CN115433549A - Composite microspheres with dual functions of microwave absorption and thermal management, preparation method and application thereof - Google Patents
Composite microspheres with dual functions of microwave absorption and thermal management, preparation method and application thereof Download PDFInfo
- Publication number
- CN115433549A CN115433549A CN202210994488.9A CN202210994488A CN115433549A CN 115433549 A CN115433549 A CN 115433549A CN 202210994488 A CN202210994488 A CN 202210994488A CN 115433549 A CN115433549 A CN 115433549A
- Authority
- CN
- China
- Prior art keywords
- composite microspheres
- acid
- magnetic particles
- dual functions
- carbon nanotube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 91
- 239000004005 microsphere Substances 0.000 title claims abstract description 84
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 37
- 230000006870 function Effects 0.000 title claims abstract description 33
- 230000009977 dual effect Effects 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 229910017709 Ni Co Inorganic materials 0.000 claims abstract description 58
- 229910003267 Ni-Co Inorganic materials 0.000 claims abstract description 58
- 229910003262 Ni‐Co Inorganic materials 0.000 claims abstract description 58
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 48
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 48
- 239000002253 acid Substances 0.000 claims abstract description 41
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000006249 magnetic particle Substances 0.000 claims abstract description 23
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 22
- 239000000725 suspension Substances 0.000 claims abstract description 21
- 238000003756 stirring Methods 0.000 claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229940010698 activated attapulgite Drugs 0.000 claims abstract description 15
- 239000012782 phase change material Substances 0.000 claims abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000001354 calcination Methods 0.000 claims abstract description 13
- 239000002002 slurry Substances 0.000 claims abstract description 12
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 claims abstract description 10
- 235000019982 sodium hexametaphosphate Nutrition 0.000 claims abstract description 10
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 claims abstract description 10
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 9
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims abstract description 8
- ZBYYWKJVSFHYJL-UHFFFAOYSA-L cobalt(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Co+2].CC([O-])=O.CC([O-])=O ZBYYWKJVSFHYJL-UHFFFAOYSA-L 0.000 claims abstract description 8
- 229940078487 nickel acetate tetrahydrate Drugs 0.000 claims abstract description 8
- OINIXPNQKAZCRL-UHFFFAOYSA-L nickel(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Ni+2].CC([O-])=O.CC([O-])=O OINIXPNQKAZCRL-UHFFFAOYSA-L 0.000 claims abstract description 8
- 238000001694 spray drying Methods 0.000 claims abstract description 8
- 238000005470 impregnation Methods 0.000 claims abstract description 6
- 238000009210 therapy by ultrasound Methods 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 239000000843 powder Substances 0.000 claims abstract description 5
- 238000001035 drying Methods 0.000 claims abstract description 3
- 238000005406 washing Methods 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 12
- 239000000243 solution Substances 0.000 claims description 12
- 229960000892 attapulgite Drugs 0.000 claims description 10
- 229910052625 palygorskite Inorganic materials 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 7
- 229910021641 deionized water Inorganic materials 0.000 claims description 7
- 238000002791 soaking Methods 0.000 claims description 6
- 239000007921 spray Substances 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000001994 activation Methods 0.000 claims description 3
- 230000033228 biological regulation Effects 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 239000012298 atmosphere Substances 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 150000007522 mineralic acids Chemical class 0.000 claims 1
- 239000002071 nanotube Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 31
- 238000002156 mixing Methods 0.000 abstract 1
- 238000005303 weighing Methods 0.000 abstract 1
- 239000012188 paraffin wax Substances 0.000 description 9
- 238000001878 scanning electron micrograph Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 239000011358 absorbing material Substances 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- -1 noise Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000005476 size effect Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000001757 thermogravimetry curve Methods 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000021110 pickles Nutrition 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/06—Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
- C09K5/063—Materials absorbing or liberating heat during crystallisation; Heat storage materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Carbon And Carbon Compounds (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
技术领域technical field
本发明涉及化学材料技术领域,尤其涉及具有吸波和热管理双功能的复合微球及其制备方法和应用。The invention relates to the technical field of chemical materials, in particular to composite microspheres with dual functions of wave absorption and thermal management, and a preparation method and application thereof.
背景技术Background technique
电磁辐射污染已经成为继废水、废气、噪声、固体废弃物污染后又一大影响城镇居民健康的重要污染源,对人类的身体健康产生巨大的威胁。随着无线通信的发展,高集成度、高速、小型化的无线通信设备往往会受到不希望的电磁干扰效应和显著发热的影响。因此,在现代无线通信、自动驾驶汽车和便携式设备中,同时具有优异的热管理性能和卓越的电磁干扰屏蔽性能的材料受到了广泛的关注。相变材料可以在保持恒温的同时以潜热的形式存储和释放能量,因其在能量转换和利用过程中具有超高的体积能量密度和狭窄的温度分布范围,已在热能存储和电子设备热管理等不同领域得到广泛应用,被公认为用于热保护和电子冷却系统的最佳温度控制材料。Electromagnetic radiation pollution has become another important pollution source that affects the health of urban residents after wastewater, waste gas, noise, and solid waste pollution, and poses a huge threat to human health. With the development of wireless communication, highly integrated, high-speed, and miniaturized wireless communication devices are often affected by unwanted electromagnetic interference effects and significant heat generation. Therefore, materials with both excellent thermal management properties and excellent EMI shielding properties have attracted extensive attention in modern wireless communications, autonomous vehicles, and portable devices. Phase change materials can store and release energy in the form of latent heat while maintaining a constant temperature. Because of their ultra-high volumetric energy density and narrow temperature distribution range during energy conversion and utilization, they have been used in thermal energy storage and thermal management of electronic equipment. It has been widely used in different fields, and is recognized as the best temperature control material for thermal protection and electronic cooling systems.
目前报道的用于电子器件的复合相变材料和微波吸收材料大多集中在单一用途的项目上,普遍存在制备方法复杂、机械强度差、经济效益低等问题。在具有小体积、轻重量、高能量密度的智能设备中,开发具有电磁干扰屏蔽和热管理双重功能的保护系统变得非常重要。然而,设计同时具有高效电磁干扰屏蔽和热管理功能的灵活、轻质和小体积的一体化材料仍然是一个巨大的挑战。Most of the reported composite phase change materials and microwave absorbing materials for electronic devices are focused on single-purpose projects, and there are common problems such as complicated preparation methods, poor mechanical strength, and low economic benefits. In smart devices with small size, light weight, and high energy density, it becomes very important to develop protection systems with dual functions of EMI shielding and thermal management. However, designing flexible, lightweight, and small-volume all-in-one materials with efficient EMI shielding and thermal management functions remains a great challenge.
发明内容Contents of the invention
本发明的目的在于,针对现有技术的上述不足,提出一种具有吸波和热管理双功能的复合微球及其制备方法和应用。The object of the present invention is to propose a composite microsphere with dual functions of wave absorption and heat management, its preparation method and application, aiming at the above-mentioned deficiencies of the prior art.
本发明的一种具有吸波和热管理双功能的复合微球的制备方法,包括以下步骤:A method for preparing composite microspheres with dual functions of wave absorption and heat management of the present invention comprises the following steps:
S1:酸活化凹凸棒石、Ni-Co磁性颗粒、碳纳米管浆料与六偏磷酸钠和水混合搅拌、超声得到酸活化凹凸棒石-Ni-Co磁性颗粒-碳纳米管悬浮液;S1: Acid-activated attapulgite, Ni-Co magnetic particles, carbon nanotube slurry, sodium hexametaphosphate and water were mixed and stirred, and ultrasonically obtained to obtain an acid-activated attapulgite-Ni-Co magnetic particle-carbon nanotube suspension;
S2:悬浮液通过喷雾干燥构筑酸活化凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球;S2: Acid-activated attapulgite-Ni-Co magnetic particles-carbon nanotube composite microspheres were constructed by spray drying the suspension;
S3:煅烧得到凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球;S3: calcining to obtain attapulgite-Ni-Co magnetic particles-carbon nanotube composite microspheres;
S4:复合微球与相变材料真空浸渍,得到具有吸波和热管理双功能的复合微球;S4: Vacuum impregnation of composite microspheres and phase change materials to obtain composite microspheres with dual functions of microwave absorption and thermal management;
其中,Ni-Co磁性颗粒的制备步骤如下;称取十六烷基三甲基溴化铵、NaOH、四水合乙酸钴和四水合乙酸镍加入乙二醇溶液中搅拌、超声得到混合悬浮液,将混合悬浮液进行水热合成;反应结束后收集黑色粉末产物,用去离子水或无水乙醇洗涤,并进行干燥。Wherein, the preparation steps of Ni-Co magnetic particles are as follows; weigh cetyltrimethylammonium bromide, NaOH, cobalt acetate tetrahydrate and nickel acetate tetrahydrate, add them to ethylene glycol solution, stir, and ultrasonically obtain a mixed suspension, The mixed suspension was subjected to hydrothermal synthesis; after the reaction, the black powder product was collected, washed with deionized water or absolute ethanol, and dried.
进一步的,Ni-Co磁性颗粒的制备方法中,所述十六烷基三甲基溴化铵、NaOH、四水合乙酸钴、四水合乙酸镍和乙二醇按如下重量份计:Further, in the preparation method of Ni-Co magnetic particles, the cetyltrimethylammonium bromide, NaOH, cobalt acetate tetrahydrate, nickel acetate tetrahydrate and ethylene glycol are calculated in parts by weight as follows:
十六烷基三甲基溴化铵:2~6份Hexadecyltrimethylammonium bromide: 2 to 6 parts
NaOH:1~4份NaOH: 1 to 4 parts
四水合乙酸钴:0.2~0.5份Cobalt acetate tetrahydrate: 0.2 to 0.5 parts
四水合乙酸镍:0.5~3份Nickel acetate tetrahydrate: 0.5 to 3 parts
乙二醇:30~50份。Ethylene glycol: 30-50 parts.
进一步的,Ni-Co磁性颗粒的制备方法中,搅拌转速均为500-1000r/min,搅拌时间均为30~60min;超声处理时间均为30~60min;水热合成温度均为180~200℃,水热合成时间均为6~12h。Further, in the preparation method of Ni-Co magnetic particles, the stirring speed is 500-1000r/min, the stirring time is 30-60min; the ultrasonic treatment time is 30-60min; the hydrothermal synthesis temperature is 180-200°C , the hydrothermal synthesis time is 6 ~ 12h.
进一步的,将凹凸棒石原矿经酸液浸泡得到酸活化凹凸棒石,酸活化过程为:酸液浸泡、固液分离、洗涤、干燥;其中酸液为H+浓度为1~4mol/L的无机强酸的水溶液,浸泡在搅拌中进行,搅拌转速为500-1000r/min,浸泡温度为60~90℃,浸泡时间为40~120min。Further, the attapulgite raw ore is soaked in acid solution to obtain acid-activated attapulgite. The acid activation process is: soaking in acid solution, solid-liquid separation, washing, and drying; wherein the acid solution is H + concentration of 1 to 4mol/L The aqueous solution of inorganic strong acid is soaked in stirring, the stirring speed is 500-1000r/min, the soaking temperature is 60-90°C, and the soaking time is 40-120min.
进一步的,步骤S1中,所述酸活化凹凸棒石、Ni-Co磁性颗粒、碳纳米管浆料与六偏磷酸钠和水按如下重量份计:Further, in step S1, the acid-activated attapulgite, Ni-Co magnetic particles, carbon nanotube slurry, sodium hexametaphosphate and water are calculated in parts by weight as follows:
酸活化凹凸棒石:0.5~2份Acid-activated attapulgite: 0.5 to 2 parts
Ni-Co磁性颗粒:1~5份Ni-Co magnetic particles: 1 to 5 parts
碳纳米管浆料:10~30份,碳纳米管浆料的浓度为10%Carbon nanotube slurry: 10-30 parts, the concentration of carbon nanotube slurry is 10%
六偏磷酸钠:0.2~1份Sodium hexametaphosphate: 0.2 to 1 part
水:30~80份。Water: 30-80 parts.
进一步的,步骤S1中,搅拌转速均为600-1000r/min,搅拌时间均为30~60min;超声处理时间均为40~80min;步骤S2中,喷雾干燥过程中:喷雾干燥机通针设定3.0,风机频率设定35.00Hz,进风温度设定150~180℃,蠕动速度1~6RPM。Further, in step S1, the stirring speed is 600-1000r/min, and the stirring time is 30-60min; the ultrasonic treatment time is 40-80min; 3.0, the fan frequency is set at 35.00Hz, the inlet air temperature is set at 150-180°C, and the creep speed is 1-6RPM.
进一步的,步骤S3中,煅烧温度均为300~400℃,煅烧时间均为1~4h,煅烧气氛为惰性气体。Further, in step S3, the calcination temperature is 300-400° C., the calcination time is 1-4 h, and the calcination atmosphere is an inert gas.
进一步的,步骤S4中,复合微球与相变材料的用量关系为:40~60wt.%:40~60wt.%;真空浸渍先在室温下抽真空10~50min,然后在40~90℃下抽真空10~50min。Further, in step S4, the relationship between the amount of the composite microspheres and the phase change material is: 40-60wt.%: 40-60wt.%; vacuum impregnation is performed at room temperature for 10-50min, and then at 40-90°C Vacuumize for 10-50 minutes.
一种采用上述的制备方法制备的具有吸波和热管理双功能的复合微球。A composite microsphere with dual functions of wave absorption and heat management prepared by the above-mentioned preparation method.
上述具有吸波和热管理双功能的复合微球的应用,用于高端电子设备的电磁干扰屏蔽和热能调节。The application of the above-mentioned composite microspheres with dual functions of wave absorption and thermal management is used for electromagnetic interference shielding and thermal energy regulation of high-end electronic equipment.
本发明通过水热合成制备了尺寸大小合适的Ni-Co磁性颗粒,通过酸液浸泡将凹凸棒石解束和提纯以获得酸活化凹凸棒石,通过喷雾干燥、煅烧构筑凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球,将相变材料封装于复合微球的刚性结构中防止泄漏,得到具有吸波和热管理双功能的复合微球材料。The present invention prepares Ni-Co magnetic particles of suitable size through hydrothermal synthesis, and then soaks the attapulgite in an acid solution to unbundle and purify the attapulgite to obtain acid-activated attapulgite, and constructs the attapulgite-Ni- Co magnetic particle-carbon nanotube composite microspheres, the phase change material is encapsulated in the rigid structure of the composite microspheres to prevent leakage, and a composite microsphere material with dual functions of wave absorption and thermal management is obtained.
本发明利用矿物在储热领域和吸波材料研究中的特殊性质,通过相变材料实现优异的热管理性能,通过微球结构、介电损耗材料和磁损耗材料实现了微波吸收性能。因此,以凹凸棒石为基体材料调节复合材料的介电常数、碳纳米管为介电损耗材料和磁性金属合金为磁损耗材料,构筑复合微球进而使材料的本征阻抗与自由空间阻抗尽可能达到平衡,凹凸棒石的引入可以将复合材料的复介电常数调整到合适的范围,保证材料的阻抗匹配特性平衡,复合微球的多孔结构可以使入射电磁波在球体内部发生多次反射而损耗,结合磁性金属颗粒的强磁损耗能力以及多种损耗机制的协同作用,使该复合材料具有优越的吸波性能。The invention utilizes the special properties of minerals in the field of heat storage and research on microwave-absorbing materials, realizes excellent thermal management performance through phase-change materials, and realizes microwave absorption performance through microsphere structures, dielectric loss materials and magnetic loss materials. Therefore, using attapulgite as the matrix material to adjust the dielectric constant of the composite material, carbon nanotubes as the dielectric loss material and magnetic metal alloy as the magnetic loss material, the composite microspheres are constructed to make the intrinsic impedance and free space impedance of the material as close as possible. It is possible to achieve a balance. The introduction of attapulgite can adjust the complex dielectric constant of the composite material to an appropriate range to ensure the balance of the impedance matching characteristics of the material. The porous structure of the composite microspheres can make the incident electromagnetic waves reflect multiple times inside the spheres. Loss, combined with the strong magnetic loss ability of magnetic metal particles and the synergistic effect of multiple loss mechanisms, the composite material has superior wave-absorbing properties.
本发明制备的凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球具有高比表面积和呈多孔结构,可以通过毛细管力、表面张力、氢键和范德华力等各种相互作用有效地封装相变材料。而且本发明制备的凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球的密度较传统吸波材料小、透波性能好且其独特的结构特点也有利于损耗电磁波等优势。而且,本发明采用的凹凸棒石还具有小尺寸效应、量子尺寸效应和表界面效应等特殊性质,充分利用凹凸棒石具有的特殊性质,整合矿物、介电损耗材料、磁损耗材料的特性优势和功能化设计,构筑的复合微球材料具有吸波和热管理双重功能。The attapulgite-Ni-Co magnetic particle-carbon nanotube composite microsphere prepared by the present invention has a high specific surface area and a porous structure, and can be effectively encapsulated by various interactions such as capillary force, surface tension, hydrogen bond and van der Waals force phase change material. Moreover, the attapulgite-Ni-Co magnetic particle-carbon nanotube composite microsphere prepared by the present invention has lower density than traditional wave-absorbing materials, good wave-transmitting performance, and its unique structural characteristics are also beneficial to the loss of electromagnetic waves. Moreover, the attapulgite used in the present invention also has special properties such as small size effect, quantum size effect and surface interface effect, making full use of the special properties of attapulgite and integrating the characteristics and advantages of minerals, dielectric loss materials, and magnetic loss materials And functional design, the constructed composite microsphere material has dual functions of microwave absorption and thermal management.
本发明构筑的凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球在2-18GHz范围内,当厚度仅为1.7mm时,有效吸波带宽可以达到5.54GHz,且在厚度为1.6mm时,在15.17GHz处达到最大反射损耗值21.81dB。The attapulgite-Ni-Co magnetic particle-carbon nanotube composite microsphere constructed by the present invention is in the range of 2-18GHz. When the thickness is only 1.7mm, the effective wave-absorbing bandwidth can reach 5.54GHz, and the thickness is 1.6mm. , the maximum reflection loss value of 21.81dB is reached at 15.17GHz.
本发明构筑的凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球真空浸渍负载石蜡制备了微球基复合相变材料,复合微球对石蜡的装载量大约47.8%,具有优越的热能储存能力。该材料能够同时实现吸波和热管理双重功能,对同步实现高端电子设备的电磁干扰屏蔽和热能调节具有重要意义。The attapulgite-Ni-Co magnetic particles-carbon nanotube composite microspheres constructed by the present invention are vacuum-impregnated with paraffin to prepare a microsphere-based composite phase change material. The loading capacity of the composite microspheres to paraffin is about 47.8%, which has superior thermal energy storage capacity. The material can realize the dual functions of wave absorption and thermal management at the same time, which is of great significance for the simultaneous realization of electromagnetic interference shielding and thermal energy regulation of high-end electronic equipment.
附图说明Description of drawings
图1为实施例1制备的Ni-Co磁性颗粒的扫描电子显微镜照片;Fig. 1 is the scanning electron micrograph of the Ni-Co magnetic particle that embodiment 1 prepares;
图2为实施例1制备的酸活化凹凸棒石-Ni-Co磁性颗粒-碳纳米管悬浮液喷雾干燥后制备的复合微球扫描电子显微镜照片;Fig. 2 is the scanning electron micrograph of the composite microsphere prepared after the acid-activated attapulgite-Ni-Co magnetic particles-carbon nanotube suspension spray-dried prepared in Example 1;
图3为实施例1制备的煅烧后的凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球的扫描电子显微镜照片;Fig. 3 is the scanning electron micrograph of the attapulgite-Ni-Co magnetic particle-carbon nanotube composite microsphere after the calcination prepared in embodiment 1;
图4为实施例1制备的具有吸波和热管理双功能复合微球材料的扫描电子显微镜照片;Fig. 4 is the scanning electron micrograph of the composite microsphere material with wave-absorbing and thermal management dual functions prepared in Example 1;
图5为实施例1制备的煅烧后凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球的电磁波吸收特性二维曲线图;Fig. 5 is the two-dimensional graph of the electromagnetic wave absorption characteristic of the calcined attapulgite-Ni-Co magnetic particle-carbon nanotube composite microsphere prepared in Example 1;
图6为实施例1制备的煅烧后凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球的电磁波吸收特性三维曲线图;Fig. 6 is the three-dimensional graph of the electromagnetic wave absorption characteristic of the calcined attapulgite-Ni-Co magnetic particle-carbon nanotube composite microsphere prepared in Example 1;
图7为实施例1制备的具有吸波和热管理双功能复合微球材料的热重分析曲线;Fig. 7 is the thermogravimetric analysis curve of the composite microsphere material with wave-absorbing and thermal management dual functions prepared in Example 1;
图8为实施例2制备的煅烧后凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球的电磁波吸收特性二维曲线图;Figure 8 is a two-dimensional graph of the electromagnetic wave absorption characteristics of the attapulgite-Ni-Co magnetic particles-carbon nanotube composite microspheres prepared in Example 2;
图9为实施例3制备的煅烧后凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球的电磁波吸收特性二维曲线图。FIG. 9 is a two-dimensional graph of the electromagnetic wave absorption characteristics of the calcined attapulgite-Ni-Co magnetic particles-carbon nanotube composite microspheres prepared in Example 3. FIG.
具体实施方式detailed description
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。The following are specific embodiments of the present invention and in conjunction with the accompanying drawings, the technical solutions of the present invention are further described, but the present invention is not limited to these embodiments.
实施例1Example 1
制备Ni-Co磁性颗粒:Preparation of Ni-Co magnetic particles:
称取十六烷基三甲基溴化铵4g、NaOH 2.4g、四水合乙酸钴0.32g和四水合乙酸镍1.2g加入40mL乙二醇溶液中搅拌40min、超声40min得到混合悬浮液,将混合悬浮液倒入100mL聚四氟乙烯衬套内,转移至不锈钢反应釜中,置于200℃烘箱内保持8h进行水热合成。反应结束后收集黑色粉末产物,用去离子水或无水乙醇洗涤,并在60℃烘箱内进行干燥。制备酸活化凹凸棒石:Weigh 4g of cetyltrimethylammonium bromide, 2.4g of NaOH, 0.32g of cobalt acetate tetrahydrate and 1.2g of nickel acetate tetrahydrate, add them into 40mL ethylene glycol solution, stir for 40min, and ultrasonicate for 40min to obtain a mixed suspension. The suspension was poured into a 100mL polytetrafluoroethylene liner, transferred to a stainless steel reactor, and placed in an oven at 200°C for 8 hours for hydrothermal synthesis. After the reaction, the black powder product was collected, washed with deionized water or absolute ethanol, and dried in an oven at 60°C. Preparation of acid-activated attapulgite:
称取20g的凹凸棒石原矿,置于盛有200mL质量分数为4wt.%盐酸溶液的烧杯中,将烧杯置于80℃恒温水浴锅中,搅拌、超声、水浴酸洗60min,通过抽滤方法用去离子水清洗至中性,烘干,研磨和过180目筛分得到酸活化凹凸棒石。Weigh 20g of attapulgite raw ore, place it in a beaker filled with 200mL of hydrochloric acid solution with a mass fraction of 4wt.%, place the beaker in a constant temperature water bath at 80°C, stir, ultrasonic, and pickle in water bath for 60min, and filter through suction Wash with deionized water until neutral, dry, grind and sieve through 180 mesh to obtain acid-activated attapulgite.
构筑酸活化凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球:Construction of acid-activated attapulgite-Ni-Co magnetic particles-carbon nanotube composite microspheres:
(1)称取1g酸活化凹凸棒石、2g Ni-Co磁性颗粒、20g浓度为10%的碳纳米管浆料与0.4g六偏磷酸钠和50mL去离子水混合搅拌40min、超声60min得到酸活化凹凸棒石-Ni-Co磁性颗粒-碳纳米管悬浮液。(1) Weigh 1g of acid-activated attapulgite, 2g of Ni-Co magnetic particles, 20g of carbon nanotube slurry with a concentration of 10%, mix with 0.4g of sodium hexametaphosphate and 50mL of deionized water, stir for 40min, and sonicate for 60min to obtain acid Activated attapulgite-Ni-Co magnetic particles-carbon nanotube suspension.
(2)将酸活化凹凸棒石-Ni-Co磁性颗粒-碳纳米管悬浮液进行喷雾干燥。喷雾干燥机通针设定3.0,风机频率设定35.00Hz,进风温度设定160℃,蠕动速度2RPM。收集干燥物料。(2) The acid-activated attapulgite-Ni-Co magnetic particles-carbon nanotube suspension is spray-dried. The spray dryer needle setting is 3.0, the fan frequency is set at 35.00Hz, the inlet air temperature is set at 160°C, and the creep speed is 2RPM. Collect dry material.
(3)将喷雾干燥收集到的干燥物料转移至马弗炉中,在350℃下煅烧2h,煅烧气氛为氩气,得到凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球。制备具有吸波和热管理双功能的复合微球材料。(3) The dried material collected by spray drying was transferred to a muffle furnace, and calcined at 350° C. for 2 h in an argon atmosphere to obtain attapulgite-Ni-Co magnetic particles-carbon nanotube composite microspheres. Preparation of composite microsphere materials with dual functions of microwave absorption and thermal management.
称取2g凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球和3g石蜡(P)转移至抽滤瓶中,室温下抽真空30min,然后在90℃水浴条件下抽真空30min,60℃烘箱热过滤24h,制得吸波和热管理双功能的复合微球材料。Weigh 2g of attapulgite-Ni-Co magnetic particles-carbon nanotube composite microspheres and 3g of paraffin (P) and transfer to a suction filter bottle, vacuumize at room temperature for 30min, then vacuumize in a water bath at 90°C for 30min, 60 ℃ oven hot filtration for 24 hours, prepared a composite microsphere material with dual functions of microwave absorption and thermal management.
实施例2Example 2
构筑酸活化凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球:Construction of acid-activated attapulgite-Ni-Co magnetic particles-carbon nanotube composite microspheres:
(1)称取2g酸活化凹凸棒石、4g Ni-Co磁性颗粒、20g浓度为10%的碳纳米管浆料与0.4g六偏磷酸钠和50mL去离子水混合搅拌40min、超声60min得到酸活化凹凸棒石-Ni-Co磁性颗粒-碳纳米管悬浮液。(1) Weigh 2g of acid-activated attapulgite, 4g of Ni-Co magnetic particles, 20g of carbon nanotube slurry with a concentration of 10%, mix with 0.4g of sodium hexametaphosphate and 50mL of deionized water, stir for 40min, and sonicate for 60min to obtain acid Activated attapulgite-Ni-Co magnetic particles-carbon nanotube suspension.
(2)将酸活化凹凸棒石-Ni-Co磁性颗粒-碳纳米管悬浮液进行喷雾干燥。喷雾干燥机通针设定3.0,风机频率设定35.00Hz,进风温度设定160℃,蠕动速度2RPM。收集干燥物料。(2) The acid-activated attapulgite-Ni-Co magnetic particles-carbon nanotube suspension is spray-dried. The spray dryer needle setting is 3.0, the fan frequency is set at 35.00Hz, the inlet air temperature is set at 160°C, and the creep speed is 2RPM. Collect dry material.
(3)将喷雾干燥收集到的干燥物料转移至马弗炉中,在350℃下煅烧2h,煅烧气氛为氩气,得到凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球。(3) The dried material collected by spray drying was transferred to a muffle furnace, and calcined at 350° C. for 2 h in an argon atmosphere to obtain attapulgite-Ni-Co magnetic particles-carbon nanotube composite microspheres.
实施例3Example 3
构筑酸活化凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球:Construction of acid-activated attapulgite-Ni-Co magnetic particles-carbon nanotube composite microspheres:
(1)称取1g酸活化凹凸棒石、2g Ni-Co磁性颗粒、15g浓度为10%的碳纳米管浆料与0.4g六偏磷酸钠和50mL去离子水混合搅拌40min、超声60min得到酸活化凹凸棒石-Ni-Co磁性颗粒-碳纳米管悬浮液。(1) Weigh 1g of acid-activated attapulgite, 2g of Ni-Co magnetic particles, 15g of carbon nanotube slurry with a concentration of 10%, mix with 0.4g of sodium hexametaphosphate and 50mL of deionized water, stir for 40min, and sonicate for 60min to obtain acid Activated attapulgite-Ni-Co magnetic particles-carbon nanotube suspension.
(2)将酸活化凹凸棒石-Ni-Co磁性颗粒-碳纳米管悬浮液进行喷雾干燥。喷雾干燥机通针设定3.0,风机频率设定35.00Hz,进风温度设定160℃,蠕动速度2RPM。收集干燥物料。(2) The acid-activated attapulgite-Ni-Co magnetic particles-carbon nanotube suspension is spray-dried. The spray dryer needle setting is 3.0, the fan frequency is set at 35.00Hz, the inlet air temperature is set at 160°C, and the creep speed is 2RPM. Collect dry material.
(3)将喷雾干燥收集到的干燥物料转移至马弗炉中,在350℃下煅烧2h,煅烧气氛为氩气,得到凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球。制备具有吸波和热管理双功能的复合微球材料。(3) The dried material collected by spray drying was transferred to a muffle furnace, and calcined at 350° C. for 2 h in an argon atmosphere to obtain attapulgite-Ni-Co magnetic particles-carbon nanotube composite microspheres. Preparation of composite microsphere materials with dual functions of microwave absorption and thermal management.
参见附图1,它是实施例1制备的Ni-Co磁性颗粒的扫描电子显微镜照片。可以看出,制备的Ni-Co磁性颗粒的尺寸大约在0.5~1.0μm。该尺寸大小的磁性颗粒有利于后续构筑复合微球,同时Ni-Co磁性金属合金也为较好的磁损耗材料,有助于提高复合微球的微波吸收性能。Referring to accompanying drawing 1, it is the scanning electron micrograph of the Ni-Co magnetic particle that embodiment 1 prepares. It can be seen that the size of the prepared Ni-Co magnetic particles is about 0.5-1.0 μm. The magnetic particles of this size are beneficial to the subsequent construction of composite microspheres, and the Ni-Co magnetic metal alloy is also a good magnetic loss material, which helps to improve the microwave absorption performance of the composite microspheres.
参见附图2,它是实施例1将酸活化凹凸棒石-Ni-Co磁性颗粒-碳纳米管悬浮液喷雾干燥后制备的复合微球扫描电子显微镜照片。可以看出,构筑的复合微球尺寸大约在5~7μm,复合微球具有很多交错的孔道和大比表面,为相变材料提供了大量的吸附位点,有助于提升复合材料的热能储存能力。See accompanying drawing 2, which is a scanning electron micrograph of the composite microspheres prepared by spray-drying the acid-activated attapulgite-Ni-Co magnetic particles-carbon nanotube suspension in Example 1. It can be seen that the size of the constructed composite microspheres is about 5-7 μm, and the composite microspheres have many staggered pores and large specific surface area, which provide a large number of adsorption sites for phase change materials and help to improve the thermal energy storage of composite materials ability.
参见附图3,它是实施例1煅烧后的凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球的扫描电子显微镜照片。可以看出,构筑的复合微球在煅烧活化后并未坍塌,仍然保持复合微球的大量交错孔道和大比表面,有助于后续将相变材料封装其刚性结构中。Referring to accompanying drawing 3, it is the scanning electron micrograph of the attapulgite-Ni-Co magnetic particles-carbon nanotube composite microspheres calcined in Example 1. It can be seen that the constructed composite microspheres did not collapse after calcination and activation, and still maintained a large number of staggered channels and large specific surface of the composite microspheres, which is helpful for subsequent encapsulation of phase change materials into its rigid structure.
参见附图4,它是实施例1制备的具有吸波和热管理双功能复合微球的扫描电子显微镜照片。可以看出,构筑的复合微球与相变材料石蜡通过真空浸渍复合后,在复合微球表面包覆了一层光滑的石蜡,将石蜡封装于复合微球的孔隙中,从而防止泄露。Referring to accompanying drawing 4, it is the scanning electron micrograph of the composite microsphere with dual functions of absorbing and thermal management prepared in Example 1. It can be seen that after the composite microspheres and phase change material paraffin are compounded by vacuum impregnation, a layer of smooth paraffin is coated on the surface of the composite microspheres, and the paraffin is encapsulated in the pores of the composite microspheres to prevent leakage.
参见附图5和6,它是实施例1制备的煅烧后凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球的电磁波吸收特性,根据不同给定吸收体厚度下的相对复介电常数和磁导率,结合传输线理论,仿真计算了样品的反射损失值,并绘制了相应的二维曲线图和三维曲面图。复合微球在2-18GHz范围内,当厚度仅为1.7mm时,有效吸波带宽可以达到5.54GHz,且在厚度为1.6mm时,在15.17GHz处达到最大反射损耗值21.81dB。凹凸棒石的引入可以将复合材料的复介电常数调整到合适的范围,保证材料的阻抗匹配特性平衡,复合微球的多孔结构可以使入射电磁波在球体内部发生多次反射而损耗,结合磁性金属颗粒的强磁损耗能力以及多种损耗机制的协同作用,使该复合材料具有优越的吸波性能。Referring to accompanying
参见附图7,它是实施例1制备的具有吸波和热管理双功能复合微球材料的热重分析曲线,复合微球对石蜡的装载量大约47.8%,这主要得益于复合微球的多孔结构和大比表面为石蜡提供了大量吸附位点,将石蜡封装其结构中,使复合材料具有优越的热能储存能力。Referring to accompanying drawing 7, it is the thermal gravimetric analysis curve of the composite microsphere material with wave-absorbing and thermal management dual functions prepared in Example 1, the loading capacity of the composite microsphere to paraffin is about 47.8%, which mainly benefits from the composite microsphere The porous structure and large specific surface provide a large number of adsorption sites for paraffin, and the paraffin is encapsulated in its structure, so that the composite material has superior thermal energy storage capacity.
参见附图8,它是实施例2制备的煅烧后凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球的电磁波吸收特性,根据不同给定吸收体厚度下的相对复介电常数和磁导率,结合传输线理论,仿真计算了样品的反射损失值,并绘制了相应的二维曲线图。复合微球在2-18GHz范围内,当厚度仅为1.7mm时,有效吸波带宽可以达到5.02GHz,且在厚度为2.5mm时,在9.13GHz处达到最大反射损耗值45.94dB。Referring to accompanying drawing 8, it is the electromagnetic wave absorption characteristic of the attapulgite-Ni-Co magnetic particle-carbon nanotube composite microsphere after the calcination prepared in
参见附图9,它是实施例3制备的煅烧后凹凸棒石-Ni-Co磁性颗粒-碳纳米管复合微球的电磁波吸收特性,根据不同给定吸收体厚度下的相对复介电常数和磁导率,结合传输线理论,仿真计算了样品的反射损失值,并绘制了相应的二维曲线图。复合微球在2-18GHz范围内,当厚度仅为1.8mm时,有效吸波带宽可以达到5.44GHz,且在厚度为2.0mm时,在12.32GHz处达到最大反射损耗值36.45dB。Referring to accompanying drawing 9, it is the electromagnetic wave absorption characteristic of the attapulgite-Ni-Co magnetic particle-carbon nanotube composite microsphere after calcining prepared in embodiment 3, according to the relative complex permittivity and Permeability, combined with the transmission line theory, the reflection loss value of the sample was calculated by simulation, and the corresponding two-dimensional curve was drawn. In the range of 2-18GHz, when the thickness of the composite microsphere is only 1.8mm, the effective absorption bandwidth can reach 5.44GHz, and when the thickness is 2.0mm, the maximum reflection loss value is 36.45dB at 12.32GHz.
以上未涉及之处,适用于现有技术。What is not involved above is applicable to the prior art.
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围,本发明所属技术领域的技术人员可以对所描述的具体实施例来做出各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的方向或者超越所附权利要求书所定义的范围。本领域的技术人员应该理解,凡是依据本发明的技术实质对以上实施方式所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围。Although some specific embodiments of the present invention have been described in detail by examples, those skilled in the art should understand that the above examples are only for illustration, rather than for limiting the scope of the present invention. Various modifications or additions or similar substitutions can be made to the described specific embodiments without departing from the direction of the present invention or exceeding the scope defined by the appended claims. Those skilled in the art should understand that any modifications, equivalent replacements, improvements, etc. made to the above implementations based on the technical essence of the present invention shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210994488.9A CN115433549B (en) | 2022-08-18 | 2022-08-18 | Composite microsphere with dual functions of wave absorption and thermal management as well as preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210994488.9A CN115433549B (en) | 2022-08-18 | 2022-08-18 | Composite microsphere with dual functions of wave absorption and thermal management as well as preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115433549A true CN115433549A (en) | 2022-12-06 |
CN115433549B CN115433549B (en) | 2024-06-18 |
Family
ID=84242314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210994488.9A Active CN115433549B (en) | 2022-08-18 | 2022-08-18 | Composite microsphere with dual functions of wave absorption and thermal management as well as preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115433549B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103157430A (en) * | 2011-12-09 | 2013-06-19 | 中国科学院大连化学物理研究所 | A sea urchin-shaped core-shell Fe3O4@TiO2 magnetic microsphere and its preparation and application |
CN105295832A (en) * | 2014-07-25 | 2016-02-03 | 南京理工大学 | Preparation method for reduced graphene oxide/Ni-Co ternary composite wave-absorbing material |
CN109536138A (en) * | 2018-12-29 | 2019-03-29 | 苏州铂韬新材料科技有限公司 | Waveguide hot material and preparation method thereof is inhaled in a kind of paste phase transformation |
CN111534278A (en) * | 2019-12-25 | 2020-08-14 | 江西悦安新材料股份有限公司 | Preparation method of carbon nano tube composite wave-absorbing material |
CN112087939A (en) * | 2020-09-10 | 2020-12-15 | 中山大学 | FeCoNi @ C/carbon nanotube magnetic composite wave-absorbing material and preparation method and application thereof |
CN113451783A (en) * | 2021-06-18 | 2021-09-28 | 西安交通大学 | Phase-change controllable composite wave absorber and preparation and performance regulation and control method thereof |
CN113637459A (en) * | 2021-07-13 | 2021-11-12 | 中南大学 | A kind of preparation method of composite mineral microsphere-based phase change heat storage material |
CN113789609A (en) * | 2021-08-30 | 2021-12-14 | 武汉理工大学 | Film material with heat absorption/wave absorption double-effect function and preparation method thereof |
-
2022
- 2022-08-18 CN CN202210994488.9A patent/CN115433549B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103157430A (en) * | 2011-12-09 | 2013-06-19 | 中国科学院大连化学物理研究所 | A sea urchin-shaped core-shell Fe3O4@TiO2 magnetic microsphere and its preparation and application |
CN105295832A (en) * | 2014-07-25 | 2016-02-03 | 南京理工大学 | Preparation method for reduced graphene oxide/Ni-Co ternary composite wave-absorbing material |
CN109536138A (en) * | 2018-12-29 | 2019-03-29 | 苏州铂韬新材料科技有限公司 | Waveguide hot material and preparation method thereof is inhaled in a kind of paste phase transformation |
CN111534278A (en) * | 2019-12-25 | 2020-08-14 | 江西悦安新材料股份有限公司 | Preparation method of carbon nano tube composite wave-absorbing material |
CN112087939A (en) * | 2020-09-10 | 2020-12-15 | 中山大学 | FeCoNi @ C/carbon nanotube magnetic composite wave-absorbing material and preparation method and application thereof |
CN113451783A (en) * | 2021-06-18 | 2021-09-28 | 西安交通大学 | Phase-change controllable composite wave absorber and preparation and performance regulation and control method thereof |
CN113637459A (en) * | 2021-07-13 | 2021-11-12 | 中南大学 | A kind of preparation method of composite mineral microsphere-based phase change heat storage material |
CN113789609A (en) * | 2021-08-30 | 2021-12-14 | 武汉理工大学 | Film material with heat absorption/wave absorption double-effect function and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115433549B (en) | 2024-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109705808A (en) | A kind of cobalt-nickel alloy-porous carbon composite wave absorbing material with MOF structure and preparation method thereof | |
CN110079271B (en) | Protein-based carbon/magnetic Fe Co nanoparticle composite wave absorber and preparation method and application thereof | |
CN113248725A (en) | Preparation method of electromagnetic wave absorbing material based on MOF derivation and electromagnetic wave absorbing material | |
CN111683512B (en) | A microwave synthesis coal-based carbon/ferromagnetic metal composite electromagnetic absorption material and method | |
CN108377638A (en) | A kind of Co/C composite electromagnetics wave absorbing agent and preparation method thereof | |
CN108633242B (en) | Titanium carbon/nickel composite powder electromagnetic wave absorbent and preparation method thereof | |
CN114806255A (en) | Magnetic composite wave-absorbing material based on industrial waste rice hull carbon and preparation method thereof | |
CN107010675A (en) | A kind of titanium silicon-carbon/Conjugate ferrite radio-radar absorber and preparation method | |
CN110918980B (en) | A kind of electromagnetic shielding composite material and preparation method thereof | |
CN106350003A (en) | Preparation method of porous graphene/ferroferric oxide composite absorbing material | |
CN108192565A (en) | A kind of preparation method of nano combined absorbing material | |
CN115500066B (en) | A sea urchin-shaped core-shell mineral microsphere-based heat storage and wave absorption integrated material and its preparation method and application | |
CN115433549A (en) | Composite microspheres with dual functions of microwave absorption and thermal management, preparation method and application thereof | |
CN116040618B (en) | RGO/MXene/FeCoC multi-element composite electromagnetic wave-absorbing material and preparation method thereof | |
CN115611347B (en) | Preparation method of magnetic polydopamine-modified CuS nanoparticles with high solar energy absorption | |
CN110436441A (en) | A kind of meso-porous hollow carbon sphere and its preparation and the application in electromagnetic absorption | |
CN110759711A (en) | A method for preparing spherical ceramic composite microwave absorbing material by using coal gangue | |
CN115634630B (en) | NiFe2O4Wave-absorbing and heat-storing integrated material coated with mineral microspheres, and preparation method and application thereof | |
CN117126644A (en) | FeCo/Fe 2 O 3 Composite wave-absorbing material of/C fiber, preparation method and application thereof | |
CN113708085B (en) | A kind of preparation method of nanoporous carbon-coated magnetic nanoparticle composite | |
CN111574957B (en) | Wave-absorbing material based on biological waste and magnetic material waste and preparation method thereof | |
CN114346250A (en) | Metal-carbon composite particle and preparation method and application thereof | |
CN115802733B (en) | Preparation method of magnetic metal-loaded anion framework absorbing material | |
CN114939416B (en) | Preparation method of a composite magnetic tin dioxide photocatalyst responsive to visible light | |
CN115181280B (en) | Preparation method, application and recycling method of metal-organic framework material MIL-101 (Fe) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |