CN113708085B - A kind of preparation method of nanoporous carbon-coated magnetic nanoparticle composite - Google Patents
A kind of preparation method of nanoporous carbon-coated magnetic nanoparticle composite Download PDFInfo
- Publication number
- CN113708085B CN113708085B CN202110907274.9A CN202110907274A CN113708085B CN 113708085 B CN113708085 B CN 113708085B CN 202110907274 A CN202110907274 A CN 202110907274A CN 113708085 B CN113708085 B CN 113708085B
- Authority
- CN
- China
- Prior art keywords
- nanoporous carbon
- coated magnetic
- nanoparticle composite
- magnetic nanoparticle
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 67
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 66
- 239000002131 composite material Substances 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 30
- 239000002122 magnetic nanoparticle Substances 0.000 title claims abstract description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 27
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 16
- 150000003839 salts Chemical class 0.000 claims abstract description 16
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 239000010941 cobalt Chemical class 0.000 claims abstract 2
- 229910017052 cobalt Inorganic materials 0.000 claims abstract 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical class [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract 2
- 238000001354 calcination Methods 0.000 claims description 23
- 229920000877 Melamine resin Polymers 0.000 claims description 9
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 239000000243 solution Substances 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 7
- 229910021641 deionized water Inorganic materials 0.000 claims description 7
- 239000011259 mixed solution Substances 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000003760 magnetic stirring Methods 0.000 claims description 6
- LFKXWKGYHQXRQA-FDGPNNRMSA-N (z)-4-hydroxypent-3-en-2-one;iron Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LFKXWKGYHQXRQA-FDGPNNRMSA-N 0.000 claims description 2
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 claims description 2
- 229940011182 cobalt acetate Drugs 0.000 claims description 2
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 2
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 claims description 2
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 claims description 2
- PVFSDGKDKFSOTB-UHFFFAOYSA-K iron(3+);triacetate Chemical compound [Fe+3].CC([O-])=O.CC([O-])=O.CC([O-])=O PVFSDGKDKFSOTB-UHFFFAOYSA-K 0.000 claims description 2
- 229940078494 nickel acetate Drugs 0.000 claims description 2
- BMGNSKKZFQMGDH-FDGPNNRMSA-L nickel(2+);(z)-4-oxopent-2-en-2-olate Chemical compound [Ni+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O BMGNSKKZFQMGDH-FDGPNNRMSA-L 0.000 claims description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 claims 1
- CDVAIHNNWWJFJW-UHFFFAOYSA-N 3,5-diethoxycarbonyl-1,4-dihydrocollidine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C CDVAIHNNWWJFJW-UHFFFAOYSA-N 0.000 claims 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical class [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 19
- 239000011358 absorbing material Substances 0.000 abstract description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical class [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 4
- 238000010521 absorption reaction Methods 0.000 abstract description 4
- 229910052759 nickel Chemical class 0.000 abstract description 2
- 229910002804 graphite Inorganic materials 0.000 abstract 1
- 239000010439 graphite Substances 0.000 abstract 1
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 239000002105 nanoparticle Substances 0.000 abstract 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 abstract 1
- 239000000047 product Substances 0.000 description 14
- 239000002245 particle Substances 0.000 description 11
- 239000012300 argon atmosphere Substances 0.000 description 10
- 230000007935 neutral effect Effects 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 241000282414 Homo sapiens Species 0.000 description 3
- 238000001237 Raman spectrum Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000006249 magnetic particle Substances 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- FJDJVBXSSLDNJB-LNTINUHCSA-N cobalt;(z)-4-hydroxypent-3-en-2-one Chemical compound [Co].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O FJDJVBXSSLDNJB-LNTINUHCSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- LZKLAOYSENRNKR-LNTINUHCSA-N iron;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LZKLAOYSENRNKR-LNTINUHCSA-N 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004630 mental health Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q17/00—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
- H01Q17/004—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using non-directional dissipative particles, e.g. ferrite powders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
- H01F1/0045—Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
- H01F1/0054—Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Nanotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Carbon And Carbon Compounds (AREA)
- Hard Magnetic Materials (AREA)
Abstract
本发明提供一种纳米多孔碳包覆磁性纳米粒子复合物的制备方法,属于复合材料技术领域。首先,合成石墨相氮化碳,将其与镁粉混合后高温碳化,产物经盐酸洗涤得到纳米多孔碳;其次,将铁、钴、镍的金属盐溶于甲醇并加入纳米多孔碳混合烘干;最后,将混合物高温煅烧,得到纳米多孔碳包覆纳米粒子复合吸波材料。本发明利用两步法纳米多孔碳包覆磁性纳米粒子复合吸波材料,展现了良好的电磁波吸收能力;制备方法操作简单,产物具有良好的电磁参数以及电磁波吸收能力。
The invention provides a preparation method of a nanoporous carbon-coated magnetic nanoparticle composite, which belongs to the technical field of composite materials. Firstly, graphite phase carbon nitride is synthesized, mixed with magnesium powder and carbonized at high temperature, and the product is washed with hydrochloric acid to obtain nanoporous carbon; secondly, metal salts of iron, cobalt and nickel are dissolved in methanol and added to nanoporous carbon, mixed and dried. and finally, the mixture is calcined at high temperature to obtain a nanoporous carbon-coated nanoparticle composite wave absorbing material. The invention utilizes a two-step nanoporous carbon-coated magnetic nanoparticle composite wave absorbing material, and exhibits good electromagnetic wave absorption ability; the preparation method is simple to operate, and the product has good electromagnetic parameters and electromagnetic wave absorption ability.
Description
技术领域technical field
本发明属于复合材料技术领域,涉及一种纳米多孔碳包覆磁性纳米粒子复合吸波材料的制备方法。The invention belongs to the technical field of composite materials, and relates to a preparation method of a nanoporous carbon-coated magnetic nanoparticle composite wave absorbing material.
背景技术Background technique
现如今,随着电子通信技术迅猛发展,人类的生活对各类电子产品的依赖性也日益增强,给人们日常生活带来极大便利却也带来了严重的电磁污染。长期接触过量电磁辐射将会对人体的免疫系统,神经系统等造成不可逆的损害,严重威胁着人类的身心健康。此外,在舰艇制造,战机电磁隐身等领域,制备高效的电磁波吸收材料也是研究的热点问题。Nowadays, with the rapid development of electronic communication technology, human life is increasingly dependent on various electronic products, which brings great convenience to people's daily life but also brings serious electromagnetic pollution. Long-term exposure to excessive electromagnetic radiation will cause irreversible damage to the human immune system, nervous system, etc., and seriously threaten the physical and mental health of human beings. In addition, in the fields of ship manufacturing and electromagnetic stealth of fighters, the preparation of efficient electromagnetic wave absorbing materials is also a hot research topic.
碳材料成本低廉,导电性能良好,然而高的导电性使得单一组分的碳材料阻抗匹配性差,无法充分吸收电磁波。因此将新型磁性粒子与碳材料制成复合吸波材料逐渐成为主流方向。作为一种特殊结构的纳米多孔碳包覆磁性粒子复合吸波,由于引入了阻抗匹配性能好的磁性粒子,有利于电磁波进入材料内部,减小电磁波反射,同时增加材料磁损耗,实现良好的电磁吸收。Carbon materials have low cost and good electrical conductivity. However, high electrical conductivity makes single-component carbon materials have poor impedance matching and cannot fully absorb electromagnetic waves. Therefore, it has gradually become the mainstream direction to make composite absorbing materials with new magnetic particles and carbon materials. As a special structure of nanoporous carbon-coated magnetic particle composite absorbing, due to the introduction of magnetic particles with good impedance matching performance, it is beneficial for electromagnetic waves to enter the material, reduce electromagnetic wave reflection, and increase the magnetic loss of the material. absorb.
因此,本发明设计合成了一种纳米多孔碳包覆磁性纳米粒子复合物,用于电磁波吸收。Therefore, the present invention designs and synthesizes a nanoporous carbon-coated magnetic nanoparticle composite for electromagnetic wave absorption.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明提供一种制备纳米多孔碳包覆磁性纳米粒子复合物简单易行的方法。In view of the problems existing in the prior art, the present invention provides a simple and feasible method for preparing nanoporous carbon-coated magnetic nanoparticle composites.
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种纳米多孔碳包覆磁性纳米粒子复合物的制备方法,该方法通过镁粉还原g-C3N4得到纳米多孔碳,通过纳米多孔碳的孔道吸附金属盐,得到负载金属盐的纳米多孔碳复合物,即中间体3,最后通过高温煅烧中间体3,得到纳米多孔碳包覆磁性纳米粒子。具体包括如下步骤:A preparation method of a nanoporous carbon-coated magnetic nanoparticle composite, the method obtains nanoporous carbon by reducing gC 3 N 4 with magnesium powder, and adsorbs metal salts through the pores of the nanoporous carbon to obtain a metal salt-loaded nanoporous carbon composite Finally, the intermediate 3 is calcined at high temperature to obtain nanoporous carbon-coated magnetic nanoparticles. Specifically include the following steps:
1)通过高温煅烧三聚氰胺(C3N6H6)制备g-C3N4,作为中间体1;将中间体1与镁粉混合均匀后高温煅烧,所得产物用盐酸洗涤、去离子水洗至中性、过滤烘干后得到纳米多孔碳,即中间体2。所述g-C3N4与镁的质量比为1:0.5-3.5,所述煅烧温度为700-900℃,煅烧时间为1-3h。1) Prepare gC 3 N 4 by calcining melamine (C 3 N 6 H 6 ) at high temperature as intermediate 1; mix intermediate 1 and magnesium powder evenly, calcin at high temperature, and wash the obtained product with hydrochloric acid and deionized water until neutral , filter and dry to obtain nanoporous carbon, namely intermediate 2. The mass ratio of the gC 3 N 4 to magnesium is 1:0.5-3.5, the calcination temperature is 700-900° C., and the calcination time is 1-3h.
2)将金属盐溶于甲醇配成溶液,并加入中间体2纳米多孔碳,磁力搅拌30min后,将混合溶液烘干,得到负载金属盐的纳米多孔碳复合物,即中间体3。所述的中间体3中的C与金属盐质量比控制在1:0.2-2。2) Dissolving the metal salt in methanol to prepare a solution, adding the intermediate 2 nanoporous carbon, and magnetically stirring for 30 min, drying the mixed solution to obtain the metal salt-loaded nanoporous carbon composite, namely the intermediate 3. The mass ratio of C to metal salt in the intermediate 3 is controlled at 1:0.2-2.
3)将中间体3粉末置于管式炉中,在惰性气氛中进行高温煅烧,煅烧温度为300-700℃,煅烧时间为1-4h,得到纳米多孔碳包覆磁性纳米粒子复合物。3) The intermediate 3 powder is placed in a tube furnace, and calcined at a high temperature in an inert atmosphere, the calcination temperature is 300-700° C., and the calcination time is 1-4 h to obtain a nanoporous carbon-coated magnetic nanoparticle composite.
进一步的,所述步骤1)制备g-C3N4的过程为:将三聚氰胺置于管式炉中,于空气中高温煅烧,煅烧温度为480-650℃,最优温度为550℃;煅烧时间为1-5h,最优时间为3h。Further, the process of preparing gC 3 N 4 in the step 1) is as follows: placing melamine in a tube furnace and calcining at high temperature in the air, the calcination temperature is 480-650 ° C, and the optimal temperature is 550 ° C; the calcination time is 1-5h, the optimal time is 3h.
进一步的,所述步骤1)中煅烧温度优选为750℃,煅烧时间优选为2h。Further, in the step 1), the calcination temperature is preferably 750° C., and the calcination time is preferably 2 h.
进一步的,所述的步骤2)纳米多孔碳与金属盐质量比优选为3:1。Further, in the step 2), the mass ratio of nanoporous carbon to metal salt is preferably 3:1.
进一步的,所述的金属盐包括乙酰丙酮铁、乙酰丙酮亚铁、乙酰丙酮镍、乙酰丙酮钴、硝酸钴、硝酸铁、硝酸镍、乙酸铁、乙酸钴、乙酸镍、氯化铁、氯化镍、氯化钴中的一种及其组合。Further, the metal salts include iron acetylacetonate, ferrous acetylacetonate, nickel acetylacetonate, cobalt acetylacetonate, cobalt nitrate, iron nitrate, nickel nitrate, iron acetate, cobalt acetate, nickel acetate, iron chloride, chloride One of nickel and cobalt chloride and a combination thereof.
进一步的,所述的步骤3)煅烧温度优选为500℃,煅烧时间优选为2h。Further, in the step 3), the calcination temperature is preferably 500°C, and the calcination time is preferably 2h.
本发明的有益效果是:The beneficial effects of the present invention are:
制备过程中,本发明利用镁与g-C3N4煅烧,产物经盐酸洗涤后得到纳米多孔碳;利用纳米多孔碳的孔道吸附金属盐的甲醇溶液中金属盐,最后通过高温使得金属盐还原成磁性粒子,得到的产物即为纳米多孔碳包覆磁性纳米粒子的复合物。In the preparation process, the present invention utilizes magnesium and gC 3 N 4 to calcine, and the product is washed with hydrochloric acid to obtain nano-porous carbon; the pores of the nano-porous carbon are used to adsorb the metal salt in the methanol solution of the metal salt, and finally the metal salt is reduced to magnetic properties by high temperature. The obtained product is a composite of nanoporous carbon-coated magnetic nanoparticles.
通过扫描电镜,拉曼光谱和X射线衍射均表明本方法成功制备出纳米多孔碳包覆磁性纳米粒子,结构与预期一致。网络矢量分析仪的前期测试以及用matlab后期模拟均可以很好地证明其具有良好的吸波性能,说明了此方法的可行性。制得的纳米多孔碳包覆磁性纳米粒子,具有良好的阻抗匹配性与衰减性能,能够充分衰减电磁波。Scanning electron microscopy, Raman spectroscopy and X-ray diffraction all showed that the nanoporous carbon-coated magnetic nanoparticles were successfully prepared by this method, and the structures were consistent with expectations. The pre-test of the network vector analyzer and the later simulation with matlab can well prove that it has good wave-absorbing performance, which shows the feasibility of this method. The prepared nanoporous carbon-coated magnetic nanoparticle has good impedance matching and attenuation performance, and can fully attenuate electromagnetic waves.
附图说明Description of drawings
图1为C@Fe3O4-1复合吸波材料的扫描电镜图:Figure 1 is a scanning electron microscope image of the C@Fe 3 O 4 -1 composite absorbing material:
图2为C@Fe3O4-1复合吸波材料的拉曼光谱:Figure 2 shows the Raman spectrum of the C@Fe 3 O 4 -1 composite absorber:
图3为C@Fe3O4-1复合吸波材料的X射线衍射谱图拉曼光谱:Figure 3 shows the Raman spectrum of the X-ray diffraction pattern of the C@Fe 3 O 4 -1 composite absorber:
图4为C@Fe3O4-1复合吸波材料的反射损耗曲线。Figure 4 is the reflection loss curve of the C@Fe 3 O 4 -1 composite absorbing material.
具体实施方式Detailed ways
以下结合具体实施例对本发明做进一步说明。The present invention will be further described below with reference to specific embodiments.
实施例1纳米多孔碳包覆磁性Fe3O4复合吸波粒子C@Fe3O4-1制备方法:Example 1 Preparation method of nanoporous carbon-coated magnetic Fe 3 O 4 composite wave absorbing particles C@Fe 3 O 4 -1:
(一)纳米多孔碳C-1的制备:(1) Preparation of nanoporous carbon C-1:
将8.0g三聚氰胺置于管式炉中,空气氛围下,550℃煅烧3h。将2.0g g-C3N4与4.0g镁粉混合均匀,氩气氛围下,750℃煅烧2h,产物用盐酸,去离子水洗涤至中性,过滤烘干,产物即为纳米多孔碳C-1。8.0 g of melamine was placed in a tube furnace and calcined at 550° C. for 3 hours in an air atmosphere. Mix 2.0g gC3N4 and 4.0g magnesium powder evenly, calcinate at 750℃ for 2h under argon atmosphere, wash the product with hydrochloric acid and deionized water until neutral, filter and dry, the product is nanoporous carbon C-1 .
(二)C@Fe(acc)3-1的制备:(2) Preparation of C@Fe(acc) 3-1 :
将3.0g上述得到的纳米多孔碳,加入到溶有1.0g Fe(acc)3的40ml甲醇溶液,磁力搅拌30min后,将所得混合溶液烘干,得到的粉末即为C@Fe(acc)3-1。3.0 g of the nanoporous carbon obtained above was added to 40 ml of methanol solution dissolved with 1.0 g of Fe(acc) , and after magnetic stirring for 30 min, the resulting mixed solution was dried, and the obtained powder was C@Fe(acc ) 3 -1.
(三)C@Fe3O4-1的制备:(3) Preparation of C@Fe 3 O 4 -1:
将C@Fe(acc)3-1置于管式炉中,氩气氛围下,500℃煅烧2h,即可得到纳米多孔碳包覆磁性Fe3O4复合吸波粒子C@Fe3O4-1。The C@Fe(acc) 3 -1 was placed in a tube furnace and calcined at 500 °C for 2 h in an argon atmosphere to obtain nanoporous carbon-coated magnetic Fe 3 O 4 composite absorbing particles C@Fe 3 O 4 -1.
(四)检测结果如下:(4) The test results are as follows:
图1为C@Fe3O4-1的扫描电镜图。由图可以看出,多孔碳表面存在着大量粒子;Fig. 1 is the scanning electron microscope image of C@Fe 3 O 4 -1. It can be seen from the figure that there are a large number of particles on the surface of porous carbon;
图2是C@Fe3O4-1的拉曼谱图。由图可看出,明显存在石墨碳的D峰和G峰最终的产物C@Fe3O4-1中含有石墨类碳;Figure 2 is the Raman spectrum of C@Fe 3 O 4 -1. It can be seen from the figure that there are obviously D peaks and G peaks of graphitic carbon. The final product C@Fe 3 O 4 -1 contains graphitic carbon;
图3为C@Fe3O4-1的X射线衍射谱图,26.10处的衍射峰为石墨碳的衍射峰,46.60及53.80处为Fe3O4的衍射峰。说明C@Fe3O4-1的成分是石墨碳与Fe3O4。Figure 3 is the X-ray diffraction pattern of C@Fe 3 O 4 -1, the diffraction peak at 26.1 0 is the diffraction peak of graphitic carbon, and the diffraction peaks at 46.6 0 and 53.8 0 are the diffraction peaks of Fe 3 O 4 . Explain that the composition of C@Fe 3 O 4 -1 is graphitic carbon and Fe 3 O 4 .
图4是C@Fe3O4-1的吸波性能图,图中可以看出复合吸波材料C@Fe3O4-1在7.37GHz的频率下反射损耗最小为-73.93dB,有效吸收带宽5.44GHz,厚度为1.9mm。Figure 4 is the absorbing performance diagram of C@Fe 3 O 4 -1. It can be seen from the figure that the reflection loss of the composite absorbing material C@Fe 3 O 4 -1 is -73.93dB at the frequency of 7.37GHz, and the effective absorption is The bandwidth is 5.44GHz and the thickness is 1.9mm.
实施例2纳米多孔碳包覆磁性Fe3O4复合吸波粒子C@Fe3O4-2制备方法:Example 2 Preparation method of nanoporous carbon-coated magnetic Fe 3 O 4 composite absorbing particles C@Fe 3 O 4 -2:
(一)纳米多孔碳C-2的制备:(1) Preparation of nanoporous carbon C-2:
将8.0g三聚氰胺置于管式炉中,空气氛围下,480℃煅烧1h。将2.0g g-C3N4与1.0g镁粉混合均匀,氩气氛围下,800℃煅烧3h,产物用盐酸,去离子水洗涤至中性,过滤烘干,产物即为纳米多孔碳C-2。8.0 g of melamine was placed in a tube furnace and calcined at 480° C. for 1 h in an air atmosphere. Mix 2.0g gC 3 N 4 and 1.0g magnesium powder evenly, calcinate at 800°C for 3h under argon atmosphere, wash the product with hydrochloric acid and deionized water until neutral, filter and dry, and the product is nanoporous carbon C-2 .
(二)C@Fe(acc)3-2的制备:(2) Preparation of C@Fe(acc) 3-2 :
将1.5g上述得到的纳米多孔碳,加入到溶有3.0g Fe(acc)3的40ml甲醇溶液,磁力搅拌30min后,将所得混合溶液烘干,得到的粉末即为C@Fe(acc)3-2。1.5g of the nanoporous carbon obtained above was added to 40ml of methanol solution in which 3.0g Fe(acc) was dissolved, and after magnetic stirring for 30min, the obtained mixed solution was dried, and the obtained powder was C@Fe(acc ) . -2.
(三)C@Fe3O4-2的制备:(3) Preparation of C@Fe 3 O 4 -2:
将C@Fe(acc)3-2置于管式炉中,氩气氛围下,700℃煅烧4h,即可得到纳米多孔碳包覆磁性Fe3O4复合吸波粒子C@Fe3O4-2。The C@Fe(acc) 3 -2 was placed in a tube furnace and calcined at 700 °C for 4 h in an argon atmosphere to obtain nanoporous carbon-coated magnetic Fe 3 O 4 composite absorbing particles C@Fe 3 O 4 -2.
实施例3纳米多孔碳包覆磁性Fe3O4复合吸波粒子C@Fe3O4-3制备方法:Example 3 Preparation method of nanoporous carbon-coated magnetic Fe 3 O 4 composite absorbing particles C@Fe 3 O 4 -3:
(一)纳米多孔碳C-3的制备:(1) Preparation of nanoporous carbon C-3:
将8.0g三聚氰胺置于管式炉中,空气氛围下,600℃煅烧5h。将1.0g g-C3N4与3.0g镁粉混合均匀,氩气氛围下,700℃煅烧1h,产物用盐酸,去离子水洗涤至中性,过滤烘干,产物即为纳米多孔碳C-3。8.0 g of melamine was placed in a tube furnace, and calcined at 600° C. for 5 hours in an air atmosphere. Mix 1.0g gC3N4 and 3.0g magnesium powder evenly, calcinate at 700℃ for 1h under argon atmosphere, wash the product with hydrochloric acid and deionized water until neutral, filter and dry, the product is nanoporous carbon C- 3 .
(二)C@Fe(acc)3-3的制备:(2) Preparation of C@Fe(acc) 3-3 :
将2.0g上述得到的纳米多孔碳,加入到溶有1.0g Fe(acc)3的40ml甲醇溶液,磁力搅拌30min后,将所得混合溶液烘干,得到的粉末即为C@Fe(acc)3-3。2.0g of the nanoporous carbon obtained above was added to 40ml of methanol solution dissolved with 1.0g of Fe(acc) , and after magnetic stirring for 30 min, the resulting mixed solution was dried, and the obtained powder was C@Fe(acc ) 3 -3.
(三)C@Fe3O4-3的制备:(3) Preparation of C@Fe 3 O 4 -3:
将C@Fe(acc)3-3置于管式炉中,氩气氛围下,400℃煅烧1h,即可得到纳米多孔碳包覆磁性Fe3O4复合吸波粒子C@Fe3O4-3。The C@Fe(acc) 3 -3 was placed in a tube furnace and calcined at 400 °C for 1 h in an argon atmosphere to obtain nanoporous carbon-coated magnetic Fe 3 O 4 composite absorbing particles C@Fe 3 O 4 -3.
实施例4纳米多孔碳包覆磁性Fe3O4复合吸波粒子C@Fe3O4-4制备方法:Example 4 Preparation method of nanoporous carbon-coated magnetic Fe 3 O 4 composite absorbing particles C@Fe 3 O 4 -4:
(一)纳米多孔碳C-4的制备:(1) Preparation of nanoporous carbon C-4:
将8.0g三聚氰胺置于管式炉中,空气氛围下,650℃煅烧4h。将1.0g g-C3N4与3.5g镁粉混合均匀,氩气氛围下,900℃煅烧2h,产物用盐酸,去离子水洗涤至中性,过滤烘干,产物即为纳米多孔碳。8.0 g of melamine was placed in a tube furnace and calcined at 650° C. for 4 hours in an air atmosphere. Mix 1.0g gC 3 N 4 and 3.5g magnesium powder uniformly, calcinate at 900℃ for 2h under argon atmosphere, wash the product with hydrochloric acid and deionized water until neutral, filter and dry, the product is nanoporous carbon.
(二)C@Fe(acc)3-4的制备:(2) Preparation of C@Fe(acc) 3-4 :
将2.0g上述得到的纳米多孔碳,加入到溶有0.4g Fe(acc)3的40ml甲醇溶液,磁力搅拌30min后,将所得混合溶液烘干,得到的粉末即为C@Fe(acc)3-4。2.0 g of the nanoporous carbon obtained above was added to 40 ml of methanol solution dissolved with 0.4 g of Fe(acc) , and after magnetic stirring for 30 min, the resulting mixed solution was dried, and the obtained powder was C@Fe(acc ) 3 -4.
(三)C@Fe3O4-4的制备:(3) Preparation of C@Fe 3 O 4 -4:
将C@Fe(acc)3-4置于管式炉中,氩气氛围下,300℃煅烧1.5h,即可得到纳米多孔碳包覆磁性Fe3O4复合吸波粒子C@Fe3O4-4。The C@Fe(acc) 3 -4 was placed in a tube furnace and calcined at 300 °C for 1.5 h in an argon atmosphere to obtain nanoporous carbon-coated magnetic Fe 3 O 4 composite absorbing particles C@Fe 3 O 4-4 .
实施例5纳米多孔碳包覆磁性Fe3O4复合吸波粒子C@Fe3O4-5制备方法:Example 5 Preparation method of nanoporous carbon-coated magnetic Fe 3 O 4 composite absorbing particles C@Fe 3 O 4 -5:
(一)纳米多孔碳C-5的制备:(1) Preparation of nanoporous carbon C-5:
将8.0g三聚氰胺置于管式炉中,空气氛围下,500℃煅烧2h。将2.0g g-C3N4与2.0g镁粉混合均匀,氩气氛围下,850℃煅烧2h,产物用盐酸,去离子水洗涤至中性,过滤烘干,产物即为纳米多孔碳C-5。8.0 g of melamine was placed in a tube furnace, and calcined at 500° C. for 2 hours in an air atmosphere. Mix 2.0g gC3N4 and 2.0g magnesium powder evenly, calcinate at 850℃ for 2h under argon atmosphere, wash the product with hydrochloric acid and deionized water until neutral, filter and dry, the product is nanoporous carbon C-5 .
(二)C@Fe(acc)3-5的制备:(2) Preparation of C@Fe(acc) 3-5 :
将2.0g上述得到的纳米多孔碳,加入到溶有2.5g Fe(acc)3的40ml甲醇溶液,磁力搅拌30min后,将所得混合溶液烘干,得到的粉末即为C@Fe(acc)3-5。2.0g of the nanoporous carbon obtained above was added to 40ml of methanol solution dissolved with 2.5g Fe(acc) 3 , and after magnetic stirring for 30min, the obtained mixed solution was dried, and the obtained powder was C@Fe(acc) 3 -5.
(三)C@Fe3O4-5的制备:(3) Preparation of C@Fe 3 O 4 -5:
将C@Fe(acc)3-5置于管式炉中,氩气氛围下,600℃煅烧3h,即可得到纳米多孔碳包覆磁性Fe3O4复合吸波粒子C@Fe3O4-5。The C@Fe(acc) 3 -5 was placed in a tube furnace, calcined at 600 °C for 3 h in an argon atmosphere, and the nanoporous carbon-coated magnetic Fe 3 O 4 composite absorbing particles C@Fe 3 O 4 were obtained. -5.
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。The above-mentioned embodiments only represent the embodiments of the present invention, but should not be construed as a limitation on the scope of the present invention. It should be pointed out that for those skilled in the art, without departing from the concept of the present invention, Several modifications and improvements can also be made, which all belong to the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110907274.9A CN113708085B (en) | 2021-08-09 | 2021-08-09 | A kind of preparation method of nanoporous carbon-coated magnetic nanoparticle composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110907274.9A CN113708085B (en) | 2021-08-09 | 2021-08-09 | A kind of preparation method of nanoporous carbon-coated magnetic nanoparticle composite |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113708085A CN113708085A (en) | 2021-11-26 |
CN113708085B true CN113708085B (en) | 2022-05-20 |
Family
ID=78651906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110907274.9A Active CN113708085B (en) | 2021-08-09 | 2021-08-09 | A kind of preparation method of nanoporous carbon-coated magnetic nanoparticle composite |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113708085B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116022773B (en) * | 2022-11-11 | 2024-11-26 | 郑州航空工业管理学院 | A method for preparing a composite material of carbon microspheres loaded with magnetic nanoparticles |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104479626A (en) * | 2014-12-05 | 2015-04-01 | 吉林大学 | Graphitization multiwall carbon nanotube/nano-particle composite absorbing agent and preparation method thereof |
CN111944482A (en) * | 2020-08-17 | 2020-11-17 | 大连理工大学 | Preparation method of sea urchin-like carbon nanotube-coated Co particle composite absorbing material |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101028350B1 (en) * | 2010-04-08 | 2011-04-11 | 신원산업 주식회사 | Layered structure of Mg-Ti-Al composite metal hydroxide and preparation method thereof |
KR101331112B1 (en) * | 2011-09-28 | 2013-11-19 | (주)바이오니아 | Nanocomposites consisting of carbon nanotube and metal oxide and a process for preparing the same |
-
2021
- 2021-08-09 CN CN202110907274.9A patent/CN113708085B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104479626A (en) * | 2014-12-05 | 2015-04-01 | 吉林大学 | Graphitization multiwall carbon nanotube/nano-particle composite absorbing agent and preparation method thereof |
CN111944482A (en) * | 2020-08-17 | 2020-11-17 | 大连理工大学 | Preparation method of sea urchin-like carbon nanotube-coated Co particle composite absorbing material |
Also Published As
Publication number | Publication date |
---|---|
CN113708085A (en) | 2021-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109705808B (en) | A kind of cobalt-nickel alloy-porous carbon composite wave absorbing material with MOF structure and preparation method thereof | |
CN112961650B (en) | Three-metal organic framework derived iron-nickel alloy/porous carbon ultrathin wave absorber and preparation method thereof | |
CN110012656B (en) | Preparation method of nano composite wave-absorbing material | |
CN108521754B (en) | Porous carbon-based electromagnetic wave absorption agent of one kind and preparation method thereof | |
CN109181640B (en) | Preparation method of porous carbon wave-absorbing material with inlaid cobalt and oxide | |
Wei et al. | Bimetallic nanoarrays embedded in three-dimensional carbon foam as lightweight and efficient microwave absorbers | |
CN108154984B (en) | A porous ferric oxide/carbon nanorod-shaped electromagnetic wave absorbing material and its preparation method and application | |
CN109762519B (en) | Preparation method of high-entropy alloy/oxide composite nano wave-absorbing material | |
CN109310038B (en) | A kind of porous Co/Cu/C composite wave absorbing material and preparation method thereof | |
CN105436498B (en) | A kind of porous nickel carbon composite nano-microsphere electromagnetic wave absorbent material and preparation method and application | |
CN111170761B (en) | Silicon carbide @ metal oxide wave-absorbing foam and preparation method thereof | |
CN108774491B (en) | Three-dimensional graphene sponge/Fe2O3Composite wave-absorbing material and preparation method thereof | |
CN114195197B (en) | Magnetic porous carbon compound and preparation method and application thereof | |
CN111117265B (en) | Core-shell structure composite microwave absorbing material | |
CN112980390A (en) | Preparation method of bimetal organic frame derived magnetic carbon composite wave-absorbing material | |
CN112537764A (en) | Carbon-based porous composite wave absorbing agent based on natural loofah sponge and preparation method thereof | |
CN107010675B (en) | A kind of titanium silicon-carbon/Conjugate ferrite radio-radar absorber and preparation method | |
CN106518034A (en) | Preparation method of ceramic compound wave-absorbing material loaded with magnetic metal elemental mullite | |
CN113708085B (en) | A kind of preparation method of nanoporous carbon-coated magnetic nanoparticle composite | |
CN110723720B (en) | A kind of lightweight broadband electromagnetic wave absorbing material and preparation method thereof | |
CN110564365B (en) | Preparation method of graphene foam composite material loaded with magnetic hollow nanospheres | |
CN115138304B (en) | MOF-derived composite aerogel and preparation method and application thereof | |
CN115570147B (en) | Carbon nano tube/cobalt/zinc cobaltate composite material and preparation method and application thereof | |
CN113645824B (en) | Preparation method of nano porous carbon inlaid inert metal particle compound | |
CN103755333B (en) | Nano ferrite wave-absorbing material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |