CN115427144A - 用于n2o分解的材料 - Google Patents

用于n2o分解的材料 Download PDF

Info

Publication number
CN115427144A
CN115427144A CN202180028383.1A CN202180028383A CN115427144A CN 115427144 A CN115427144 A CN 115427144A CN 202180028383 A CN202180028383 A CN 202180028383A CN 115427144 A CN115427144 A CN 115427144A
Authority
CN
China
Prior art keywords
alkali metal
cobalt
catalyst
salt
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202180028383.1A
Other languages
English (en)
Other versions
CN115427144B (zh
Inventor
安娜·塞拉诺·洛蒂纳
玛丽亚·孔苏埃洛·阿尔瓦雷斯·加尔文
佩德罗·阿维拉·加西亚
苏珊娜·佩雷斯·费雷拉斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Publication of CN115427144A publication Critical patent/CN115427144A/zh
Application granted granted Critical
Publication of CN115427144B publication Critical patent/CN115427144B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2022Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本发明涉及基于掺杂有碱性元素的氧化钴的具有非化学计量尖晶石型晶体结构的材料,其生产方法是通过控制洗涤来沉淀从而获得所述材料,以及所述材料在N2O分解反应中作为高活性催化剂的特定用途。因此,我们理解本发明属于旨在减少N2O排放的绿色工业领域。

Description

用于N2O分解的材料
技术领域
本发明涉及具有非化学计量的尖晶石型晶体结构的催化剂、通过控制洗涤来沉淀从而获得所述催化剂的生产方法及所述催化剂在N2O分解反应中的特定用途。因此,本发明属于旨在减少N2O排放的绿色工业领域。
背景技术
一氧化二氮是一种比二氧化碳高298倍的温室气体,其对臭氧层具有毁灭性影响,在对流层中的寿命为100年。工业部门产生了总排放量5%的N2O,据估计,在不久的将来这一部门的排放量可能会增加最多。在工业部门中,硝酸和己二酸生产是N2O排放的主要来源。由于工厂的数量有限,与具有许多分散来源(如生物质燃烧或农业)的其他部门相比,减少排放可能更容易实现。许多己二酸厂已经制定了措施,但硝酸厂的排放非常难减少。
去除硝酸设备中一氧化二氮的最有效的技术是在氨氧化阶段(二级处理)或其在尾气流中去除(三级处理)之后进行的催化分解过程。有几种商业催化剂可用于二级处理,但它们具有一些缺点,例如灭活性、低耐磨性或由于它们必须承受的高温(750℃至940℃)而导致的活性相烧结。
三级处理具有不影响硝酸设备主体的巨大优势,因为它是作为尾气处理来实施的。因为尾气中存在其他成分(O2、H2O和可能的NOx)可以显着改变催化剂的效率,所以主要的技术问题是开发在相对较低的温度下(250℃至500℃)具有活性并能够在实际工艺条件下运行的催化系统。
在低温下对N2O分解反应具有活性的催化剂有:用各种金属(Cr、Mn、Fe、Co、Ni或Cu)改性的沸石,用ZnO、CeO2、Al2O3、TiO2或ZrO2负载的贵金属(Rh、Ru、Pd),水滑石衍生物,尖晶石以及金属氧化物[M.Konsolakis,ACS Catal.2015,5,6397-6421;J.Pérez-Ramírez,Appl.Catal.B 44(2003)117-151]。其中,以钴尖晶石为原料的催化剂表现出最好的催化活性以及对O2和H2O最好的抗性。Yan等人[L.Yan,R.Ren,X.Wang,Q.Gao,D.Ji,J.Suo,Catal.Comm.4(2003)505-509;L.Yan,R.Ren,X.Wang,D.Ji,J.Suo,Appl.Catal.B 45(2003)85-90]发表了使用配方ZnxCo1-xCo2O4和MxCo1-xCo2O4(M=Ni,Mg)的研究,其中T50(N2O转化50%所需的温度)分别记录为250℃和220℃。所用的操作条件为15000h-1的GHSV(气时空速)和1000ppm的N2O浓度,含10%的O2和5%的H2O。Xu等人[L.Xue,C.Zhang,H.He,Y.Teraoka,Appl.Catal.B 75(2007)167-174]获得了类似的结果(T50=260℃),其CoCe0.05催化剂也在15000h-1的空速以及1000ppm N2O、10%O2和3%H2O的浓度下工作。
碱性元素的添加增强了钴尖晶石Co3O4的催化活性[JP2007054714(A)]。Stelmachowski等人[P.Stelmachowski,G.Maniak,A.Kotarba,Z.Sojka,Catal.Comm.10(2009)1062-1065]报道了在335℃下用K掺杂的钴尖晶石在7000h-1以及1500ppm N2O和1%H2O的浓度下工作的转化率为50%,而Xue等人报道了在350℃下的转化率为77%[Li Xue,Changbin Zhang,Hong He,Yasutake Teraoka,Applied Catalysis B:Environmental,第75卷,3-4期,2007,167-174页]。在这些研究中,已经考虑了O2和H2O的存在(即使其浓度高于实际浓度),但测试的空速仍然远低于工业上使用的空速。此外,除了用K促进Co3O4催化剂的情况外,没有进行稳定性测试,在这种情况下,催化剂只评估10小时。其他作者也描述了掺杂有其他碱金属(例如Cs)的催化剂的性能,其中掺杂通过浸渍法获得。在实际操作条件下,在进料中添加水会导致使用这些催化剂时N2O转化率的降低[
Figure BDA0003888998980000021
Stelmachowski,Gabriela Maniak,Andrzej Kotarba,Zbigniew Sojka,Catalysis Communications,第10卷,7期,2009,1062-1065页]。
因此,需要提供在温度低于350℃的实际条件下转化率超过90%的催化剂,以及提供在这些条件下稳定的催化剂。
发明内容
本发明涉及一种分子式为Co3O4-x/2Ay的新材料、其制备方法及其在N2O的分解反应中作为催化剂的用途。
在第一方面,本发明涉及一种材料,其具有通式为Co3O4-x/2Ay的非化学计量的尖晶石型晶体结构,其中x的值为0.02-0.3,A为碱金属元素,以及y的值为0.06-0.18,A/Co的比值为0.02-0.10;一级粒径相当于5-30nm的微晶尺寸。
在本发明中,“非化学计量的尖晶石”被理解为具有部分还原的尖晶石型氧化钴的立方结构的任何材料,其产生氧空位,通式为Co3O4-x/2Ay,因为碱元素的存在导致Co3+还原为Co2+
与这些催化剂相关的优点是它们在约100℃的温度下表现出氧的表面解吸,而在200℃至300℃的温度下表现出氧的晶格解吸,因为催化剂中的Co2+/Co3+比率为0.55至0.80。
所述材料优选为中孔材料。在本发明中,“中孔材料”是指具有主要孔径在2nm至50nm之间的孔的任何材料。
基于孔体积与比表面积的理想比率,中孔材料的优点是气体可接近催化活性中心。在一个优选的实施例中,所述材料的孔体积为0.2cm3/g至0.4cm3/g,比表面积BET为40m2/g至80m2/g,相对于疏松材料(bulk material)较高,导致了有利于催化活性的高气固接触表面积。
在另一个优选的实施例中,碱金属元素A为K,x为0.182,y为0.09,
在另一个优选的实施例中,碱金属元素A为Cs,x为0.235,y为0.15。
本发明的另一方面是具有非化学计量的尖晶石结构的Co3O4-x/2Ay材料的获取方法,其特征在于以下步骤:
a)将钴盐溶解在水中;
b)将碱金属的盐或氢氧化物溶解在水中;
c)将步骤(b)中得到的溶液缓慢加入步骤(a)中制备的溶液中,直至pH值达到8-11;
d)过滤步骤(c)中得到的所述固体并用水洗涤,洗涤时,步骤(a)中加入的每克钴盐用5mL-75mL的水;
e)将步骤(d)中得到的所述固体在50℃-200℃的温度下干燥12h-20h;以及
f)将步骤(e)中得到的所述固体在200℃-700℃的温度下的空气气氛中煅烧至少30分钟。
步骤(d)中的洗涤以控制方式进行并且是关键的,因为样品中A的含量取决于洗涤,这直接影响Co(III)还原为Co(II)的还原温度,因此,得到Co2+/Co3+的比值,因此根据与反应中初始Co盐含量相关的用水量控制要引入本发明材料晶格中的碱的量。此外,这种控制洗涤避免了添加碱金属的额外步骤,使得本发明的方法比现有技术所描述的更为简单。
根据本发明所描述的方法,产生了氧化钴的非化学计量的钴尖晶石沉淀物,其掺杂有碱金属,这种掺杂方式使得Co和碱金属离子之间在沉淀形成步骤建立紧密接触。所述掺杂是疏松掺杂,碱金属元素分布于整个沉淀物而不只是在其表面上。
如X射线衍射和扫描电子显微镜所显示的,该合成过程直接影响钴尖晶石的形成过程,生成一级粒径与微晶或结晶区大小相当的材料。钴尖晶石的小的一级粒径引起了高暴露的比表面积,导致每克催化剂的活性中心比例高,有助于提高催化剂效率。
此外,通过该过程掺杂碱金属离子会显著改变材料的化学物理性质,因为这会导致Co(III)离子部分还原为Co(II)。这改变了所得尖晶石的化学计量,降低了晶格中氧的比例,导致了尖晶石结构变形并赋予其与传统尖晶石明显不同的催化性能。
在所述方法的另一个优选实施例中,步骤(a)中的所述钴盐选自六水合硝酸钴、硫酸钴、氯化钴和醋酸钴。
在所述方法的另一个优选实施例中,步骤(b)中的所述碱金属盐或氢氧化物选自碱金属碳酸盐、碱金属硝酸盐、碱金属氢氧化物和碱金属醋酸盐。在一个更为优选的实施例中,所述碱金属盐或氢氧化物是碱金属碳酸盐。
在所述方法的另一个优选实施例中,如果所述钴盐是六水合硝酸钴并且所述碱金属盐是碱金属碳酸盐,则步骤(d)的洗涤用水量为16ml/g至21ml/g的六水合硝酸钴。
本发明的第三方面涉及上述材料作为催化剂的用途。
在一个更为优选的实施例中,用途指的是所述材料在气体的氧化/分解中作为催化剂的用途。
在一个更为优选的实施例中,用途指的是所述材料作为N2O分解催化剂的用途。
在340℃和50330h-1的GHSV的实际操作条件下,所述催化剂显示出98%的N2O转化率。
在310℃和24000h-1的GHSV的实际操作条件下,所述催化剂显示出98%的N2O转化率。
此外,所述催化剂在H2O和O2的存在下显示出至少65小时的高稳定性,且不会降低N2O的转化率,也不会改变诸如粒径或孔隙率等确定特性。
在整个说明书和权利要求中,“包括”一词及其变形并不旨在排除其他技术特征、添加剂、组分或步骤。本发明的其他目的、优点和特征部分地从说明书和部分地从本发明的实践来说对于本领域技术人员是明显的。以下实施例和附图是为了说明而提供的,并不旨在限制本发明。
附图说明
图1本发明材料的X射线衍射图。
图2发明材料的扫描电子显微镜图。
图3通过N2吸附-解吸等温线得到的本发明材料的孔径分布。
图4本发明材料的XPS图。
图5本发明材料用H2的程序降温。
图6本发明材料在程序温度下的O2解吸。
图7在本发明的材料和现有技术中报道的材料在O2和H2O的存在下N2O随时间的转化率。
实施例
下面通过由发明人进行的测试的结果来阐明本发明,这些结果证明了本发明产品的有效性。
实施例1
将14.84克硝酸钴(Co(NO3)2.6H2O)溶解在100ml水中并保持搅拌。制备100ml 15%w/w的碳酸钾(K2CO3)溶液,置于滴定管中并缓慢加入硝酸钴溶液中。继续添加碳酸盐直到pH达到9。滤出固体并在15℃下用250ml水洗涤。在100℃下干燥16h并在400℃下煅烧2h,得到分子式为Co3O3.88K0.08的催化剂。
实施例2
当将根据实施例1获得的材料样品引入管式反应器并以GHSV=50300h-1的比率(气体流量:催化剂体积)进料具有1400ppm N2O浓度的Ar气流时,反应器内的气体逐渐加热导致反应器出口处的N2O浓度逐渐降低,相当于在260℃时N2O转化值为73%,在280℃时为95%,在温度高于310℃时为98%。
当将这种材料的样品引入管式反应器中并以GHSV=50300h-1的比率(总气体流量:催化剂体积)进料N2O浓度等于1400ppm和O2=3%v/v的Ar气流时,反应器内气体逐渐加热导致反应器出口处的N2O浓度逐渐降低,相当于在250℃时N2O转化率值为17%,在300℃时为88%,在温度高于350℃时为96%。
当将这种材料的样品引入管式反应器中并以GHSV=50300h-1的比率(总气体流量:催化剂体积)进料N2O浓度等于1400ppm和[H2O]=0.5%v/v的Ar气流时,反应器内气体逐渐加热导致反应器出口处的N2O浓度逐渐降低,相当于在250℃时N2O转化率值为25%,在280℃时为75%,在温度高于340℃时为98%。
当将根据实施例1获得的材料样品引入管式反应器并以GHSV=50300h-1的比率(总气体流量:催化剂体积)进料具有N2O浓度等于1400ppm,[O2]=3%v/v以及H2O=0.5%v/v的Ar气流时,反应器内气体逐渐加热导致反应器出口处的N2O浓度逐渐降低,相当于在260℃时N2O转化率值为17%,在275℃时为42%,在290℃时为73%,在315℃时为94%,在温度高于350℃时为97%。
当将根据实施例1获得的材料样品引入管式反应器并以GHSV=50300h-1的比率(总气体流量:催化剂体积)进料具有N2O浓度等于1400ppm,[O2]=3%v/v以及H2O=0.5%v/v的Ar气流时,保持反应温度为360℃,获得初始N2O转化率为93%,反应超过65h后,转化率少量增加到96%。
实施例3
将14.84克硝酸钴(Co(NO3)2.6H2O)溶解在100ml水中并保持搅拌。制备100ml 30%w/w的碳酸铯(Cs2CO3)溶液,倒入滴定管中并缓慢加入碳酸盐溶液并保持直到pH达到9。添加的碳酸盐总量为57.5ml。滤出固体并在15℃下用220ml水洗涤。在100℃下干燥16h并在400℃下煅烧2h,得到分子式为Co3O3.88 Cs0.15的催化剂。
实施例4
当将根据实施例3获得的材料样品引入管式反应器并以GHSV=50300h-1的比率(总气体流量:催化剂体积)进料具有N2O浓度等于1400ppm,[O2]=3%v/v以及H2O=0.5%v/v的Ar气流时,反应器内气体逐渐加热导致反应器出口处的N2O浓度逐渐降低,相当于在280℃时N2O转化率值为50%,在300℃时为80%,在320℃时为93%,在温度高于340℃时为97%。
实施例5
将59.36克硝酸钴(Co(NO3)2.6H2O)溶解在400ml水中并保持搅拌。制备400ml 30%w/w的碳酸铯(Cs2CO3)溶液,倒入滴定管中并缓慢加入碳酸盐溶液并保持直到pH达到9。添加的碳酸盐总体积为207ml。滤出固体并在15℃下用1160ml水洗涤。在100℃下干燥16h并在400℃下煅烧2h,得到分子式为Co3O3.88 Cs0.06的催化剂。
实施例6
当将根据实施例5获得的材料样品引入管式反应器并以GHSV=24,000h-1的比率(总气体流量:催化剂体积)进料具有N2O浓度等于1400ppm,[O2]=3%v/v以及H2O=0.5%v/v的Ar气流时,反应器内气体逐渐加热导致反应器出口处的N2O浓度逐渐降低,相当于在250℃时N2O转化率值为47%,在280℃时为88%,在300℃时为95%,在温度高于320℃时为99%。
实施例7
将14.84克硝酸钴(Co(NO3)2.6H2O)溶解在100ml水中并保持搅拌。制备100ml 15%w/w的碳酸钾(K2CO3)溶液,置于滴定管中并缓慢加入硝酸钴溶液中。继续添加碳酸盐直到pH达到9。添加的碳酸盐的总体积为54ml。滤出固体并在15℃下用400ml水洗涤。在100℃下干燥16h并在400℃下煅烧2h,得到分子式为Co3O4的无钾材料。
实施例8
当将根据实施例7获得的材料样品引入管式反应器并以GHSV=50300h-1的比率(气体流量:催化剂体积)进料具有N2O浓度等于1400ppm的Ar气流时,反应器内气体逐渐加热导致反应器出口处的N2O浓度逐渐降低,相当于在280℃时N2O转化率值为9%,在320℃时为20%,在360℃时为34%,在380℃时为44%。测试观察到,在整个测试温度范围内由于不存在碱性元素而导致N2O转化率下降。
实施例9
实施例1和3中描述的材料的X射线衍射图(XRD)显示这些材料具有接近实施例7(JCPDS 00-042-1467)中描述的Co3O4尖晶石的立方结构(图1)。根据谢乐(Scherrer)公式计算平均微晶尺寸,获得的值分别为大约18nm和10nm。
这些材料的扫描电子显微镜显微图(图2)显示实施例1中平均一级粒径为10-20nm,实施例3中平均一级粒径为8-15nm。
这些显微图显示了材料的一般表面外观,由一级粒子的团聚体形成,一级粒子的尺寸类似于通过XRD获得的微晶尺寸,并且其孔径在中孔材料(2-50nm)范围内,正如通过N2吸附-解吸等温线(图3)所确定的。
实施例10
通过X射线光电子能谱(XPS)分析实施例1和实施例7中描述的材料的样品,结果显示样品Co3O3.88K0.08(实施例1)中的Co 2p能级相对于不含K的样品(实施例7)向更低的结合能方向转移,这可以用Co(II)(CoO)核素比例的增加来解释,通过K+离子的存在所促进的给电子效应使Co(II)(CoO)核素稳定(图4)。
根据这些结果,按照本发明中描述的方法获得的材料,就其氧化还原性质而言,与先前描述的材料相比明显不同。
实施例11
对实施例1和实施例3中描述的材料进行程序降温实验,检测到与现有技术中报道的传统尖晶石(图5)相比,第一个还原峰向较低温度移动(Co3O3.88K0.08和Co3O3.88Cs0.15分别为246℃和262℃)。根据这些结果,计算出Co2+/Co3+比,得到一个高于化学计量值的值(0.7vs.0.5)。尖晶石晶格中Co(II)相对于Co(III)比例的增加导致了一定比例的氧空位出现,使材料表面具有吸附和活化N2O分子的特殊性能。这改变了尖晶石的化学计量,使其缺氧。
根据这些结果,按照本发明中描述的方法获得的材料,就其氧化还原性质而言,与先前描述的材料相比明显不同。
实施例12
使用实施例1、3以及7中描述的材料进行O2程序升温脱附(O2-TPD)实验。在控制洗涤的材料中(实施例1和3),相对于表面氧(PO2-I)的峰出现在100℃左右(图6),而不含K的材料出现在190℃(实施例7)。
此外,与晶格氧(PO2-II)相关的峰移至较低温度(180-350℃),而在不含K的尖晶石中,此峰出现在300℃以上。
基于这些结果,可以得出结论,本专利所涵盖的材料在其O2吸附/解吸能力方面有明显的不同。
最被接受的N2O分解反应机制是通过在活性中心[A]上吸附N2O,释放N2并使O原子吸附在该中心上。第二个N2O分子吸附在该中心,产生另一个N2分子。两个吸附的O原子必须重新结合形成分子O2,此为反应的有限步骤:
N2O(g)+[A]→N2(g)+[O--A]
[O--A]+N2O(g)→N2(g)+O2(g)+[A]
获得的O2 DTP结果表明,实施例1和3中描述的样品能够在明显低于具有传统尖晶石结构的样品所需的温度(>300℃)下,即200-300℃,从晶格氧(PO2-II)中进行O2解吸过程。这可以认为与这些新催化剂在指定条件下进行N2O分解过程所需的温度降低有关。
实施例13
将从根据本发明实施例1获得的催化剂所获得的数据与现有技术文献“D1”[LiXue,Changbin Zhang,Hong He,Yasutake Teraoka,Applied Catalysis B:Environmental,第75卷,3-4期,2007,167-174页,图8]中描述的数据进行比较,其中,例如在350℃时,可以观察到,在潮湿条件下和O2存在的条件下,与Co3O3.88K0.08材料获得的96%转化率相比,这种催化剂获得的转化率接近77%。为了比较这些结果,所述数据已被分析为空速(GHSV)的函数,在该空速下进行了不同的实验。图7显示了上述催化剂在潮湿条件下和O2存在的条件下作为空间时间或接触时间的函数的N2O转化的结果,即考虑每个实验中催化剂的体积和使用的流量(T=Vcat/F=1/GHSV)。这种比较突出了与现有技术相比这种材料的催化活性的巨大改进,因为需要更短的接触时间(更少的催化剂体积)来实现相似或更高的转化。
下表显示了在350℃时反应常数的值,K350℃,考虑到所述反应根据一级动力学进行计算,这将是催化活性的最优数量表达式。
表1催化剂的反应常数
Figure BDA0003888998980000101
根据这些数据,本专利所涵盖的催化剂所产生的反应速率的提高比本实施例中提到的文献中描述的最优值高一个数量级以上。
另一方面,D1这篇文章中描述的催化剂,Co3O4,显示出780.1eV的Co 2p3/2组分的结合能,类似于实施例7(图3)中描述的无K尖晶石,并且与实施例7中描述的无K尖晶石一样,O2 DTP获得的晶格氧在300℃及以上发生解吸(图5)。
实施例14
根据本发明的实施例1和实施例3获得的材料以及现有技术文献“D2”[
Figure BDA0003888998980000102
Stelmachowski,Gabriela Maniak,Andrzej Kotarba,Zbigniew Sojka,CatalysisCommunications,第10卷,7期,2009,1062-1065页,图7]中所示的数据进行了比较。从“D2”的图7中可以看出,在潮湿条件下(选项b),Cs掺杂的催化剂在350℃时实现了接近90%的转化率。K掺杂的催化剂的活性明显较低,因为在该温度下,该曲线中的估算转化率接近50%,而实施例1和5中的材料的转化率分别为96%和98%,使用的催化剂体积要小得多(更短的接触时间)。
下表显示了在350℃时反应常数的值,K350℃,考虑到所述反应根据一级动力学进行计算,这将是催化活性的最优数量表达式。
表2催化剂的反应常数。
Figure BDA0003888998980000111
根据这些数据,本专利所涵盖的材料所产生的反应速率的提高比本实施例中提到的文献中描述的最优值高一个数量级以上。

Claims (13)

1.一种材料,其特征在于,具有通式为Co3O4-x/2Ay的非化学计量的尖晶石型晶体结构,其中:
x的值为0.02-0.3
A为碱金属元素,以及
y的值为0.06-0.18,
A/Cod的比值为0.02-0.10;Co2+/Co3+的比值为0.55-0.80;一级粒径相当于5-30nm的微晶尺寸。
2.根据权利要求1所述的材料,其中,所述材料的比表面积BET为40m2/g-80m2/g。
3.根据权利要求1或2所述的材料,其中,所述材料的孔体积为0.2cm3/g-0.4cm3/g。
4.根据权利要求1至3中任一项所述的材料,其中,所述材料为中孔材料。
5.根据权利要求1至4中任一项所述的材料,其中,所述碱金属元素A为K,x为0.182,y为0.09。
6.根据权利要求1至4中任一项所述的材料,其中,所述碱金属元素A为Cs,x为0.235,y为0.15。
7.根据权利要求1至6所述的材料的获取方法,其特征在于,包括以下步骤:
a)将钴盐溶解在水中;
b)将碱金属盐或氢氧化物溶解在水中;
c)将步骤(b)中得到的所述溶液缓慢加入步骤(a)中制备的所述溶液中,直至pH值达到8-11;
d)过滤步骤(c)中得到的所述固体并用水洗涤,洗涤时,步骤(a)中加入的每克钴盐用5mL-75mL的水;
e)将步骤(d)中得到的所述固体在50℃-200℃的温度下干燥12h-20h;以及
f)将步骤(e)中得到的所述固体在200℃-700℃的温度下的空气气氛中煅烧至少30分钟。
8.根据权利要求7所述的方法,其中,步骤(a)中的所述钴盐选自六水合硝酸钴、硫酸钴、氯化钴和醋酸钴。。
9.根据权利要求7或8所述的方法,其中,步骤(b)中的所述碱金属盐或氢氧化物选自碱金属碳酸盐、碱金属硝酸盐、碱金属氢氧化物和碱金属醋酸盐。
10.根据权利要求9所述的方法,其中,如果所述钴盐为六水合硝酸钴并且所述碱金属盐为碱金属碳酸盐,则步骤(d)的洗涤用水量为16ml/g-21ml/g的六水合硝酸钴。
11.如权利要求1至6中任一项所述的材料作为催化剂的用途。
12.如权利要求11所述的材料在气体的氧化/分解中作为催化剂的用途。
13.如权利要求11所述的材料作为N2O分解催化剂的用途。
CN202180028383.1A 2020-02-27 2021-02-25 用于n2o分解的材料 Active CN115427144B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ESP202030167 2020-02-27
ES202030167A ES2850524B2 (es) 2020-02-27 2020-02-27 Material para la descomposicion de n2o
PCT/ES2021/070138 WO2021170893A1 (es) 2020-02-27 2021-02-25 Material para la descomposición de n2o

Publications (2)

Publication Number Publication Date
CN115427144A true CN115427144A (zh) 2022-12-02
CN115427144B CN115427144B (zh) 2024-04-16

Family

ID=77417430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180028383.1A Active CN115427144B (zh) 2020-02-27 2021-02-25 用于n2o分解的材料

Country Status (10)

Country Link
US (1) US20230095029A1 (zh)
EP (1) EP4112163A4 (zh)
JP (1) JP2023515555A (zh)
CN (1) CN115427144B (zh)
AU (1) AU2021225369A1 (zh)
BR (1) BR112022017098A2 (zh)
CA (1) CA3168895A1 (zh)
ES (1) ES2850524B2 (zh)
MX (1) MX2022010680A (zh)
WO (1) WO2021170893A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116371413A (zh) * 2023-03-02 2023-07-04 上海交通大学 一种低温高效分解氧化亚氮的改性钴基催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054714A (ja) * 2005-08-23 2007-03-08 Kyoto Univ 亜酸化窒素の分解触媒及びその触媒を用いた亜酸化窒素の分解方法
CN101204657A (zh) * 2006-12-20 2008-06-25 中国科学院生态环境研究中心 催化n2o直接分解的含碱金属的钴铈复合氧化物催化剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5483723B2 (ja) * 2010-09-03 2014-05-07 株式会社日本触媒 亜酸化窒素分解触媒およびこれを用いた亜酸化窒素を含むガスの浄化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054714A (ja) * 2005-08-23 2007-03-08 Kyoto Univ 亜酸化窒素の分解触媒及びその触媒を用いた亜酸化窒素の分解方法
CN101204657A (zh) * 2006-12-20 2008-06-25 中国科学院生态环境研究中心 催化n2o直接分解的含碱金属的钴铈复合氧化物催化剂及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116371413A (zh) * 2023-03-02 2023-07-04 上海交通大学 一种低温高效分解氧化亚氮的改性钴基催化剂及其制备方法和应用

Also Published As

Publication number Publication date
MX2022010680A (es) 2022-10-07
JP2023515555A (ja) 2023-04-13
AU2021225369A1 (en) 2022-09-15
ES2850524B2 (es) 2022-04-06
BR112022017098A2 (pt) 2022-11-16
EP4112163A1 (en) 2023-01-04
CA3168895A1 (en) 2021-09-02
US20230095029A1 (en) 2023-03-30
WO2021170893A1 (es) 2021-09-02
EP4112163A4 (en) 2024-03-27
ES2850524A1 (es) 2021-08-30
CN115427144B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
Hu et al. Total oxidation of propane over a Ru/CeO2 catalyst at low temperature
Pan et al. Sphere-shaped Mn3O4 catalyst with remarkable low-temperature activity for methyl–ethyl–ketone combustion
Mu et al. Research progress in catalytic oxidation of volatile organic compound acetone
Bai et al. Progress in research on catalysts for catalytic oxidation of formaldehyde
Song et al. Effects of microporous TiO2 support on the catalytic and structural properties of V2O5/microporous TiO2 for the selective catalytic reduction of NO by NH3
US10478808B2 (en) Synthesis of oxygen-mobility enhanced CeO2 and use thereof
Fang et al. Effect of redox state of Ag on indoor formaldehyde degradation over Ag/TiO2 catalyst at room temperature
Deng et al. Catalytic deep combustion characteristics of benzene over cobalt doped Mn-Ce solid solution catalysts at lower temperatures
Zhu et al. Defect engineering over Co3O4 catalyst for surface lattice oxygen activation and boosted propane total oxidation
Du et al. Highly efficient simultaneous removal of HCHO and elemental mercury over Mn-Co oxides promoted Zr-AC samples
Yang et al. Enhancing oxygen vacancies of Ce-OMS-2 via optimized hydrothermal conditions to improve catalytic ozone decomposition
CN111889101A (zh) 用于VOCs和NO协同净化的改性复合氧化物催化剂及其制备方法
Fan et al. Promotion effect of potassium carbonate on catalytic activity of Co3O4 for formaldehyde removal
Hu et al. Synergism between manganese and cobalt on Mn–Co oxides for the catalytic combustion of VOCs: A combined kinetics and diffuse reflectance infrared fourier transform spectroscopy study
Ye et al. Synthesis of manganese ore/Co3O4 composites by sol–gel method for the catalytic oxidation of gaseous chlorobenzene
Zhao et al. Carefully Designed Hollow Mn x Co3–x O4 Polyhedron Derived from in Situ Pyrolysis of Metal–Organic Frameworks for Outstanding Low-Temperature Catalytic Oxidation Performance
Ding et al. Sm-MnOx catalysts for low-temperature selective catalytic reduction of NOx with NH3: Effect of precipitation agent
CN115427144B (zh) 用于n2o分解的材料
JP4997627B2 (ja) 可視光応答性光触媒
Chen et al. Catalytic oxidation of toluene over highly dispersed Mn-Ce solid solutions synthesized with weakly acidic precursors
US20040127353A1 (en) Nano-gold catalyst and process for preparing the same
Guo et al. Catalytic ozonation for low-temperature NOX (x= 1, 2) removal with OH radicals over Cu doped Ce0. 90Co0. 10O2− δ catalysts and mechanism analysis
JP2009241036A (ja) 一酸化炭素転換触媒用組成物からなる一酸化炭素転換用触媒、それを用いた一酸化炭素除去方法
CN114100604A (zh) LaMnO3催化剂及其制备方法和应用
KR20210109358A (ko) 염기 용액을 이용한 무기물 내의 염소 제거 방법 및 이 방법으로 제조된 질소산화물 선택적 환원용 촉매

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant