CN115420784A - 一种基于NiCo2O4的柔性电极及其制备方法和应用 - Google Patents

一种基于NiCo2O4的柔性电极及其制备方法和应用 Download PDF

Info

Publication number
CN115420784A
CN115420784A CN202211123114.6A CN202211123114A CN115420784A CN 115420784 A CN115420784 A CN 115420784A CN 202211123114 A CN202211123114 A CN 202211123114A CN 115420784 A CN115420784 A CN 115420784A
Authority
CN
China
Prior art keywords
nico
electrode
solution
swcnts
flexible electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211123114.6A
Other languages
English (en)
Other versions
CN115420784B (zh
Inventor
于春梅
田亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202211123114.6A priority Critical patent/CN115420784B/zh
Publication of CN115420784A publication Critical patent/CN115420784A/zh
Application granted granted Critical
Publication of CN115420784B publication Critical patent/CN115420784B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种基于NiCo2O4的柔性电极及其制备方法和应用,属于电化学传感器领域。本发明制备NiCo2O4粉末,将NiCo2O4和SWCNTs的复合层、乳酸氧化酶识别层依次从下至上形成在印刷有碳浆的PET衬底上而制成柔性电极,SWCNTs纳米片附着在NiCo2O4的表面,解决了NiCo2O4容易聚集和形状变形的问题,电极结构简单,制备过程简单。该柔性电极用于检测人体汗液中乳酸浓度,具有较高的电化学性能、机械柔韧性和生物相容性,可广泛应用于临床诊断的便携式分析设备、病情实时监控和人体健康监测等领域。

Description

一种基于NiCo2O4的柔性电极及其制备方法和应用
技术领域
本发明涉及电化学传感器技术领域,具体涉及一种基于NiCo2O4的柔性电极及其制备方法和应用。
背景技术
葡萄糖无氧呼吸产生的乳酸是评价人体健康状况的关键代谢物。乳酸在骨骼肌和大脑等所有组织中产生,主要由肝和肾清除。产生和清除的动态平衡使其水平保持在正常范围内,以防止pH过度下降和细胞酸中毒。先前的研究表明,乳酸的异常积累是多种生理疾病最重要的生物标志物之一,包括高乳酸血症、心源性休克、呼吸衰竭、败血症、全身性疾病、组织缺氧、肝病和肾功能衰竭等多种生理疾病的最重要的生物标志物。因此,监测这些患者的乳酸水平可以帮助评估疾病的严重程度和治疗的有效性。此外,乳酸的产生与身体活动程度成正比,可作为评估运动员、士兵和体力劳动者生理疲劳的指标。
目前,基于物理信号监测的柔性可拉伸传感器迅速发展,并在人类活动健康监测和个性化治疗方面展示了巨大的应用前景。柔性电化学传感器则是获取生物体内信号分子丰富化学信息的强有力监测工具,由于其具有良好的力学性能、灵敏度和稳定性等特性而广泛应用到健康监护系统中。然而,与当前发展迅猛的物理传感器相比,电化学传感器对材料的导电性和电化学惰性要求更高,导致柔性电化学设备发展相对缓慢。
混合过渡金属氧化物通常是指具有两种不同金属阳离子的三元金属氧化物。两种过渡金属的耦合可以使过渡金属氧化物具有更丰富的氧化还原反应和改善的电子导电性,这有利于电化学应用。NiCo2O4作为电化学超级电容器的高性能材料已被深入研究。然而,由于其粉体材料具有堆积效应,不利于电解液中电极表面的电子和离子的传输与扩散,从而在柔性电化学传感器的应用中受到限制。因此,探索一种新的高导电性的,具备利于电荷传输的基底材料是研究重点内容。单壁碳纳米管(SWCNTs)因其高化学稳定性,优异的导电性和大的表面积而被广泛应用于柔性传感器。鉴于这些优势,SWCNTs可以成功地附着在NiCo2O4的纳米片表面,从而有效地防止NiCo2O4的过度聚集和表面纳米片剥脱变形,巧妙地解决了电极表面离子传输不良的问题。
发明内容
为了解决上述问题,本发明提供一种基于NiCo2O4的柔性电极及其制备方法,在PET衬底上从下至上依次形成柔性NiCo2O4和SWCNTs的复合层和乳酸氧化酶识别层,电极发挥稳定的电化学性能,具备良好的机械柔韧性和生物相容性。
为了实现以上目的,本发明采取的一种技术方案是:
一种基于NiCo2O4的柔性电极,包括:印刷有碳浆的PET衬底,在所述PET衬底上从下至上依次设有NiCo2O4和SWCNTs的复合层、乳酸氧化酶识别层。
所述NiCo2O4的制备方法,包括以下步骤:S1,将Ni(NO3)2溶液、CoCl2溶液和乙醇按1:2:1比例混合成溶液;S2,将Na2C2O4溶液倒入S1的溶液,反应后沉淀物为前驱体;S3,将前驱体从室温加热至400℃,升温速率为1℃·min-1,在400℃下加热10min,得到NiCo2O4粉末。
本发明还提供了一种基于NiCo2O4的柔性电极的制备方法,包括如下步骤:
S10,将PET衬底固定在印刷模板上;再将碳浆滴在丝网上,然后用刮板印刷作为工作电极;Ag/AgCl浆同样浇注到模板上印刷作为参比电极;将PET衬底与丝网印刷模板分离并放置在真空干燥箱中在80±5℃下干燥120±5min后制成丝网印刷碳电极;
S20,将NiCo2O4和SWCNTs的分散液滴在S10的工作电极表面,在真空干燥箱中50±5℃放置30±5min形成NiCo2O4和SWCNTs的复合层;
S30,乳酸氧化酶溶液与壳聚糖溶液按1:1v/v的混合溶液液滴铸造在S20的NiCo2O4和SWCNTs的复合层表面,获得乳酸氧化酶识别层,得到最终柔性电极,使用前在4℃下干燥过夜。
进一步地,所述S10中,所述PET衬底厚度为0.15mm。
进一步地,所述S20中,所述NiCo2O4和SWCNTs溶液的浓度分别为0.25~0.75mg/mL和0.5~1.5mg/mL,NiCo2O4和SWCNTs溶液的浓度比例为1:2。
进一步地,所述S20中,NiCo2O4和SWCNTs溶液的浓度分别为0.5mg/mL和1mg/mL。
进一步地,所述S30中,所述乳酸氧化酶浓度为0.34~1.67mg/mL,壳聚糖溶液浓度为0.5wt%,乳酸氧化酶溶液是由乳酸氧化酶、BSA稳定剂和HRP配制,壳聚糖溶液是由醋酸配制。
进一步地,所述S30中,乳酸氧化酶溶液的浓度为1mg/mL。
本发明的上述技术方案相比现有技术具有以下优点:
(1)在PET衬底上依次形成柔性NiCo2O4和SWCNTs的复合层和乳酸氧化酶识别层,该柔性电极以PET为基底,NiCo2O4和SWCNTs的无序网络复合结构为导电层及传感层,结构简单,具有较高的电化学性能、机械柔韧性和生物相容性,制备方法简单,重现性好,可以广泛应用于临床诊断的便携式分析设备,在病情实时监控和人体健康监测等领域具有巨大潜力。
(2)NiCo2O4和SWCNTs具有大的比表面积,碳纳米管具有大纵横比、高机械强度、低刚度和化学惰性,通过NiCo2O4和SWCNTs设置合理的分散液浓度,SWCNTs均匀附着在NiCo2O4纳米片的表面,这可能是NiCo2O4和SWCNTs之间的协同效应赋予了纳米复合材料丰富的活性位点,因此解决了NiCo2O4容易聚集和形状变形,解决了电极表面离子传输不良的问题,具有优异的电化学性能。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其有益效果显而易见。
图1是实施例1的S10~S30步骤的流程图;
图2是实施例1的不同比例的NiCo2O4和SWCNTs分散液所制备的电极在10mmol/L的铁氰化钾中的循环伏安图;
图3是实施例1的不同浓度NiCo2O4和SWCNTs分散液所制备的电极在10mmol/L的铁氰化钾中的循环伏安图;
图4是实施例1的不同乳酸氧化酶浓度所制备的电极对15mmol/L乳酸响应程度的关系图;
图5是实施例1的所制备的电极施加不同工作电位对15mmol/L乳酸响应程度的关系图;
图6是实施例1的基于NiCo2O4的柔性电极的扫描电子显微镜图;
图7是实施例2的分析装置应用于乳酸标准溶液分析时,加入不同浓度的乳酸产生的电流响应图;
图8是实施例2的分析装置应用于乳酸标准溶液分析时,乳酸的浓度与相应电流信号值的线性关系图;
图9是实施例2的基于NiCo2O4的柔性电极的添加不同干扰物的电极与产生的电流响应关系图;
图10是实施例2的基于NiCo2O4的柔性电极的添加标准乳酸溶液分析时,不同电极测试结果的差异关系图;
图11是实施例2的基于NiCo2O4的柔性电极的添加标准乳酸溶液分析时,电极稳定性的差异关系图;
图12是实施例2的分析装置应用于汗液乳酸的测量结果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本实施例提供了一种基于NiCo2O4的柔性电极,一种基于NiCo2O4的柔性电极,包括:包括印刷有碳浆的PET衬底,在所述PET衬底上从下至上依次设有NiCo2O4和SWCNTs的复合层、乳酸氧化酶识别层。
以PET的柔性电极为工作电极、Ag/AgCl电极为参比电极、碳为对电极构成了三电极检测系统,使用此三电极检测系统可以实现人体汗液中乳酸的检测。
制备NiCo2O4包括以下步骤:S1,将10mL的浓度为0.1mol/L的Ni(NO3)2水溶液、10mL的浓度为0.2mol/L的CoCl2水溶液和10mL乙醇在室温下混合30min;S2,将10mL的浓度为0.1mol/L的Na2C2O4溶液快速倒入S1的溶液中,反应1小时后收集粉色沉淀,作为前驱体(NiCo2C2O4·nH2O)合成混合镍钴氧化物分级结构;S3,将NiCo2C2O4·nH2O前驱体从室温加热至400℃,升温速率为1℃·min-1,在400℃下加热10分钟,得到NiCo2O4粉末。
制备基于NiCo2O4的柔性电极,如图1所示,包括如下步骤:S10,将PET衬底固定在印刷模板上;将碳浆滴在丝网上,用刮板印刷作为工作电极;Ag/AgCl浆同样浇注到模板上印刷作为参比电极;将PET衬底与丝网印刷模板分离并放置在真空干燥箱中在80±5℃下干燥120±5min后制成丝网印刷碳电极;S20,分别配置NiCo2O4和SWCNTs的分散液滴在S10的工作电极表面,在真空干燥箱中50±5℃放置30±5℃min形成NiCo2O4和SWCNTs的复合层;S30,由乳酸氧化酶、BSA稳定剂和HRP配制乳酸氧化酶溶液,用1mol/L醋酸配制0.5wt%壳聚糖溶液,然后将乳酸氧化酶溶液与壳聚糖溶液按1:1v/v的比例混合后液滴铸造在S20的工作电极表面,获得乳酸氧化酶识别层并获得最终柔性电极,使用前在4℃下干燥过夜。
所述S20中,所述NiCo2O4和SWCNTs分散液的浓度分别为0.25~1mg/mL和0.5~1.5mg/mL,优选0.25mg/mL:0.5mg/mL、0.5mg/mL:1mg/mL或0.75mg/mL:1.5mg/mL,其中最优浓度为0.5mg/mL:1mg/mL。
所述S30中,所述壳聚糖浓度为0.5wt%,乳酸氧化酶浓度为0.34~1.67mg/mL,优选0.34mg/mL、0.67mg/mL、1mg/mL、1.34mg/mL或1.67mg/mL,其中最优浓度为1mg/mL,由1mg/mL的乳酸氧化酶、1mg/mL的BSA稳定剂和1mg/mL的HRP配制1mg/mL乳酸氧化酶溶液。电化学响应此时达到最大,为乳酸检测提供了优良的电化学性能。
性能测试
分别配制浓度为0.25mg/mL、0.5mg/mL和1mg/mL的NiCo2O4和SWCNTs的分散液,NiCo2O4和SWCNTs按照4:1,2:1,1:1,1:2,1:4的比例滴在工作电极表面,在真空干燥箱中30±5℃放置30±5min形成NiCo2O4和SWCNTs的复合层。制备完成后用电化学工作站测量其在10mmol/L铁氰化钾中的循环伏安图。如图2所示,NiCo2O4和SWCNTs分散液的比例在1:2时给出最高响应,而进一步增加时其氧化还原峰值电流的变化反而略微下降。因此,综合考虑机械、电学和电化学性能,选择比例为1:2的NiCo2O4和SWCNTs分散液浓度作为制备柔性传感器的最佳比例。分别配制浓度为0.25mg/mL、0.5mg/mL和0.75mg/mL的NiCo2O4和0.5mg/mL、1mg/mL和1.5mg/mL SWCNTs的分散液,按照1:2的比例滴在工作电极表面,在真空干燥箱中30±5℃放置30±5min形成NiCo2O4和SWCNTs的复合层。制备完成后用电化学工作站测量其在10mmol/L铁氰化钾中的循环伏安图。如图3所示,当NiCo2O4和SWCNTs分散液浓度为0.5mg/mL:1mg/mL时,电流信号给出最大响应,而进一步增加时其氧化还原峰值电流的变化微乎其微。因此使用NiCo2O4和SWCNTs为0.5mg/mL:1mg/mL的最佳浓度来构建免疫传感器。相对响应程度与乳酸氧化酶量的关系如图4所示,最后确定了工作电极上固定化乳酸氧化酶的最佳用量为1mg/mL。因此在随后的实验里使用的乳酸氧化酶量为1mg/mL。相对响应程度与工作电位的关系如图5所示,当电位为0.2V时,响应最高,因此我们选择0.2V作为进一步实验的工作电位。
如图6所示,NiCo2O4和SWCNTs的交联结构。本发明的SWCNTs和NiCo2O4复合层是先将NiCo2O4滴在衬底上之后,SWCNTs分散液滴在NiCo2O4之上,大量的SWCNTs覆盖在NiCo2O4表面,这些SWCNTs错综复杂地分散。SWCNTs/NiCo2O4的独特结构可能有助于减少NiCo2O4的体积变化并提供快速的电子转移途径,从而提高电子转移能力。
实施例2
以上述PET的柔性电极为工作电极、Ag/AgCl电极为参比电极、碳浆印刷电极为对电极构成了三电极检测系统,使用此三电极检测系统可以实现人体汗液中乳酸的检测。
以pH7.4的浓度为0.1mol/L的磷酸缓冲溶液配制不同浓度的乳酸标准液,如图7~8所示,随着乳酸浓度的增加,响应电流相应增加,反映出较好的电化学传感能力。响应电流显示出与乳酸浓度在1mmol/L至30mmol/L之间的线性关系,相关系数为0.998。用汗液中的几种常见物质进行了研究,如图9所示,乳酸是唯一引起剧烈电流响应的物质,而其他研究的物质几乎没有表现出相应的电流变化。如图10所示,准备6个单独制备好的工作电极并在相同条件下进行测量,以确保工作电极测试结果的重复性。由图可以看出制备的工作电极具有可接受的乳酸检测结果的重现性。如图11所示,生物传感器对15mmol/L乳酸的电流响应在储存15天后仍然保持在初始值的90%以上,表明生物传感器具有良好的稳定性。
实际汗液样品中乳酸的检测
为了验证所发明的电极作为柔性传感器的可行性,将实际汗液滴加到电极表面。选择计时电流法监测电极表面乳酸的浓度。为了评估测量结果的准确性,使用高效液相色谱法(HPLC)进行验证。如图12示,本工作电极测量方法与HPLC方法具有良好的一致性。
以上所述仅为本发明的示例性实施例,并非因此限制本发明专利保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

1.一种基于NiCo2O4的柔性电极,其特征在于,包括:印刷有碳浆的PET衬底,在所述PET衬底上从下至上依次设有NiCo2O4和SWCNTs的复合层、乳酸氧化酶识别层。
2.根据权利要求1所述的基于NiCo2O4的柔性电极,其特征在于,所述NiCo2O4的制备方法,包括以下步骤:
S1,将Ni(NO3)2溶液、CoCl2溶液和乙醇按1:2:1比例混合成溶液;
S2,将Na2C2O4溶液倒入S1的溶液,反应后沉淀物为前驱体;
S3,将前驱体从室温加热至400℃,升温速率为1℃·min-1,在400℃下加热10min,得到NiCo2O4粉末。
3.权利要求1或2任一项所述的基于NiCo2O4的柔性电极的制备方法,其特征在于,包括如下步骤:
S10,将PET衬底固定在印刷模板上;再将碳浆滴在丝网上,然后用刮板印刷作为工作电极;Ag/AgCl浆同样浇注到模板上印刷作为参比电极;将PET衬底与丝网印刷模板分离并放置在真空干燥箱中在80±5℃下干燥120±5min后制成丝网印刷碳电极;
S20,分别配制NiCo2O4和SWCNTs的分散液滴在S10的工作电极表面,在真空干燥箱中50±5℃放置30±5min形成NiCo2O4和SWCNTs的复合层;
S30,乳酸氧化酶溶液与壳聚糖溶液按1:1v/v的混合溶液的铸造在S20的NiCo2O4和SWCNTs的复合层表面,获得乳酸氧化酶识别层,得到柔性电极。
4.根据权利要求3所述的基于NiCo2O4的柔性电极的制备方法,其特征在于,所述S20中,所述NiCo2O4和SWCNTs溶液的浓度分别为0.25~0.7mg/mL和0.5~1.5mg/mL,NiCo2O4和SWCNTs溶液的浓度比例为1:2。
5.根据权利要求3所述的基于NiCo2O4的柔性电极的制备方法,其特征在于,所述S20中,所述NiCo2O4和SWCNTs溶液的浓度分别为0.5mg/mL和1mg/mL。
6.根据权利要求3所述的基于NiCo2O4的柔性电极的制备方法,其特征在于,所述S30中,所述乳酸氧化酶溶液浓度为0.34~1.67mg/mL,壳聚糖溶液浓度为0.5wt%,乳酸氧化酶溶液是由乳酸氧化酶、BSA稳定剂和HRP配制,壳聚糖溶液是由醋酸配制。
7.根据权利要求3所述的基于NiCo2O4的柔性电极的制备方法,其特征在于,所述S30中,乳酸氧化酶溶液的浓度为1mg/mL。
8.权利要求1或2任一所述基于NiCo2O4的柔性电极在检测乳酸中的应用。
9.一种检测乳酸的电极系统,其特征在于:包括:工作电极、参比电极和对电极,所述工作电极为权利要求1或2任一所述基于NiCo2O4的柔性电极,参比电极为Ag/AgCl电极,对电极为碳电极。
CN202211123114.6A 2022-09-15 2022-09-15 一种基于NiCo2O4的柔性电极及其制备方法和应用 Active CN115420784B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211123114.6A CN115420784B (zh) 2022-09-15 2022-09-15 一种基于NiCo2O4的柔性电极及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211123114.6A CN115420784B (zh) 2022-09-15 2022-09-15 一种基于NiCo2O4的柔性电极及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115420784A true CN115420784A (zh) 2022-12-02
CN115420784B CN115420784B (zh) 2024-05-03

Family

ID=84205093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211123114.6A Active CN115420784B (zh) 2022-09-15 2022-09-15 一种基于NiCo2O4的柔性电极及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115420784B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031529A (zh) * 2019-05-18 2019-07-19 福建师范大学 一种基于NiCo2O4纳米片的热致增敏型甲状腺球蛋白电致化学发光免疫器
WO2020172972A1 (zh) * 2019-02-28 2020-09-03 中国科学院大连化学物理研究所 一种葡萄糖氧化酶纳米胶囊传感器及其制备和应用
KR102225081B1 (ko) * 2019-09-10 2021-03-09 충북대학교 산학협력단 복합 나노 섬유 및 이의 제조 방법
CN114577877A (zh) * 2022-02-28 2022-06-03 浙江理工大学 基于NiCo2O4@Ni-MOF@MnO2的丝素蛋白检测用柔性电容型免疫传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020172972A1 (zh) * 2019-02-28 2020-09-03 中国科学院大连化学物理研究所 一种葡萄糖氧化酶纳米胶囊传感器及其制备和应用
CN110031529A (zh) * 2019-05-18 2019-07-19 福建师范大学 一种基于NiCo2O4纳米片的热致增敏型甲状腺球蛋白电致化学发光免疫器
KR102225081B1 (ko) * 2019-09-10 2021-03-09 충북대학교 산학협력단 복합 나노 섬유 및 이의 제조 방법
CN114577877A (zh) * 2022-02-28 2022-06-03 浙江理工大学 基于NiCo2O4@Ni-MOF@MnO2的丝素蛋白检测用柔性电容型免疫传感器

Also Published As

Publication number Publication date
CN115420784B (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
Sha et al. MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of Uric acid in human urine samples
Mani et al. Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers
Song et al. Simultaneous voltammetric determination of dopamine and uric acid using carbon-encapsulated hollow Fe 3 O 4 nanoparticles anchored to an electrode modified with nanosheets of reduced graphene oxide
Sattarahmady et al. Nickel oxide nanotubes-carbon microparticles/Nafion nanocomposite for the electrooxidation and sensitive detection of metformin
Hosseini et al. Nonenzymatic glucose and hydrogen peroxide sensors based on catalytic properties of palladium nanoparticles/poly (3, 4-ethylenedioxythiophene) nanofibers
Ensafi et al. Determination of isoproterenol and uric acid by voltammetric method using carbon nanotubes paste electrode and p-chloranil
Sun et al. Electrochemical sensor sensitive detection of chloramphenicol based on ionic-liquid-assisted synthesis of de-layered molybdenum disulfide/graphene oxide nanocomposites
Ma et al. Metal–organic framework-derived yolk–shell hollow Ni/NiO@ C microspheres for bifunctional non-enzymatic glucose and hydrogen peroxide biosensors
Ding et al. A nonenzymatic glucose sensor platform based on specific recognition and conductive polymer-decorated CuCo2O4 carbon nanofibers
Zhou et al. Electrochemically sensitive determination of dopamine and uric acid based on poly (beryllon II)/nanowires-LaPO4 modified carbon paste electrode
CN112578011A (zh) 用于检测多巴胺和尿酸的传感器及检测方法
Zhai et al. Core-shell composite N-doped-Co-MOF@ polydopamine decorated with Ag nanoparticles for nonenzymatic glucose sensors
Zhang et al. Carnation‐like CuO Hierarchical Nanostructures Assembled by Porous Nanosheets for Nonenzymatic Glucose Sensing
Zhang et al. ZIF-67-derived highly dispersed Co3O4 nanoparticles@ hollow carbon chamfer cube-reduced graphene oxide for electrochemical detection of dopamine, acetaminophen and xanthine
Šišoláková et al. Zn nanoparticles modified screen printed carbon electrode as a promising sensor for insulin determination
Zhou et al. High-sensitivity electrochemical sensing platform for acetaminophen based on MnS/Co3S4 hybrids doped electrochemically reduced graphene oxide nanocomposite
Xu et al. Lithium cobalt phosphate electrode for the simultaneous determination of ascorbic acid, dopamine, and serum uric acid by differential pulse voltammetry
Wang et al. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co 3 O 4 nanododecahedras in situ decorated on carbon nanotubes for glucose detection and biofuel cell application
Wang et al. Electrochemical fabrication of Co (OH) 2 nanoparticles decorated carbon cloth for non-enzymatic glucose and uric acid detection
Preethi et al. Shape-controlled electrodeposition of silver using chitosan as structure-directing agent on disposable pencil graphite electrodes: Low-cost electrocatalysts for the detection of hydrogen peroxide and hydrazine hydrate
Ezhil Vilian et al. A facile method for the fabrication of hierarchically structured Ni 2 CoS 4 nanopetals on carbon nanofibers to enhance non-enzymatic glucose oxidation
Xie et al. Electrochemical assembling of nano-MOFs at carbon fiber for the high-performance uric acid sensing
Lu et al. MOFs-derived core-shell structured NiCo2O4NWs@ Co3O4NPs for non-enzymatic glucose detection
CN115420784B (zh) 一种基于NiCo2O4的柔性电极及其制备方法和应用
Ghaffarirad et al. Non-enzymatic glucose electrochemical sensor based on nitrogen-doped graphene modified with polyaniline and Fe3O4@ MIL-101-NH2 nano framework

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant