CN115422869A - 负荷模型的参数辨识方法、系统、计算机设备及存储介质 - Google Patents

负荷模型的参数辨识方法、系统、计算机设备及存储介质 Download PDF

Info

Publication number
CN115422869A
CN115422869A CN202210909159.XA CN202210909159A CN115422869A CN 115422869 A CN115422869 A CN 115422869A CN 202210909159 A CN202210909159 A CN 202210909159A CN 115422869 A CN115422869 A CN 115422869A
Authority
CN
China
Prior art keywords
model
load
representing
power
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210909159.XA
Other languages
English (en)
Inventor
龙云
卢有飞
梁雪青
吴任博
张扬
刘璐豪
赵宏伟
陈明辉
张少凡
邹时容
蔡燕春
刘璇
苏杰
赖德翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Original Assignee
Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd filed Critical Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority to CN202210909159.XA priority Critical patent/CN115422869A/zh
Publication of CN115422869A publication Critical patent/CN115422869A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/04Power grid distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computer Hardware Design (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Operations Research (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种负荷模型的参数辨识方法、系统、计算机设备及存储介质,所述方法包括:获取预处理后的电力系统扰动数据;将负荷模型转化成状态空间方程的形式并进行简化处理;将预处理后的电力系统扰动数据和每个待辨识参数的初始值输入非线性灰箱模型,实现负荷模型的参数辨识。本发明将物理模型与数据驱动相结合,既可以考虑负荷的物理机理,也可以利用观测到的大量数据,提高了参数辨识的精确性;同时,相较于传统的静态负荷模型和WECC CLM模型而言,ZIP+IM模型不仅可以较好地模拟负荷动态行为,而且参数较少,辨识难度较低。此外,灰箱模型具有明确的物理意义,训练周期短且求解速度快,具有较好的应用价值。

Description

负荷模型的参数辨识方法、系统、计算机设备及存储介质
技术领域
本发明涉及一种负荷模型的参数辨识方法、系统、计算机设备及存储介质,属于电力系统技术领域。
背景技术
电力负荷模型影响着电力系统的稳定计算结果,具体地,在电力系统暂态稳定、小扰动稳定、电压稳定等的分析计算中都有不同程度的影响。在电力系统仿真计算中采用准确的负荷模型,有利于保障电网的安全稳定运行,提高对用户的供电可靠性。
随着分布式发电机、电动汽车和需求侧管理等新兴智能电网技术的出现,电力系统的负荷成分更加复杂、负荷波动的时变性和不确定性不断增强,为负荷建模的精确性带来了新的挑战。负荷建模的目标是开发简单的数学模型近似负荷行为,表示负载总线中功率和电压之间的关系。负荷建模包括两个主要步骤:1)选择负荷模型结构;2)辨识负荷模型参数。负荷模型分为静态负荷、动态负荷与复合负荷模型。复合负荷模型同时考虑了负荷中的动态和静态成分,对负荷行为的模拟效果较好。复合负荷的物理模型主要有静态负荷和感应电机组成的复合模型(ZIP+IM)、西部电力协调理事会负荷模型(WECC CLM)等。其中WECC CLM模型需要对131个参数进行辨识,较为复杂,很难实现。而ZIP+IM模型参数较少,不仅可以较好的模拟负荷动态行为,而且模型求解难度大大降低。
负荷的建模和辨识方法主要分为两类:物理模型与数据驱动结合的方法、机器学习等纯数据驱动方法。物理与数据驱动相结合的方法考虑了负荷的物理机理,易于仿真。而机器学习等纯数据驱动方法缺乏物理意义,数据不易获得,仿真软件集成不方便。目前针对ZIP+IM模型的辨识,较多研究聚焦于提取典型参数采用遗传算法求解或者采用强化学习等方法辨识,这两种方法存在精度较差、训练周期较长且参数不具备普适性等缺点。
发明内容
有鉴于此,本发明提供了一种负荷模型的参数辨识方法、系统、计算机设备及存储介质,其通过使用物理模型和数据驱动结合来辨识参数,具有明确的物理意义,且求解速度快,具有较好的应用价值。
本发明的第一个目的在于提供一种负荷模型的参数辨识方法。
本发明的第二个目的在于提供一种负荷模型的参数辨识系统。
本发明的第三个目的在于提供一种计算机设备。
本发明的第四个目的在于提供一种存储介质。
本发明的第一个目的可以通过采取如下技术方案达到:
一种负荷模型的参数辨识方法,所述方法包括:
获取预处理后的电力系统扰动数据;
将负荷模型转化成状态空间方程的形式并进行简化处理,从而完成非线性灰箱模型的构建,所述非线性灰箱模型包括多个待辨识参数;
将预处理后的电力系统扰动数据和每个待辨识参数的初始值输入非线性灰箱模型,实现负荷模型的参数辨识。
进一步的,所述负荷模型为ZIP+IM模型;
所述将负荷模型转化成状态空间方程的形式并进行简化处理,从而完成非线性灰箱模型的构建,具体包括:
根据ZIP+IM模型的三阶感应电动机方程、负荷节点的有功功率和负荷节点的无功功率,将负荷模型转化成状态空间方程的形式,从而得到状态空间方程;
对状态空间方程进行简化处理,得到非线性灰箱模型。
进一步的,所述负荷节点的有功功率和负荷节点的无功功率,如下式:
Figure BDA0003773508400000021
其中,P表示负荷节点的有功功率,Q表示负荷节点的无功功率,V表示负荷节点的电压,PZIP表示静态负荷的有功功率,QZIP表示静态负荷的无功功率,PM表示感应电动机吸收的有功功率,QM表示感应电动机吸收的无功功率,PZ、PI、PP分别表示静态模型中恒阻抗、恒电压、恒功率部分的有功功率所占百分比,QZ、QI、QP分别表示静态模型中恒阻抗、恒电压、恒功率部分的无功功率所占百分比,PZIP0表示静态模型在稳态下的有功功率,QZIP0表示静态模型在稳态下的无功功率,V0表示负荷节点的额定电压,Xm′表示暂态电抗,Em′表示暂态电势,δm表示暂态电势的功角。
进一步的,所述状态空间方程,如下式:
Figure BDA0003773508400000031
Figure BDA0003773508400000032
其中,Xm表示励磁电抗,Tdm′表示暂态时间常数,ωm表示感应电机负荷的机械角速度,ωs表示负荷节点的角频率,Tm表示负荷等效后的转矩,Hm表示惯性时间常数。
进一步的,所述非线性灰箱模型,如下式:
Figure BDA0003773508400000033
Figure BDA0003773508400000034
其中,Pi表示待辨识参数,i=1,2,…,11。
进一步的,所述获取预处理后的电力系统扰动数据,具体包括:
在负荷节点处,分别设置第一预设时间的单相故障和第二预设时间的三相故障,并采集包括故障前、故障段和故障切除后的第三预设时间内的多组电压、频率、有功功率和无功功率,其中,输入数据为电压和频率,输出数据为有功功率和无功功率;
滤除每组输入数据和输出数据的高次谐波和噪声,从而获取得到预处理后的电力系统扰动数据。
进一步的,在所述将预处理后的扰动数据和每个待辨识参数的初始值输入非线性灰箱模型之后,采用Levenberg-Marquardt迭代算法更新迭代每个待辨识参数。
本发明的第二个目的可以通过采取如下技术方案达到:
一种负荷模型的参数辨识系统,所述系统包括:
获取单元,用于获取预处理后的电力系统扰动数据;
构建单元,用于将负荷模型转化成状态空间方程的形式并进行简化处理,从而完成非线性灰箱模型的构建,所述非线性灰箱模型包括多个待辨识参数;
辨识单元,用于将预处理后的电力系统扰动数据和每个待辨识参数的初始值输入非线性灰箱模型,实现负荷模型的参数辨识。
本发明的第三个目的可以通过采取如下技术方案达到:
一种计算机设备,包括处理器以及用于存储处理器可执行程序的存储器,所述处理器执行存储器存储的程序时,实现上述的参数辨识方法。
本发明的第四个目的可以通过采取如下技术方案达到:
一种存储介质,存储有程序,所述程序被处理器执行时,实现上述的参数辨识方法。
本发明相对于现有技术具有如下的有益效果:
1、本发明将物理模型与数据驱动相结合,考虑了负荷的物理机理,易于仿真。目前,随着新能源负荷的接入,负荷的种类更加多样,纯物理模型涉及到了各种负荷的精确数学建模,集成的方法太过复杂。而机器学习等纯数据驱动方法缺乏物理意义,数据不易获得,仿真软件集成不方便。将物理模型与数据驱动相结合,既可以考虑负荷的物理机理,也可以利用观测到的大量数据,提高了模型的精确性。
2、本发明训练周期短,求解速度快。目前针对负荷模型的辨识,较多研究聚焦于提取典型参数并采用遗传算法求解或者采用强化学习等方法识别,这两种方法可能会导致精度较差、训练周期较长且参数不具备普适性等缺点;而灰箱模型训练周期较短,求解参数速度快,具备普适性和较好的应用价值。
3、本发明实施例中的负荷模型为复合负荷的物理模型,即同时考虑了负荷中的动态部分和静态部分,对负荷行为的模拟效果较好。复合负荷的物理模型主要有静态负荷和感应电机组成的复合模型(ZIP+IM)、西部电力协调理事会负荷模型(WECC CLM)等;其中,WECC CLM模型需要对131个参数进行辨识,较为复杂,很难实现;而ZIP+IM模型有14个参数,不仅可以较好地模拟负荷动态行为,而且模型求解难度大大降低。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明实施例1的负荷模型的参数辨识方法的流程图。
图2为本发明实施例1的ZIP+IM模型的等效结构图。
图3为本发明实施例1的ZIP+IM模型的等效电路图。
图4为本发明实施例1的非线性灰箱模型的辨识流程图。
图5(a)为本发明实施例1的单相故障结果的有功功率和无功功率对比图。
图5(b)为本发明实施例1的三相故障结果的有功功率和无功功率对比图。
图6为本发明实施例2的负荷模型的参数辨识系统的结构框图。
图7为本发明实施例3的计算机设备的结构框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
如图1所示,本实施例提供了一种负荷模型的参数辨识方法,该方法包括以下步骤:
S101、获取预处理后的电力系统扰动数据。
S1011、选取负荷模型。
在负荷模型的结构方面,主要分为静态负荷模型、动态负荷模型和包括静态负荷部分和动态负荷部分的复合负荷模型,其中复合负荷模型同时考虑负荷中的动态成分和静态成分,应用效果较好,为此选取ZIP+IM模型作为本实施例中的负荷模型,ZIP+IM模型的等效结构,如图2所示,ZIP+IM模型的等效电路,如图3所示。
S1012、采集在电力系统发生短路等大扰动时产生的扰动数据,即电力系统扰动数据,具体为:基于IEEE-39节点标准算例,选取节点9作为负荷节点,在节点9处串联ZIP+IM模型作为仿真模型进行仿真;分别在负荷相邻节点8处,设置第一预设时间的单相故障和第二预设时间的三相故障,并采集包括故障前、故障段和故障切除后的第三预设时间内负荷节点的6250组电压V、频率f、有功功率P和无功功率Q,其中,电压V、频率f作为输入数据,有功功率P、无功功率Q作为输出数据;V也称为负荷节点的电压,f、P、Q同理。
本实施例中,第一预设时间和第二预设时间分别为0.5s和0.2s,第三预设时间为5s;电力系统扰动数据由软件RSCAD驱动RTDS产生。
S1013、滤除每组输入数据和输出数据的高次谐波和噪声,从而获取得到预处理后的电力系统扰动数据。
本实施例中,采用巴特沃斯低通滤波器滤除步骤S1011的每组输入数据和输出数据的高次谐波和噪声,从而获取得到预处理后的电力系统扰动数据。
S102、将负荷模型转化成状态空间方程的形式并进行简化处理,从而完成非线性灰箱模型的构建。
具体地,ZIP+IM模型的静态负荷部分(静态模型)的表达式,如(5.1)式所示:
Figure BDA0003773508400000061
其中,PZIP表示静态负荷的有功功率,QZIP表示静态负荷的无功功率,PZIP0表示静态模型在稳态下的有功功率,QZIP0表示静态模型在稳态下的无功功率,V表示负荷节点的电压,PZ、PI、PP分别表示静态模型中恒阻抗、恒电压、恒功率部分的有功功率所占百分比,QZ、QI、QP分别表示静态模型中恒阻抗、恒电压、恒功率部分的无功功率所占百分比,V0表示负荷节点的额定电压。
具体地,ZIP+IM模型的动态负荷部分(动态模型)由三阶感应电动机方程来表示,在三阶感应电动机方程中,忽略了定子绕组的电磁暂态过程,感应电机的电压、幅值、角速度随时间的变化,如(5.2)式所示:
Figure BDA0003773508400000071
其中,Em′表示暂态电势,δm表示暂态电势的功角,Xm表示励磁电抗,Xm′表示暂态电抗,Tdm′表示暂态时间常数,ωm表示感应电机负荷的机械角速度,Tm表示负荷等效后的转矩,Hm表示惯性时间常数。
具体地,根据V、Em′和δm,推导出感应电动机吸收的有功功率和无功功率的表达式,如(5.3)式所示:
Figure BDA0003773508400000072
进一步地,负荷节点的有功功率和负荷节点的无功功率为静态负荷部分与动态负荷部分之和,如(5.4)式所示:
Figure BDA0003773508400000073
进一步地,基于(5.2)式与(5.4)式,将ZIP+IM模型表示为状态空间方程的形式,即为ZIP+IM模型的非线性三阶状态方程,如(5.5)式所示;在(5.5)式中,状态向量x=[Em′ δmωm]T,输入为负荷节点的电压和角频率u=[V ωs]T,输出为负荷节点的有功功率和无功功率y=[P Q]T
Figure BDA0003773508400000081
进一步地,为了减少计算的复杂度,采用常数Pi(i=1,2,…,11)表示状态空间方程的系数矩阵中的待辨识参数,即对状态空间方程进行简化处理,最终得到简化处理后的状态空间方程的形式,如(5.6)所示:
Figure BDA0003773508400000082
本实施例将简化处理后的状态空间方程的形式作为非线性灰箱模型。
S103、将预处理后的电力系统扰动数据和每个待辨识参数的初始值输入非线性灰箱模型,实现负荷模型的参数辨识。
如图4所示,在输入非线性灰箱模型之后,利用非线性灰箱模型给出有功功率和无功功率的输出响应(拟合响应),与实际的有功功率和无功功率的输出响应进行比较,在误差较大时,对相应的每个待辨识参数进行更新,直至有功功率和无功功率的误差满足预定阈值(有功功率和无功功率同时满足6250组原始数据点和拟合曲线之间垂直距离绝对值的平均值小于1%)时,输出相应的每个辨识好的参数;如果不是,则重复比较和更新过程;在比较和更新过程中,即迭代过程中,采用Levenberg-Marquardt迭代算法,这种算法结合了梯度法和牛顿法的优点,寻优速度较快且不容易陷入局部最优解,故而采用该算法最小化数据点和拟合曲线之间垂直距离的平均值。
具体地,将预处理后的电力系统扰动数据和每个待辨识参数的初始值一起导入非线性灰箱模型,具体为:将单相故障的6250组的输入输出数据和每个待辨识参数的相应初始值导入非线性灰箱模型,得到单相故障的每个辨识好的参数,同时根据单相故障的每个辨识好的参数和单相故障的6250组的输入数据,拟合计算得到相应结果,如图5(a)所示;将三相故障的6250组的输入输出数据和每个待辨识参数的相应初始值导入非线性灰箱模型,得到三相故障的每个辨识好的参数,同时根据三相故障的每个辨识好的参数和三相故障的6250组的输入数据,拟合计算得到相应结果,如图5(b)所示。
根据图5(a)和图5(b)所示,蓝色的两条曲线分别表示仿真模型得到的有功功率真实值(参考值)、无功功率真实值(参考值);黄色的两条曲线表示利用非线性灰箱模型辨识后的参数得到的有功功率拟合值、无功功率拟合值,可以明显看出,拟合后的功率曲线与真实曲线(原始曲线或参考曲线)误差较小,说明利用非线性灰箱模型辨识后的参数精确度较高。
值得注意的是:单相故障的辨识参数初始值和三相故障辨识参数的初始值相同;初始值与电压等级有关,是该电压等级下负荷的典型数据;灰箱求解的迭代过程需要一个初始值,采用典型数据作为初始值可以保证初始值距离待辨识参数的真值不是很远,从而提高迭代的速度;采用MATLAB软件进行编程,以辨识每个待辨识参数。
具体地,典型数据可参考[1]Zali M,S,Milanovic,et al.Generic Model ofActive Distribution Network for Large Power System Stability Studies[J].IEEETransactions on Power Systems,2013,28(3):3126-3133.。
值得注意的是:经过六千多组数据迭代的非线性灰箱模型已经足以把大部分电力系统扰动数据辨识出来,因此本实施例构建的非线性灰箱模型具有一定的通用性,只有当负荷节点的负荷发生比较大的变化时,才需要对待辨识参数再次辨识。
本领域技术人员可以理解,实现上述实施例的方法中的全部或部分步骤可以通过程序来指令相关的硬件来完成,相应的程序可以存储于计算机可读存储介质中。
应当注意,尽管在附图中以特定顺序描述了上述实施例的方法操作,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。
实施例2:
如图6所示,本实施例提供了一种负荷模型的参数辨识系统,该系统包括获取单元601、构建单元602和辨识单元603,各个单元的具体功能如下:
获取单元601,用于获取预处理后的电力系统扰动数据;
构建单元602,用于将负荷模型转化成状态空间方程的形式并进行简化处理,从而完成非线性灰箱模型的构建,所述非线性灰箱模型包括多个待辨识参数;
辨识单元603,用于将预处理后的电力系统扰动数据和每个待辨识参数的初始值输入非线性灰箱模型,实现负荷模型的参数辨识。
实施例3:
如图7所示,本实施例提供了一种计算机设备,其包括通过系统总线701连接的处理器702、存储器、输入装置703、显示装置704和网络接口705。其中,处理器702用于提供计算和控制能力,存储器包括非易失性存储介质706和内存储器707,该非易失性存储介质706存储有操作系统、计算机程序和数据库,该内存储器707为非易失性存储介质706中的操作系统和计算机程序的运行提供环境,计算机程序被处理器702执行时,实现上述实施例1的参数辨识方法,如下:
获取预处理后的电力系统扰动数据;
将负荷模型转化成状态空间方程的形式并进行简化处理,从而完成非线性灰箱模型的构建,所述非线性灰箱模型包括多个待辨识参数;
将预处理后的电力系统扰动数据和每个待辨识参数的初始值输入非线性灰箱模型,实现负荷模型的参数辨识。
实施例4:
本实施例提供一种存储介质,该存储介质为计算机可读存储介质,其存储有计算机程序,所述计算机程序被处理器执行时,实现上述实施例1的参数辨识方法,如下:
获取预处理后的电力系统扰动数据;
将负荷模型转化成状态空间方程的形式并进行简化处理,从而完成非线性灰箱模型的构建,所述非线性灰箱模型包括多个待辨识参数;
将预处理后的电力系统扰动数据和每个待辨识参数的初始值输入非线性灰箱模型,实现负荷模型的参数辨识。
需要说明的是,本实施例的计算机可读存储介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
在本实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本实施例中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读存储介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读存储介质上包含的计算机程序可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
上述计算机可读存储介质可以以一种或多种程序设计语言或其组合来编写用于执行本实施例的计算机程序,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Python、C++,还包括常规的过程式程序设计语言—诸如C语言或类似的程序设计语言。程序可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN)连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
综上所述,本发明将物理模型与数据驱动相结合,既可以考虑负荷的物理机理,也可以利用观测到的大量数据,提高了参数辨识的精确性;同时,相较于传统的静态负荷模型和WECC CLM模型而言,ZIP+IM模型不仅可以较好地模拟负荷动态行为,而且参数较少,辨识难度较低。此外,灰箱模型具有明确的物理意义,训练周期短且求解速度快,具有较好的应用价值。
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。

Claims (10)

1.一种负荷模型的参数辨识方法,其特征在于,所述方法包括:
获取预处理后的电力系统扰动数据;
将负荷模型转化成状态空间方程的形式并进行简化处理,从而完成非线性灰箱模型的构建,所述非线性灰箱模型包括多个待辨识参数;
将预处理后的电力系统扰动数据和每个待辨识参数的初始值输入非线性灰箱模型,实现负荷模型的参数辨识。
2.根据权利要求1所述的参数辨识方法,其特征在于,所述负荷模型为ZIP+IM模型;
所述将负荷模型转化成状态空间方程的形式并进行简化处理,从而完成非线性灰箱模型的构建,具体包括:
根据ZIP+IM模型的三阶感应电动机方程、负荷节点的有功功率和负荷节点的无功功率,将负荷模型转化成状态空间方程的形式,从而得到状态空间方程;
对状态空间方程进行简化处理,得到非线性灰箱模型。
3.根据权利要求2所述的参数辨识方法,其特征在于,所述负荷节点的有功功率和负荷节点的无功功率,如下式:
Figure FDA0003773508390000011
其中,P表示负荷节点的有功功率,Q表示负荷节点的无功功率,V表示负荷节点的电压,PZIP表示静态负荷的有功功率,QZIP表示静态负荷的无功功率,PM表示感应电动机吸收的有功功率,QM表示感应电动机吸收的无功功率,PZ、PI、PP分别表示静态模型中恒阻抗、恒电压、恒功率部分的有功功率所占百分比,QZ、QI、QP分别表示静态模型中恒阻抗、恒电压、恒功率部分的无功功率所占百分比,PZIP0表示静态模型在稳态下的有功功率,QZIP0表示静态模型在稳态下的无功功率,V0表示负荷节点的额定电压,Xm′表示暂态电抗,Em′表示暂态电势,δm表示暂态电势的功角。
4.根据权利要求3所述的参数辨识方法,其特征在于,所述状态空间方程,如下式:
Figure FDA0003773508390000021
Figure FDA0003773508390000022
其中,Xm表示励磁电抗,Tdm′表示暂态时间常数,ωm表示感应电机负荷的机械角速度,ωs表示负荷节点的角频率,Tm表示负荷等效后的转矩,Hm表示惯性时间常数。
5.根据权利要求4所述的参数辨识方法,其特征在于,所述非线性灰箱模型,如下式:
Figure FDA0003773508390000023
Figure FDA0003773508390000024
其中,Pi表示待辨识参数,i=1,2,…,11。
6.根据权利要求1所述的参数辨识方法,其特征在于,所述获取预处理后的电力系统扰动数据,具体包括:
在负荷节点处,分别设置第一预设时间的单相故障和第二预设时间的三相故障,并采集包括故障前、故障段和故障切除后的第三预设时间内的多组电压、频率、有功功率和无功功率,其中,输入数据为电压和频率,输出数据为有功功率和无功功率;
滤除每组输入数据和输出数据的高次谐波和噪声,从而获取得到预处理后的电力系统扰动数据。
7.根据权利要求1所述的参数辨识方法,其特征在于,在所述将预处理后的扰动数据和每个待辨识参数的初始值输入非线性灰箱模型之后,采用Levenberg-Marquardt迭代算法更新迭代每个待辨识参数。
8.一种负荷模型的参数辨识系统,其特征在于,所述系统包括:
获取单元,用于获取预处理后的电力系统扰动数据;
构建单元,用于将负荷模型转化成状态空间方程的形式并进行简化处理,从而完成非线性灰箱模型的构建,所述非线性灰箱模型包括多个待辨识参数;
辨识单元,用于将预处理后的电力系统扰动数据和每个待辨识参数的初始值输入非线性灰箱模型,实现负荷模型的参数辨识。
9.一种计算机设备,包括处理器以及用于存储处理器可执行程序的存储器,其特征在于,所述处理器执行存储器存储的程序时,实现权利要求1-7任一项所述的参数辨识方法。
10.一种存储介质,存储有程序,其特征在于,所述程序被处理器执行时,实现权利要求1-7任一项所述的参数辨识方法。
CN202210909159.XA 2022-07-29 2022-07-29 负荷模型的参数辨识方法、系统、计算机设备及存储介质 Pending CN115422869A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210909159.XA CN115422869A (zh) 2022-07-29 2022-07-29 负荷模型的参数辨识方法、系统、计算机设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210909159.XA CN115422869A (zh) 2022-07-29 2022-07-29 负荷模型的参数辨识方法、系统、计算机设备及存储介质

Publications (1)

Publication Number Publication Date
CN115422869A true CN115422869A (zh) 2022-12-02

Family

ID=84197356

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210909159.XA Pending CN115422869A (zh) 2022-07-29 2022-07-29 负荷模型的参数辨识方法、系统、计算机设备及存储介质

Country Status (1)

Country Link
CN (1) CN115422869A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115622053A (zh) * 2022-12-16 2023-01-17 中国电力科学研究院有限公司 一种用于考虑分布式电源的自动负荷建模方法及装置
CN117077546A (zh) * 2023-10-16 2023-11-17 广东电网有限责任公司中山供电局 基于数据驱动的电力系统负荷建模方法及其系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115622053A (zh) * 2022-12-16 2023-01-17 中国电力科学研究院有限公司 一种用于考虑分布式电源的自动负荷建模方法及装置
CN117077546A (zh) * 2023-10-16 2023-11-17 广东电网有限责任公司中山供电局 基于数据驱动的电力系统负荷建模方法及其系统
CN117077546B (zh) * 2023-10-16 2024-03-08 广东电网有限责任公司中山供电局 基于数据驱动的电力系统负荷建模方法及其系统

Similar Documents

Publication Publication Date Title
CN115422869A (zh) 负荷模型的参数辨识方法、系统、计算机设备及存储介质
Papadopoulos et al. Black‐box dynamic equivalent model for microgrids using measurement data
Hariri et al. Open‐source python‐OpenDSS interface for hybrid simulation of PV impact studies
CN113300383A (zh) 一种机电暂态建模方法、系统、设备及存储介质
CN103810646A (zh) 一种基于改进投影积分算法的有源配电系统动态仿真方法
Ma et al. Measurement-based load modeling using genetic algorithms
CN114548756A (zh) 基于主成分分析的综合能源项目综合效益评价方法及装置
Lin et al. MatPSST: A Matlab/Simulink‐based power system simulation toolbox for research and education
CN115882461A (zh) 一种考虑网损的电力系统节点边际碳势计算方法及系统
Zheng et al. Transient stable region of power systems incorporating stochasticity of variable renewable energies and system contingencies
Huang et al. Estimation of interarea modes in large power systems
Almeida et al. A software tool for the determination of dynamic equivalents of power systems
Wang et al. A review of deep reinforcement learning applications in power system parameter estimation
Cari et al. A methodology for parameter estimation of equivalent wind power plant
CN107102543A (zh) 一种能量路由器抗干扰控制器的形成方法及装置
CN108521128B (zh) 电力系统静态电压安全域边界的快速搜索方法
Kuznetsov et al. Choosing of asynchronous motor protection equipment in production environment
Xu et al. A new approach for fast reliability evaluation of composite power system considering wind farm
Büttner et al. An open source software stack for tuning the dynamical behavior of complex power systems
Yun et al. Warm‐start piecewise linear approximation‐based solution for load pick‐up problem in electrical distribution system
Overlin et al. A Hybrid Algorithm for Parameter Estimation (HAPE) for Diesel Generator Sets
Zhang et al. Application of semantic speech recognition in designing of robust adaptive model for DFIG wind energy conversion system
CN117313293B (zh) 一种直驱风电场小信号等值建模方法、系统、终端及介质
Liu et al. Reducing Action Space: Reference-Model-Assisted Deep Reinforcement Learning for Inverter-based Volt-Var Control
Zhang et al. A good point set-based knowledgebase generation scheme for power system intelligent dynamic security assessment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination