CN115424200B - 一种基于动态更新的人包关联方法及装置 - Google Patents

一种基于动态更新的人包关联方法及装置 Download PDF

Info

Publication number
CN115424200B
CN115424200B CN202210991528.4A CN202210991528A CN115424200B CN 115424200 B CN115424200 B CN 115424200B CN 202210991528 A CN202210991528 A CN 202210991528A CN 115424200 B CN115424200 B CN 115424200B
Authority
CN
China
Prior art keywords
package
passenger
picture
information
updating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210991528.4A
Other languages
English (en)
Other versions
CN115424200A (zh
Inventor
严军
连天友
姜旭
邓军
欧华平
张利
黄锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Zhiyuanhui Information Technology Co Ltd
Original Assignee
Chengdu Zhiyuanhui Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Zhiyuanhui Information Technology Co Ltd filed Critical Chengdu Zhiyuanhui Information Technology Co Ltd
Priority to CN202210991528.4A priority Critical patent/CN115424200B/zh
Publication of CN115424200A publication Critical patent/CN115424200A/zh
Application granted granted Critical
Publication of CN115424200B publication Critical patent/CN115424200B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/62Extraction of image or video features relating to a temporal dimension, e.g. time-based feature extraction; Pattern tracking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/761Proximity, similarity or dissimilarity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/98Detection or correction of errors, e.g. by rescanning the pattern or by human intervention; Evaluation of the quality of the acquired patterns
    • G06V10/993Evaluation of the quality of the acquired pattern
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/172Classification, e.g. identification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/05Recognition of patterns representing particular kinds of hidden objects, e.g. weapons, explosives, drugs

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

本发明公开了一种基于动态更新的人包关联方法及装置,在X光安检机的进包口处设置摄像头拍摄区域,用于拍摄乘客及乘客包裹的人包图片,具体包括以下步骤:接收:不间断地获取人包图片;识别:根据所述人包图片进行识别,生成所述人包图片的至少一个乘客信息及其对应的乘客ID;动态更新:基于同一个乘客ID,每获取一次人包图片,执行更新策略更新最优乘客信息,直到摄像头拍摄区域内不存在所述乘客ID,所述更新策略包括以下策略中的至少有一种:人包图片更新策略,包裹图片更新策略。本发明根据在摄像可照射的范围,在此范围内,不断做乘客识别和追踪的算法来实现人和包的动态更新,提高摄像头拍摄的人包图片的质量,进而提高人包关联的准确率。

Description

一种基于动态更新的人包关联方法及装置
技术领域
本发明涉及智慧安检技术领域,具体涉及一种基于动态更新的人包关联方法及装置。
背景技术
在安检场景下,当乘客把包裹放到传送带进入安检机后,会对包裹进行违禁品识别,当包裹中识别出违禁品时,需要马上确定对应的包。所以需要把安检机X光包裹图片和外置摄像头拍摄的包裹图片进行关联,才方便安检员确认。现有技术中,对来自安检点发送的图像信息以时间段的形式存储在数据库中,通过获取来自X光检查机发送的包裹图像信息的拍摄时刻点,查找数据库中与拍摄时刻点对应的旅客图像信息,即“包-包”,用以解决现有的安检人包关联解决方案需要获取旅客及旅客身上的包裹图片与X光检查机拍摄的图像进行图像识别,即“人包-包”,然而现有技术由于安检的乘客过闸速度或安装场景中安检摄像的抖动原因,导致摄像机拍摄的人包图片质量差,进而无法进行安检机X光包裹图片和外置摄像头拍摄的包裹图片的关联,严重影响其安检效率和安检准确性。
发明内容
本发明的目的在于提供一种基于动态更新的人包关联方法及装置,在摄像可照射的范围,在此范围内,不断做乘客识别和追踪的算法来实现人和包的动态更新,提高摄像头拍摄的人包图片的质量,用以解决现有的人包关联准确性低的问题。
一种基于动态更新的人包关联方法,在X光安检机的进包口处设置摄像头拍摄区域,用于拍摄乘客及乘客包裹的人包图片,具体包括以下步骤:
接收:不间断地获取人包图片;
识别:根据所述人包图片进行识别,生成所述人包图片的至少一个乘客信息及其对应的乘客ID;
动态更新:基于同一个乘客ID,每获取一次人包图片,执行更新策略更新,获得最优乘客信息,直到摄像头拍摄区域内不存在所述乘客ID,所述更新策略包括以下策略中的至少有一种:人包图片更新策略,包裹图片更新策略。
所述最优乘客信息用于人包关联。
进一步地,所述乘客信息包括与乘客ID对应的人包图片以及置信度,所述更新策略为人包图片更新策略,所述人包图片更新策略具体包括以下步骤:
将当前时刻的乘客信息的置信度S1与最优乘客信息的置信度S0进行比较:
若所述S1>S0,则将最优乘客信息中的人包图片更新为当前时刻的乘客信息的人包图片。
进一步地,所述乘客信息包括与乘客ID对应的包裹信息集合,所述包裹信息集合为所述乘客ID对应的所有包裹图片的集合,所述更新策略为包裹图片更新策略,所述包裹图片更新策略具体包括以下步骤:
比较最优乘客信息中包裹图片的质量值与当前时刻的乘客信息中同一包裹图片的质量值;
若当前时刻的乘客信息中包裹图片的质量值大于最优乘客信息中同一包裹图片的质量值;则将所述最优乘客信息中所述包裹图片更新为当前时刻的乘客信息对应的包裹图片。
进一步地,所述乘客信息包括乘客ID对应的人包图片以及置信度、包裹信息集合,所述包裹信息集合为所述乘客ID对应的所有包裹图片的集合,所述更新策略包括人包图片更新策略及包裹图片更新策略,所述更新策略具体包括以下步骤:
将当前时刻的乘客信息的置信度S1与最优乘客信息的置信度S0进行比较:
若所述S1>S0,则将最优乘客信息中的人包图片更新为当前时刻的乘客信息的人包图片,并比较最优乘客信息中包裹图片的质量值与当前时刻的乘客信息中同一包裹图片的质量值;
若当前时刻的乘客信息中包裹图片的质量值大于最优乘客信息中同一包裹图片的质量值;则将所述最优乘客信息中所述包裹图片更新为当前时刻的乘客信息对应的包裹图片。
进一步地,所述质量值为以下列举中的一种:包裹图片尺寸值、包裹图片清晰度值、包裹图片尺寸值与清晰度值加权求和值。
进一步地,所述识别包括人脸识别,所述人脸识别具体包括以下步骤:
对所述人包图片进行相应分区,每个分区对应一个乘客和包裹;
提取分区后的人包图片的各区的特征数据;
根据各区的特征数据与所述人脸特征数据库内的对应数据进行比对并分别计算出各区与所述人脸特征数据库内的各人脸数据的置信度,根据相似度最高的人脸数据确定对应乘客的乘客ID。
进一步地,所述识别具体包括包裹识别,所述包裹识别具体包括以下步骤:
根据乘客ID对应的分区进行剪切,获得乘客ID对应乘客包裹图片;
将所述乘客ID对应的乘客包裹图片输入识别模型,获得乘客ID对应的包裹信息集合;
将所述乘客ID对应的人包图片、包裹信息集合、对应的置信度打包为乘客ID对应的乘客信息。
进一步地,所述分区之前,还包括将所述人脸识别进行正面脸识别,将正面脸的人包图片进行分区。
进一步地,所述摄像头拍摄区域内不存在所述乘客ID对应的乘客,具体包括以下步骤:
遍历当前时刻人包图片所有乘客ID,每遍历一个乘客ID,将所述乘客ID与前一时刻人包图片所有乘客ID进行匹配;
获得不匹配的当前时刻人包图片中的乘客ID确定为摄像头拍摄区域内不存在的乘客ID。
一种提升包裹关联准确率的控制装置,包括:
一个或多个处理器;
存储单元,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,能使得所述一个或多个处理器实现根据权利要求1至8中任意一项所述的一种基于动态更新的人包关联方法。
本发明具有的有益效果:
1、不影响现有安检效率的前提下,乘客进入摄像头拍摄区域,在此范围内,不断做乘客识别和追踪的算法来实现人和包的动态更新,提高了旅客进站乘车时在X光安检机进包口处的摄像头拍摄的人包图片质量,在进行人包关联的过程中提高了人包关联的准确性,降低了安检管理的人工成本,解决了传统的安检过程中一旦旅客发现危险品被检出,就会放弃包裹离开或者不承认包裹是其所有而导致的追溯困难,当前时间周期内高频出现的违禁品进行重点检测,更加智能化、具有针对性,对切实保障安检过程的实时高效具有重要意义。;
2、通过本申请获得外置摄像头拍摄的高质量包裹图片,其中包含对应的包裹信息及乘客信息,并识别出已扫描安检机X光包裹图片中的物品信息,通过将安检机X光包裹图片和外置摄像头拍摄的包裹图片的关联的绑定,同时判断当X光包裹图片中的物品信息是否为违禁物品,若是,则提前将异常的判别结果告知安检人员,提醒安检人员对旅客行包进行开包检查,提高了旅客进站乘车的安检效率,降低了安检管理的人工成本。
附图说明
图1为本发明的基于动态更新的人包关联示意图;
图2为本发明的拍摄区域示意图;
图3为本发明的更新策略示意图;
图4为本发明的人包关联方法示意图;
图5为本发明的人包关联场景示意图;
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
另外,为了清楚和简洁起见,可能省略了对公知的结构、功能和配置的描述。本领域普通技术人员将认识到,在不脱离本公开的精神和范围的情况下,可以对本文描述的示例进行各种改变和修改。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
实施例1
一种基于动态更新的人包关联方法,在X光安检机的进包口处设置摄像头拍摄区域,用于拍摄乘客及乘客包裹的人包图片,具体包括以下步骤:
接收:不间断地获取人包图片;
识别:根据所述人包图片进行识别,生成所述人包图片的至少一个乘客信息及其对应的乘客ID;
动态更新:基于同一个乘客ID,每获取一次人包图片,执行更新策略更新最优乘客信息,直到摄像头拍摄区域内不存在所述乘客ID,所述更新策略包括以下策略中的至少有一种:人包图片更新策略,包裹图片更新策略。
所述最优乘客信息用于人包关联。
需要进行说明的是,摄像头的安装位置需要根据X光安检机的位置、现场安检通道的位置以及其之间的相互位置关系进行安装调试,以获得较好角度的乘客以及乘客包裹的人包图片。
优选的,所述摄像头拍摄区域包括X光安检机的进包口处区域。
具体地,所述乘客信息包括与乘客ID对应的人包图片以及置信度,所述更新策略为人包图片更新策略,所述人包图片更新策略具体包括以下步骤:
将当前时刻的乘客信息的置信度S1与最优乘客信息的置信度S0进行比较:
若所述S1>S0,则将最优乘客信息中的人包图片更新为当前时刻的乘客信息的人包图片。
具体地,所述乘客信息包括与乘客ID对应的包裹信息集合,所述包裹信息集合为所述乘客ID对应的所有包裹图片的集合,所述更新策略为包裹图片更新策略,所述包裹图片更新策略具体包括以下步骤:
比较最优乘客信息中包裹图片的质量值与当前时刻的乘客信息中同一包裹图片的质量值;
若当前时刻的乘客信息中包裹图片的质量值大于最优乘客信息中同一包裹图片的质量值;则将所述最优乘客信息中所述包裹图片更新为当前时刻的乘客信息对应的包裹图片。
具体地,所述乘客信息包括乘客ID对应的人包图片以及置信度、包裹信息集合,所述包裹信息集合为所述乘客ID对应的所有包裹图片的集合,所述更新策略包括人包图片更新策略及包裹图片更新策略,所述更新策略具体包括以下步骤:
将当前时刻的乘客信息的置信度S1与最优乘客信息的置信度S0进行比较:
若所述S1>S0,则将最优乘客信息中的人包图片更新为当前时刻的乘客信息的人包图片,并比较最优乘客信息中包裹图片的质量值与当前时刻的乘客信息中同一包裹图片的质量值;
若当前时刻的乘客信息中包裹图片的质量值大于最优乘客信息中同一包裹图片的质量值;则将所述最优乘客信息中所述包裹图片更新为当前时刻的乘客信息对应的包裹图片。
具体地,所述质量值为以下列举中的一种:包裹图片尺寸值、包裹图片清晰度值、包裹图片尺寸值与清晰度值加权求和值。
具体地,所述识别包括人脸识别,所述人脸识别具体包括以下步骤:
对所述人包图片进行相应分区,每个分区对应一个乘客和包裹;
提取分区后的人包图片的各区的特征数据;
根据各区的特征数据与所述人脸特征数据库内的对应数据进行比对并分别计算出各区与所述人脸特征数据库内的各人脸数据的置信度,根据相似度最高的人脸数据确定对应乘客的乘客ID。
在一种实施例中,所述人脸识别具体包括以下步骤:
S110、预建包含多个人脸的人脸特征数据库,
S111、输入待识别的人包图片。
S112、对输入的人包图片进行人脸定位,即识别出人包图片中的人脸部分。
S113、对定位后的人脸进行裁剪,例如可采用鼠标拉框或预先设置的取脸框对定位后的人脸进行裁剪。
S114、对裁减后的人脸进行预处理,所述预处理包括人脸尺寸归一化、光照补偿及姿态校正,所述预处理都为本领域技术人员所熟悉的技术,在此不再详述。
S115、将所裁减后的人脸与所述人脸特征数据库内的对应数据进行比对并计算出待识别的人脸与所述人脸特征数据库内的各人脸的相似度。
S116、结果处理,即根据所计算出的相似度在人脸特征数据库内找出与待识别的人脸最为相似的人脸,并生成对应的乘客ID。
具体地,所述识别具体包括包裹识别,所述包裹识别具体包括以下步骤:
根据乘客ID对应的分区进行剪切,获得乘客ID对应乘客包裹图片;
将所述乘客ID对应的乘客包裹图片输入识别模型,获得乘客ID对应的包裹信息集合;
将所述乘客ID对应的人包图片、包裹信息集合、对应的置信度打包为乘客ID对应的乘客信息。
具体地,所述摄像头拍摄区域内不存在所述乘客ID对应的乘客,具体包括以下步骤:
遍历当前时刻人包图片所有乘客ID,每遍历一个乘客ID,将所述乘客ID与前一时刻人包图片所有乘客ID进行匹配;
获得不匹配的当前时刻人包图片中的乘客ID确定为摄像头拍摄区域内不存在的乘客ID。
具体地,所述分区之前,还包括将所述人脸识别进行正面脸识别,将正面脸的人包图片进行分区。对人包图片进行正面脸识别,从而对所述人包图片进行相应的正面脸分区,具体的包括:
对待识别的人包图片进行人脸检测以确定其是否包含人脸,并对包含人脸的待识别人包图片进行双眼定位;
根据定位的双眼判断所述双眼是否水平,若双眼不为水平,则旋转所述待识别的人包图片以使所述双眼水平;
根据处于水平的双眼的距离自相应待识别的人包图片中截取出相应人脸部分;
根据所截取出的相应人脸部分生成与所述人脸部分相应的镜像人脸;
根据所述人脸部分与镜像人脸对应各像素点的灰度值计算两图像之间的差距;按照公式
Figure BDA0003804164070000071
计算所述差距,其中,d为差距,A(x,y)为截取出的人脸部分中像素点(x,y)的灰度值,B(x,y)为镜像人脸中对应像素点(x,y)的灰度值;
将所述差距与预设的阀值进行比较以判断所述待识别的人包图片包含的人脸是否为正面脸。
所述人包关联具体包括以下步骤:
一种提升包裹关联准确率的方法,在安检机外部的传送带上方设置有外置摄像头,具体包括以下步骤:
S1、对外置摄像头拍摄的包裹图片进行图像识别,获得实物包裹图片,并按包裹拍摄时刻将实物包裹图片存入缓存中;
S2、对X光安检机拍摄的X光机图片进行图像识别,获得X光包裹图片,并记录提取时刻T1;
S3、根据所述提取时刻T1,传送带的移动速率v以及包裹在传送带上的运动位移,推算包裹在外置摄像头拍摄区域内运动的时间段,将所述时间段确定为关联时间段;
S4、从所述数据库中提取关联时间段内的实物包裹图片集;
S5、将所述X光包裹图片与实物包裹图片集进行相似性匹配,获得关联的X光包裹图片及其对应的包裹图片。
具体地,所述传送带上沿传送带的运动方向布设有外置摄像头拍摄区域、X光扫描区域,所述外置摄像头拍摄区域、X光扫描区域分别布设在安检机铅帘的两侧,且彼此相邻,所述关联时间段为[TA,TB],其中TA为包裹进入外置摄像头拍摄区域的时刻,TB为包裹进入X光扫描区域的时刻。
具体地,所述提取时刻T1为基于包裹在X光机图片中预设位置的识别提取,所述预设位置与安检机内X光扫描区域的物理位置一一对应,所述时刻TA,具体由以下步骤获得:
获得传送带的移动速率v;
获得包裹从外置摄像头拍摄区域至X光扫描区域对应的物理位置的位移S1;
计算包裹从外置摄像头拍摄区域至X光扫描区域对应的物理位置的时间段t1=(S1+S0)/v;
根据所述提取时刻T1、时间段t1计算时刻TA=T1-t1。
具体地,所述时刻TB,具体由以下步骤获得:
获得传送带的移动速率v;
获得包裹在X光扫描区域中运动至对应的物理位置的位移S2;
计算包裹在X光扫描区域中运动至对应的物理位置的时间段t2=(S2+S0)/v;
根据所述提取时刻T1、时间段t2计算时刻TB=T1-t2。
其中S0为包裹的实际长度,可以通过标定法获得,具体包括:
在所述摄像头至所述传送带的视场中,在距离所述摄像头预设距离的位置处设置所述标定窗口,其中所述标定窗口具有预定的物理窗口尺寸;基于所述标定窗口的窗口像素值和所述包裹运动轨迹的像素值以及所述物理窗口尺寸,估计所述包裹运动轨迹相对于所述标定窗口的实际值,其中所述窗口尺寸与所述包裹运动轨迹的像素比和物理尺寸比相等。
其中,还可以在预设区域上粘贴有已知尺寸的贴纸等标志作为参考,这里不做限定。并且,该标定窗口可移动地设置于预定区域内,即该标定窗口是可以移动的,在进行标定时可以由工作人员放置在该预定区域内的任意位置。例如,该参照物可以为一个立方体,且尺寸已知并存储在装置中。
可以理解的是,本申请中的模型可以为基于RNN模型、CNN模型或LSTM模型等配置,此为常规技术,在此不赘述。
需要说明的是,本地数据库预置安检机型号及其对应的各个位移值,所述位移S2、位移S1可以根据安检机型号匹配获得。
示例性的:
1、乘客进入A区域后,识别出乘客,记为O,O包含的信息如下:
O={id,M,m_img,r,flag},id表示乘客的乘客id,随机生成,m_img是捕获到的乘客及包裹信息,r表示m_img为正面照的置信度,flag表示乘客是否带包,初始化为0,如果检测到乘客带包则记为1,M是个包裹列表,因为有可能乘客有多个包裹,M表示如下:
M={BAG0,BAG1,…},BAGi表示的是包裹信息,i表示包裹的标号,包裹BAG包含如下信息:
BAG={id,b_img},id表示包裹id,随机生成,b_img是包裹的图片;
2、在1识别出乘客后,得到乘客图片m_img,然后从m_img识别是否带包,如果有包,则生成BAG放入M中,生成BAG时,需要生成包裹id和存入包裹图片b_img
3、开始乘客追踪,每追踪一次需要获得新的乘客图片m_img’,判断m_img为正面照的置信度的阈值r’,如果r’>r则用m_img’替换m_img。然后对m_img’进行包裹识别,如果提取到包裹BAG’,需要从M中找到与BAG’最相似的BAG,然后比较BAG和BAG’的包裹图片的质量,主要比较图片尺寸,如果尺寸大,说明包裹成像好。用如果BAG’的包裹图片成像比BAG的好,则用BAG’的包裹图片替换BAG的原有包裹图片。
4、跟踪乘客,判断乘客如果从区域B中消失。如果消失,则把乘客数据上传。如果没有消失,则继续步骤3。
实施例2
一种提升包裹关联准确率的控制装置,包括:
一个或多个处理器;
存储单元,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,能使得所述一个或多个处理器实现根据所述的一种基于动态更新的人包关联方法。
实施例3,一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时能实现所述的一种基于动态更新的人包关联方法。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质,在本发明的精神和原则之内,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

Claims (7)

1.一种基于动态更新的人包关联方法,其特征在于,在X光安检机的进包口处设置摄像头拍摄区域,用于拍摄乘客及乘客包裹的人包图片,具体包括以下步骤:
接收:不间断地获取人包图片;
识别:根据所述人包图片进行识别,生成所述人包图片的至少一个乘客信息及其对应的乘客ID;
动态更新:基于同一个乘客ID,每获取一次人包图片,执行更新策略更新最优乘客信息,直到摄像头拍摄区域内不存在所述乘客ID,所述更新策略包括以下策略中的至少有一种:人包图片更新策略,包裹图片更新策略;
所述乘客信息包括与乘客ID对应的人包图片以及置信度,所述更新策略为人包图片更新策略,所述人包图片更新策略具体包括以下步骤:
将当前时刻的乘客信息的置信度S1与最优乘客信息的置信度S0进行比较:
若所述S1>S0,则将最优乘客信息中的人包图片更新为当前时刻的乘客信息的人包图片;
所述乘客信息包括与乘客ID对应的包裹信息集合,所述包裹信息集合为所述乘客ID对应的所有包裹图片的集合,所述更新策略为包裹图片更新策略,所述包裹图片更新策略具体包括以下步骤:
比较最优乘客信息中包裹图片的质量值与当前时刻的乘客信息中同一包裹图片的质量值;
若当前时刻的乘客信息中包裹图片的质量值大于最优乘客信息中同一包裹图片的质量值;则将所述最优乘客信息中所述包裹图片更新为当前时刻的乘客信息对应的包裹图片。
2.根据权利要求1所述的一种基于动态更新的人包关联方法,其特征在于,所述质量值为以下列举中的一种:包裹图片尺寸值、包裹图片清晰度值、包裹图片尺寸值与清晰度值加权求和值。
3.根据权利要求1所述的一种基于动态更新的人包关联方法,其特征在于,所述识别包括人脸识别,所述人脸识别具体包括以下步骤:
对所述人包图片进行相应分区,每个分区对应一个乘客和包裹;
提取分区后的人包图片的各区的特征数据;
根据各区的特征数据与所述人脸特征数据库内的对应数据进行比对并分别计算出各区与所述人脸特征数据库内的各人脸数据的置信度,根据相似度最高的人脸数据确定对应乘客的乘客ID。
4.根据权利要求3所述的一种基于动态更新的人包关联方法,其特征在于,所述识别具体包括包裹识别,所述包裹识别具体包括以下步骤:
根据乘客ID对应的分区进行剪切,获得乘客ID对应乘客包裹图片;
将所述乘客ID对应的乘客包裹图片输入识别模型,获得乘客ID对应的包裹信息集合;
将所述乘客ID对应的人包图片、包裹信息集合、对应的置信度打包为乘客ID对应的乘客信息。
5.根据权利要求4所述的一种基于动态更新的人包关联方法,其特征在于,所述分区之前,还包括将所述人脸识别进行正面脸识别,将正面脸的人包图片进行分区。
6.根据权利要求1所述的一种基于动态更新的人包关联方法,其特征在于,所述摄像头拍摄区域内不存在所述乘客ID对应的乘客,具体包括以下步骤:
遍历当前时刻人包图片所有乘客ID,每遍历一个乘客ID,将所述乘客ID与前一时刻人包图片所有乘客ID进行匹配;
获得不匹配的当前时刻人包图片中的乘客ID确定为摄像头拍摄区域内不存在的乘客ID。
7.一种提升包裹关联准确率的控制装置,其特征在于,包括:
一个或多个处理器 ;
存储单元,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,能使得所述一个或多个处理器实现根据权利要求1至6中任意一项所述的一种基于动态更新的人包关联方法。
CN202210991528.4A 2022-08-18 2022-08-18 一种基于动态更新的人包关联方法及装置 Active CN115424200B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210991528.4A CN115424200B (zh) 2022-08-18 2022-08-18 一种基于动态更新的人包关联方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210991528.4A CN115424200B (zh) 2022-08-18 2022-08-18 一种基于动态更新的人包关联方法及装置

Publications (2)

Publication Number Publication Date
CN115424200A CN115424200A (zh) 2022-12-02
CN115424200B true CN115424200B (zh) 2023-06-20

Family

ID=84197614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210991528.4A Active CN115424200B (zh) 2022-08-18 2022-08-18 一种基于动态更新的人包关联方法及装置

Country Status (1)

Country Link
CN (1) CN115424200B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113094683A (zh) * 2021-04-13 2021-07-09 青岛民航凯亚系统集成有限公司 人包对应集成系统及数据处理方法
CN114677740A (zh) * 2022-04-01 2022-06-28 广州广电运通智能科技有限公司 一种人包关联快速寻人方法、系统、存储介质和终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110866746A (zh) * 2019-11-20 2020-03-06 厦门瑞为信息技术有限公司 一种基于人脸识别的订单匹配方法以及计算机设备
CN111079670B (zh) * 2019-12-20 2023-11-03 北京百度网讯科技有限公司 人脸识别方法、装置、终端和介质
CN111209868B (zh) * 2020-01-08 2023-05-09 中国铁道科学研究院集团有限公司电子计算技术研究所 一种客运站旅客与行李信息关联方法及装置
CN111323835B (zh) * 2020-03-20 2022-09-16 安徽启新明智科技有限公司 一种基于人包关联的安检方法及其装置
CN114187612B (zh) * 2021-12-09 2024-09-03 成都轨道交通集团有限公司 一种人包关联的方法与系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113094683A (zh) * 2021-04-13 2021-07-09 青岛民航凯亚系统集成有限公司 人包对应集成系统及数据处理方法
CN114677740A (zh) * 2022-04-01 2022-06-28 广州广电运通智能科技有限公司 一种人包关联快速寻人方法、系统、存储介质和终端

Also Published As

Publication number Publication date
CN115424200A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
US11367219B2 (en) Video analysis apparatus, person retrieval system, and person retrieval method
CN110609920B (zh) 一种视频监控场景下的行人混合搜索方法及系统
CN105426870B (zh) 一种人脸关键点定位方法及装置
CN106778737B (zh) 一种车牌矫正方法、装置和一种视频采集装置
CN111881749B (zh) 基于rgb-d多模态数据的双向人流量统计方法
US11682231B2 (en) Living body detection method and device
CN114187612B (zh) 一种人包关联的方法与系统
CN114624263B (zh) 一种双源双视角基于目标识别的切图方法及系统
CN110674680B (zh) 活体识别的方法、装置、存储介质
CN103106414A (zh) 一种智能视频监控中行人的检测方法
CN114660097B (zh) 一种基于双源双视角的同步校正方法及系统
CN115424200B (zh) 一种基于动态更新的人包关联方法及装置
CN117292327A (zh) 目标的关联方法、装置、设备和介质
EP3761228A1 (en) Computer-implemented method
CN115457455B (zh) 一种基于判定更新的人包关联方法及装置
CN115438208A (zh) 一种提升包裹关联准确率的方法及装置
CN112183287A (zh) 一种移动机器人在复杂背景下的人数统计方法
CN115422391B (zh) 一种基于以图搜图的人包关联方法及装置
CN112347904B (zh) 基于双目深度和图片结构的活体检测方法、装置及介质
CN115661903A (zh) 一种基于空间映射协同目标过滤的识图方法及装置
CN115471560B (zh) 一种基于主视角和侧视角的切图方法及装置
US20230274553A1 (en) Image processing apparatus, image processing method, and non-transitory storage medium
CN114463618A (zh) 一种基于动态人脸识别的人物同检系统、方法及人脸动态识别方法
Minar et al. Intruder detection for automated access control systems with Kinect device
CN114693735B (zh) 一种基于目标识别的视频融合方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant