码(例如,可靠地接收和解码)活动改变指示。
WTRU可例如基于与广播相关联的延迟来发送广播活动改变通告。与经由一个或多个单播传输向Tx WTRU(例如,每个Tx WTRU)传输活动改变通告相关联的延迟可能超过与一个或多个广播传输相关联的延迟。
例如,可使用专用的L2源/目的地ID来发送组播/广播模式中的活动改变通告。例如,L2源/目的地ID(例如,旨在用于组播/广播传输)可例如在链路建立期间(例如,经由PC5-RRC的初始链路建立)在Rx WTRU和相关联Tx WTRU(例如,每个Tx WTRU)之间配置(例如,初始配置)。
提供了供Rx WTRU确认活动状态改变指示/通告的系统,方法和工具。在示例中,TxWTRU可向Rx WTRU发送第一传输(例如,包括不活动持续时间/资源池中的活动改变指示),随后发送第二传输(例如,包括活动开启持续时间/资源池中的数据)。在示例中,第一传输可能丢失和/或可能被错误解码。在示例中,Rx WTRU可向相关联的Tx WTRU中的一个或多个Tx WTRU发送活动改变通告(例如,发信号通知Tx WTRU能够还是不能接收后续数据传输)。在示例中,通告消息可能不能会被预期的Tx WTRU可靠地接收。
例如,如果WTRU经历活动状态改变以执行数据传输/接收(例如,后续数据传输/接收),则WTRU可(例如,为了确保可靠地接收到包括活动改变指示的第一传输)向对等WTRU发送确认反馈(例如,基于所接收的触发和/或预先配置)。WTRU可(例如,为了使开销最小化)定制资源选择,以例如在持续时间窗口和/或资源池(例如,其可为预先配置的和/或TxWTRU和Rx WTRU已知的)内执行确认反馈到对等WTRU的传输。
确认反馈的传输可被配置为例如经由以下项中的一者或多者来发送:对传输的HARQ反馈、CSI报告、自主测量报告或活动改变通告。
可经由对传输的HARQ反馈发送确认反馈。例如,Tx WTRU可启用 HARQ反馈,用于在不活动持续时间/资源池中到Rx WTRU的第一传输。Tx WTRU可例如在从对等WTRU接收到HARQ反馈之后(例如,仅在此之后)在活动持续时间/资源池中执行传输。
可经由CSI报告发送确认反馈。例如,Tx WTRU可经由向不活动持续时间/资源池中的WTRU的第一传输请求CSI报告。Tx WTRU可例如在从对等WTRU接收到CSI反馈之后(例如,仅在此之后)在活动持续时间/资源池中执行传输。
可经由自主测量报告发送确认反馈。例如,Rx WTRU可例如在不活动持续时间/资源池中接收到来自对等WTRU的传输之后发送测量报告(例如,RSRP测量报告、CSI测量报告等),这可导致激活活动持续时间/资源池。Tx WTRU可在例如接收到测量报告之后(例如,仅在此之后)在活动持续时间/资源池中执行传输。
可经由活动改变通告来发送确认反馈。例如,在不活动持续时间/资源中接收到活动改变指示和/或在活动开启持续时间/资源池中的第一传输之后,Rx WTRU可发送活动改变通告。
Tx WTRU可在例如从对等WTRU接收到确认之后(例如,仅在此之后)在活动持续时间/资源池中执行传输。
例如,在达到某个时间、持续时间到期、定时器到期等之后和/或在传输具体类型的数据之前或之后,可周期性地要求/配置确认反馈的传输。
在周期性地传输确认反馈的示例中,带确认的传输可能需要一个或多个N个时隙(例如,每N个时隙)。
在时间、持续时间到期、定时器到期等之后的确认反馈的传输的示例中,其中可以定时器为例,可例如通过以下事件中的一个或多个事件来重置定时器(例如,在到期之后):确认反馈的传输/接收或单播链路上的数据的传输/接收。
在传输具体类型的数据之前或之后传输确认反馈的示例中,例如,如果传输与具体优先级、播(例如,单播或组播)、类型(例如,DRB或SRB)等的数据相关联,则WTRU可配置有确认反馈行为(例如,如本文所述)。
描述了供Rx WTRU经由组播确认活动状态改变指示的系统、方法和工具。在示例中,确认反馈可由Rx WTRU发送(例如,由每个Rx WTRU在改变为活动状态之后发送),以例如确保在组播场景中在相关联的Rx WTRU(例如,所有相关联的Rx WTRU)处可靠地接收由TxWTRU发送的活动改变指示。可将以下一种或多种方法应用于组播:组播HARQ反馈或经由单播的活动变化响应(例如,显式活动变化响应)。
组播HARQ反馈可应用于组播。例如,Tx WTRU可为活动状态指示和 /或导致活动状态改变的第一次传输启用HARQ选项2。使用选项2HARQ 的指示可例如在不活动持续时间/资源池中的活动改变指示和/或活动持续时间/资源池中的第一数据传输中发送。在示例中,例如,如果传输HARQ反馈(例如,在接收到改变活动状态的触发之后),则Rx WTRU(例如,所有Rx WTRU)可被预先配置(例如,在组播连接(重新)配置期间)为使用选项2。例如,如果接收到改变活动状态的触发,则专用映射可被配置 (例如,在PSFCH资源池内)为发送反馈指示。在接收到活动状态改变触发和/或发送反馈时(例如,在定时器到期后的第一时隙中),Rx WTRU (例如,每个Rx WTRU)可(例如,如果启用了HARQ)跟踪时间、跟踪持续时间、启动定时器等,其中可以定时器为例。组中的Rx WTRU(例如,单元(例如,每个Rx WTRU)可配置有不活动定时器的不同持续时间 (例如,以防止组内的冲突)。例如,可基于组内WTRU的成员ID来配置定时器。
可将经由单播的活动改变响应(例如,显式活动改变响应)应用于组播。例如,组中的Rx WTRU(例如,每个Rx WTRU)可(例如,在从Tx WTRU接收到改变活动状态的触发时)经由单播传输(例如,在改变到指示的活动状态之后)发送改变响应(例如,显式改变响应)。单播传输可包括在与单播相关联的先前实施方案中讨论的传输中的一个或多个传输 (例如,测量报告等)。
尽管上述特征和元素以特定组合进行了描述,但每个特征或元素可在不具有优选实施方案的其他特征和元素的情况下单独使用,或者在具有或不具有其他特征和元素的情况下以各种组合使用。
尽管本文所述的具体实施可考虑3GPP特定协议,但应当理解,本文所述的具体实施并不限于这种场景,并且可适用于其他无线系统。例如,尽管本文描述的解决方案考虑LTE、LTE-A、新无线电(NR)或5G特定协议,但应当理解,本文所述的解决方案不限于此场景,并且也适用于其他无线系统。
上文所述的过程可在结合于计算机可读介质中以供计算机和/或处理器执行的计算机程序、软件和/或固件中实现。计算机可读介质的示例包括但不限于电子信号(通过有线或无线连接传输)和/或计算机可读存储介质。计算机可读存储介质的示例包括但不限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、高速缓存存储器、半导体存储器设备、磁介质 (诸如但不限于内置硬盘和可移动磁盘)、磁光介质和光介质(诸如紧凑盘(CD)-ROM磁盘和/或数字通用光盘(DVD))。与软件相关联的处理器可用于实现用于WTRU、终端、基站、RNC和/或任何主计算机的射频收发器。

Claims (16)

1.一种第一无线发射/接收单元(WTRU),所述第一WTRU包括:
处理器,所述处理器被配置为:
接收消息,其中所述消息指示一组配置组和适用性选择参数;
从第二WTRU接收第一指示,其中所述第一指示指示所述第二WTRU与第一配置组相关联并且与第一优先级值相关联,其中所述第一配置组属于所述一组配置组;从第三WTRU接收第二指示,其中所述第二指示指示所述第三WTRU与第二配置组相关联并且与第二优先级值相关联,其中所述第二配置组属于所述一组配置组;以及
基于所述第一指示和所述第二指示从所述一组配置组中选择配置组。
2.根据权利要求1所述的第一WTRU,其中所述处理器被进一步配置为:
向所述第二WTRU和所述第三WTRU发送所选择的配置组的指示。
3.根据权利要求1所述的第一WTRU,其中所述配置组的所述选择满足所述适用性选择参数。
4.根据权利要求1所述的第一WTRU,其中所述适用性选择参数包括资源阈值。
5.根据权利要求4所述的第一WTRU,其中所述配置组的所述选择满足所述适用性选择参数,并且其中满足所述适用性选择参数包括以下至少一项:将资源使用保持在所述资源阈值或低于所述资源阈值,或者在将所述资源使用保持在所述资源阈值或低于所述资源阈值的同时使所述资源使用最大化。
6.根据权利要求5所述的第一WTRU,其中如果多于一个指示配置组满足所述适用性选择参数,则将最高优先级值用于所述配置组的所述选择。
7.根据权利要求1所述的第一WTRU,其中所述适用性选择参数包括以下中的至少一者:WTRU类别、WTRU电池功率、WTRU有源载波数或WTRU会话QoS。
8.根据权利要求1所述的第一WTRU,其中所述第一配置组与第一数量的资源相关联,并且所述第二配置组与第二数量的资源相关联。
9.一种方法,所述方法包括:
接收消息,其中所述消息指示一组配置组和适用性选择参数;
从第二WTRU接收第一指示,其中所述第一指示指示所述第二WTRU与第一配置组相关联并且与第一优先级值相关联,其中所述第一配置组属于所述一组配置组;
从第三WTRU接收第二指示,其中所述第二指示指示所述第三WTRU与第二配置组相关联并且与第二优先级值相关联,其中所述第二配置组属于所述一组配置组;以及
基于所述第一指示和所述第二指示从所述一组配置组中选择配置组。
10.根据权利要求9所述的方法,所述方法还包括:
向所述第二WTRU和所述第三WTRU发送所选择的配置组的指示。
11.根据权利要求9所述的方法,其中所述配置组的所述选择满足所述适用性选择参数。
12.根据权利要求9所述的方法,其中所述适用性选择参数包括资源阈值。
13.根据权利要求12所述的方法,其中所述配置组的所述选择满足所述适用性选择参数,并且其中满足所述适用性选择参数包括以下至少一项:将资源使用保持在所述资源阈值或低于所述资源阈值,或者在将所述资源使用保持在所述资源阈值或低于所述资源阈值的同时使所述资源使用最大化。
14.根据权利要求13所述的方法,其中如果多于一个指示配置组满足所述适用性选择参数,则将最高优先级值用于所述配置组的所述选择。
15.根据权利要求9所述的方法,其中所述适用性选择参数包括以下中的至少一者:WTRU类别、WTRU电池功率、WTRU有源载波数或WTRU会话QoS。
16.根据权利要求9所述的方法,其中所述第一配置组与第一数量的资源相关联,并且所述第二配置组与第二数量的资源相关联。
CN202180031036.4A 2020-04-08 2021-03-30 用于单播和/或组播的nr v2x侧链路功率节省 Pending CN115443695A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310505341.3A CN116528340A (zh) 2020-04-08 2021-03-30 一种设备、方法和系统

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063006944P 2020-04-08 2020-04-08
US63/006,944 2020-04-08
US202063125694P 2020-12-15 2020-12-15
US63/125,694 2020-12-15
PCT/US2021/024804 WO2021206952A1 (en) 2020-04-08 2021-03-30 Nr v2x sidelink power saving for unicast and/or groupcast

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310505341.3A Division CN116528340A (zh) 2020-04-08 2021-03-30 一种设备、方法和系统

Publications (1)

Publication Number Publication Date
CN115443695A true CN115443695A (zh) 2022-12-06

Family

ID=75581691

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310505341.3A Pending CN116528340A (zh) 2020-04-08 2021-03-30 一种设备、方法和系统
CN202180031036.4A Pending CN115443695A (zh) 2020-04-08 2021-03-30 用于单播和/或组播的nr v2x侧链路功率节省

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202310505341.3A Pending CN116528340A (zh) 2020-04-08 2021-03-30 一种设备、方法和系统

Country Status (6)

Country Link
US (1) US20230156858A1 (zh)
EP (1) EP4133803A1 (zh)
JP (1) JP2023524387A (zh)
CN (2) CN116528340A (zh)
BR (1) BR112022020391A2 (zh)
WO (1) WO2021206952A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4271053A1 (en) * 2020-12-24 2023-11-01 LG Electronics Inc. Method and device for performing sl drx operation on basis of default drx configuration in nr v2x
US11871477B2 (en) * 2021-06-02 2024-01-09 Qualcomm Incorporated Determining discontinuous reception communication parameters for sidelink communications
US11930451B2 (en) * 2021-07-02 2024-03-12 Qualcomm Incorporated Techniques for wireless communication in connected discontinuous reception mode
US20230073478A1 (en) * 2021-09-06 2023-03-09 Qualcomm Incorporated Discontinuous reception (drx) configuration for sidelink communications by a user equipment (ue)
US20230156853A1 (en) * 2021-11-15 2023-05-18 Qualcomm Incorporated Procedure and signaling for sidelink drx alignment
WO2024007137A1 (zh) * 2022-07-04 2024-01-11 Oppo广东移动通信有限公司 消息处理方法、装置、设备、存储介质及程序产品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018202798A1 (en) * 2017-05-04 2018-11-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. UE GROUPS, UE GROUP MANAGER UEs AND UE GROUP MEMBER UEs
KR20210063417A (ko) * 2018-09-26 2021-06-01 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 그룹 통신용 리소스 풀 설계

Also Published As

Publication number Publication date
US20230156858A1 (en) 2023-05-18
WO2021206952A1 (en) 2021-10-14
CN116528340A (zh) 2023-08-01
BR112022020391A2 (pt) 2022-12-13
JP2023524387A (ja) 2023-06-12
EP4133803A1 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
US20230063472A1 (en) Methods for performing discontinuous reception on sidelink
CN112840733B (zh) 用于车辆通信中的资源预留的方法
US20230084593A1 (en) Methods for power saving sensing and resource allocation
CN113661775A (zh) 用于侧链路无线电链路监视和确定无线电链路故障的方法
JP2022502921A (ja) ユニキャスト及び/又はマルチキャストリンク確立及び維持のためのl2手順
JP2021533648A (ja) ニューラジオ車車間/路車間通信(nr v2x)における自律的リソース選択のための方法および装置
JP2022542381A (ja) 同時アップリンク及びサイドリンク動作
US20230156858A1 (en) Nr v2x sidelink power saving for unicast and/or groupcast
US20230097552A1 (en) Method and apparatus for performing simultaneous sidelink discontinuous (drx) and uplink drx in new radio (nr) vehicle to everything (v2x)
US20240032099A1 (en) Partial sensing-based resource allocation
JP2023537490A (ja) Nrリレーに関連付けられたサイドリンクディスカバリ
JP2024509908A (ja) サイドリンク上で不連続受信を実行するための方法、アーキテクチャ、装置、及びシステム
US20240163962A1 (en) Methods, architectures, apparatuses and systems for performing discontinuous reception on sidelink
JP2024512638A (ja) ユーザ機器とネットワークのリレーの効率的なページングのための方法
CN117223359A (zh) 基于部分感测的资源分配
CN117296437A (zh) 用于在侧链路上执行非连续接收的方法、架构、装置和系统
CN117204112A (zh) 用于用户装备到网络中继的有效寻呼的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination