CN115417384B - Preparation method of chiral tellurium (Te) nanocrystalline material - Google Patents
Preparation method of chiral tellurium (Te) nanocrystalline material Download PDFInfo
- Publication number
- CN115417384B CN115417384B CN202210807057.7A CN202210807057A CN115417384B CN 115417384 B CN115417384 B CN 115417384B CN 202210807057 A CN202210807057 A CN 202210807057A CN 115417384 B CN115417384 B CN 115417384B
- Authority
- CN
- China
- Prior art keywords
- chiral
- cys
- solution
- nanocrystal
- add
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 229910052714 tellurium Inorganic materials 0.000 title claims abstract description 12
- 239000002707 nanocrystalline material Substances 0.000 title 1
- 239000002159 nanocrystal Substances 0.000 claims abstract description 65
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims abstract description 47
- 239000000463 material Substances 0.000 claims abstract description 31
- XUJNEKJLAYXESH-UWTATZPHSA-N D-Cysteine Chemical compound SC[C@@H](N)C(O)=O XUJNEKJLAYXESH-UWTATZPHSA-N 0.000 claims abstract description 30
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims abstract description 30
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims abstract description 30
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims abstract description 24
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims abstract description 16
- 235000018417 cysteine Nutrition 0.000 claims abstract description 16
- VOADVZVYWFSHSM-UHFFFAOYSA-L sodium tellurite Chemical compound [Na+].[Na+].[O-][Te]([O-])=O VOADVZVYWFSHSM-UHFFFAOYSA-L 0.000 claims abstract description 11
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims abstract description 10
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000003756 stirring Methods 0.000 claims description 26
- 239000013078 crystal Substances 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000008367 deionised water Substances 0.000 claims description 15
- 229910021641 deionized water Inorganic materials 0.000 claims description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 7
- 239000011734 sodium Substances 0.000 claims description 7
- 238000005119 centrifugation Methods 0.000 claims description 2
- 230000001568 sexual effect Effects 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims 1
- -1 polyethylene Polymers 0.000 claims 1
- 229920000573 polyethylene Polymers 0.000 claims 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 claims 1
- 239000003446 ligand Substances 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 8
- 230000006698 induction Effects 0.000 abstract description 4
- 230000009471 action Effects 0.000 abstract description 3
- 239000012670 alkaline solution Substances 0.000 abstract description 2
- 239000000411 inducer Substances 0.000 abstract description 2
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 15
- 238000002983 circular dichroism Methods 0.000 description 11
- 239000002086 nanomaterial Substances 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 229930195710 D‐cysteine Natural products 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000001338 self-assembly Methods 0.000 description 3
- 235000013878 L-cysteine Nutrition 0.000 description 2
- 239000004201 L-cysteine Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000002135 nanosheet Substances 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- PWKSKIMOESPYIA-UHFFFAOYSA-N 2-acetamido-3-sulfanylpropanoic acid Chemical compound CC(=O)NC(CS)C(O)=O PWKSKIMOESPYIA-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 150000001787 chalcogens Chemical group 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 229910021524 transition metal nanoparticle Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
- C01B19/02—Elemental selenium or tellurium
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明提出一种手性碲(Te)纳米晶体材料的制备方法。它是利用手性配体半胱氨酸(L‑cys/D‑cys)作为诱导剂,在180℃的温度条件下,在具有含水合肼(N2H4)和聚乙烯吡咯烷酮(PVP)的碱性溶液中还原亚碲酸钠(Na2TeO3),在手性配体的作用下,生成具有手性形貌进而产生手性特征L‑cys+Te/D‑cys+Te双锥体形纳米晶体。本发明所述的手性Te纳米晶体具有明显的手性特性以及良好的稳定性,以及不同于其他手性诱导方法的方便快捷的优点。本发明的方法原材料简单,稳定性好,操作简单,适合大规模化生产,具有广阔的应用前景。
The invention provides a preparation method of chiral tellurium (Te) nano crystal material. It uses the chiral ligand cysteine (L-cys/D-cys) as an inducer, at a temperature of 180 ° C, in the presence of hydrazine hydrate (N 2 H 4 ) and polyvinylpyrrolidone (PVP) Sodium tellurite (Na 2 TeO 3 ) is reduced in an alkaline solution, and under the action of chiral ligands, a chiral morphology is generated to produce a chiral characteristic L‑cys+Te/D‑cys+Te double cone Body-shaped nanocrystals. The chiral Te nanocrystal of the present invention has obvious chiral characteristics and good stability, and is different from other chiral induction methods in terms of convenience and quickness. The method of the invention has simple raw materials, good stability, simple operation, is suitable for large-scale production, and has broad application prospects.
Description
技术领域technical field
本发明涉及无机化学技术领域,尤其涉及一种手性碲(Te)纳米晶体材料及其制备方法。The invention relates to the technical field of inorganic chemistry, in particular to a chiral tellurium (Te) nano crystal material and a preparation method thereof.
背景技术Background technique
近些年来,手性无机材料作为手性材料的重要分支得到了迅速的发展。量子点、过渡金属氧化物、金属纳米粒子等无机纳米材料因为其特殊性质,在手性传感器、细胞成像和圆偏振发光器件等方面得到了广泛的应用。VI族碲(Te)是硫族元素的一员,每个碲原子与最近相邻的两个碲原子以共价键合,并以此为基础形成独特的手性链结构,进而形成三角形螺旋结构晶体。在范德华力的作用下,碲原子螺旋链以六边形阵列堆叠在一起,形成层状结构,并在六方晶胞的中心和角处围绕平行[0001]于方向的轴旋转。手性分子是指其构型与其镜像在三个维度上不能完全重叠的分子,因此手性分子的镜像形式被归类为对映异构体。手性是分子识别的关键因素之一。因为纳米晶体通常在本体和表面存在手性缺陷而具有低对称性,所以任何纳米晶体潜在的都可以具有手性的。但是在溶液中,因为纳米晶体的手性是随机的,纳米晶体在宏观上通常不显现圆二色性。半胱氨酸(Cys)及其衍生物被广泛作用于手性无机纳米晶体合成的配体,通过对合成因素系统性的探索,手性无机纳米晶体可以很容易地设计和制造。在光谱学中,圆二色性(CD)和旋转色散方法用于检测手性分子地细微结构变化。对一个镜像形式手性分子的左旋和右旋圆偏振光子的不同手性光的不同反应的特性,为我们提供了使用光学CD方法测量分子手性的机会。无机纳米晶体的手性主要从以下三种产生机理得到:(i)手性晶体中的形状手性和晶格手性; (ii)非手性纳米晶体与手性分子相互作用; (iii)非手性纳米晶体的手性组装结构。In recent years, chiral inorganic materials have been developed rapidly as an important branch of chiral materials. Due to their special properties, inorganic nanomaterials such as quantum dots, transition metal oxides, and metal nanoparticles have been widely used in chiral sensors, cell imaging, and circularly polarized light-emitting devices. Group VI tellurium (Te) is a member of the chalcogen group. Each tellurium atom is covalently bonded to the two nearest neighbor tellurium atoms, and based on this, a unique chiral chain structure is formed, and then a triangular helix is formed. structure crystal. Under the action of van der Waals forces, the helical chains of tellurium atoms are stacked together in a hexagonal array, forming a layered structure, and rotate around an axis parallel to the [0001] direction at the center and corners of the hexagonal unit cell. A chiral molecule is one whose configuration and its mirror image do not completely overlap in three dimensions, so the mirror image forms of chiral molecules are classified as enantiomers. Chirality is one of the key factors for molecular recognition. Because nanocrystals typically have low symmetry due to chiral defects in the bulk and surface, potentially any nanocrystal can be chiral. But in solution, because the chirality of nanocrystals is random, nanocrystals usually do not exhibit circular dichroism macroscopically. Cysteine (Cys) and its derivatives are widely used as ligands for the synthesis of chiral inorganic nanocrystals. By systematically exploring the synthesis factors, chiral inorganic nanocrystals can be easily designed and fabricated. In spectroscopy, circular dichroism (CD) and rotational dispersion methods are used to detect subtle structural changes in chiral molecules. The nature of the different chirality responses to left-handed and right-handed circularly polarized photons of a mirror-image chiral molecule provides us with the opportunity to measure molecular chirality using optical CD methods. The chirality of inorganic nanocrystals is mainly obtained from the following three mechanisms: (i) shape chirality and lattice chirality in chiral crystals; (ii) interaction between achiral nanocrystals and chiral molecules; (iii) Chiral assembled structures of achiral nanocrystals.
水热法是制备传统Te纳米结构的高效快捷的合成方法。亚碲酸钠(Na2TeO3)在180°C的碱性溶液中被水合肼(N2H4)还原,并在晶面阻拦配体聚乙烯吡咯烷酮(PVP)的存在下生长碲纳米结构。在此基础上在某个恰当的时间点上加入手性分子并微调溶液的碱性以及水合肼的浓度就能方便快捷制备大量具有手性特性的碲纳米晶体。由于手性分子的影响下,将不再生成碲纳米线或纳米片而是生成了具有手性特性的双锥体形碲纳米晶体。该晶体大小约为200-300nm,性质比较稳定,不易氧化。Hydrothermal method is an efficient and fast synthetic method to prepare traditional Te nanostructures. Sodium tellurite (Na 2 TeO 3 ) was reduced by hydrazine hydrate (N 2 H 4 ) in alkaline solution at 180°C and growth of tellurium nanostructures in the presence of the facet-blocking ligand polyvinylpyrrolidone (PVP) . On this basis, by adding chiral molecules at an appropriate time point and fine-tuning the alkalinity of the solution and the concentration of hydrazine hydrate, a large number of tellurium nanocrystals with chiral properties can be prepared conveniently and quickly. Due to the influence of chiral molecules, tellurium nanowires or nanosheets will no longer be produced, but bipyramidal tellurium nanocrystals with chiral properties will be produced. The crystal size is about 200-300nm, the property is relatively stable, and it is not easy to be oxidized.
目前现有的手性诱导方案,可分为三种。(i)手性自组装/构型。即通过模板辅助各种点,进行棒螺旋自组装。例如利用纳米二氧化硅螺旋结构作为模板,合成金纳米颗粒的3D手性螺旋超结构,该结构表现出强等离子手性活性。在共自主装体系中,手性模板与纳米颗粒相互作用,手性模板可以赋予纳米粒子手性,纳米颗粒也可以影响模板的手性结构。(ii)表面包覆手性分子的非手性纳米颗粒。即通过手性分子与非手性金属或半导体的相互作用产生弱的手性传递效应。例如利用L-半胱氨酸/D-半胱氨酸构建纤锌矿晶体CdSe量子棒,使得该量子棒具有独特的光学各向异性以及更强的CD响应。(iii) 手性晶体中的形状手性和晶格手性。即利用手性生物分子对无机纳米结构中晶格和形状手性的对映选择性控制,合成具有手性形状以及光学活性的纳米结构。本发明正式通过手性分子(半胱氨酸),在Te纳米晶体合成的过程中,使其生长成具有手性形状的晶体,进而具有手性光学活性以及CD响应。At present, the existing chiral induction schemes can be divided into three types. (i) Chiral self-assembly/configuration. That is, rod-helical self-assembly is performed by template-assisted various points. For example, using the nano-silica helical structure as a template to synthesize a 3D chiral helical superstructure of gold nanoparticles, the structure exhibits strong plasmonic chiral activity. In the co-self-assembly system, the chiral template interacts with the nanoparticles, the chiral template can endow the nanoparticles with chirality, and the nanoparticles can also affect the chiral structure of the template. (ii) Achiral nanoparticles coated with chiral molecules on the surface. That is, a weak chiral transfer effect is generated through the interaction of chiral molecules with achiral metals or semiconductors. For example, L-cysteine/D-cysteine is used to construct wurtzite crystal CdSe quantum rods, so that the quantum rods have unique optical anisotropy and stronger CD response. (iii) Shape chirality and lattice chirality in chiral crystals. That is, the enantioselective control of lattice and shape chirality in inorganic nanostructures by chiral biomolecules is used to synthesize nanostructures with chiral shape and optical activity. The present invention formally uses chiral molecules (cysteine) to grow into crystals with chiral shapes during the synthesis process of Te nanocrystals, thereby having chiral optical activity and CD response.
发明内容Contents of the invention
本发明所要解决的技术问题在于使不具有手性特性的碲(Te)纳米结构具备手性特性以及与现有手性诱导方法相比,操作更加简单产量更多。The technical problem to be solved by the present invention is to make the tellurium (Te) nanostructures without chiral properties have chiral properties, and compared with the existing chiral induction method, the operation is simpler and the yield is higher.
为解决上述技术问题,本发明提供了一种手性Te纳米晶体材料及其制备方法。利用手性配体半胱氨酸作为诱导剂,在180℃的温度条件下,在具有含水合肼(N2H4)和聚乙烯吡咯烷酮(PVP)的碱性溶液中还原亚碲酸钠(Na2TeO3),在手性配体的作用下,生成具有手性形貌进而产生手性特征的Te纳米双锥体形晶体。In order to solve the above technical problems, the present invention provides a chiral Te nanocrystal material and a preparation method thereof. Using the chiral ligand cysteine as an inducer, the reduction of sodium tellurite ( Na 2 TeO 3 ), under the action of chiral ligands, generate Te nano-bipyramidal crystals with chiral morphology and chiral characteristics.
本发明提供了一种手性Te纳米晶体材料的制备方法,包括以下步骤;The invention provides a preparation method of a chiral Te nanocrystal material, comprising the following steps;
A、制备手性特性的L-cys+Te纳米晶体材料:A. Preparation of L-cys+Te nanocrystal material with chiral characteristics:
A-1、将0.125~1.5g的分子量为8K~1300K的聚乙烯吡咯烷酮(PVP)溶解在25~40ml去离子水中搅拌3-5min,使PVP充分溶解,亚碲酸钠(Na2TeO3)与聚乙烯吡咯烷酮(PVP)质量比为Na2TeO3: PVP=1:1.25~30;A-1. Dissolve 0.125~1.5g of polyvinylpyrrolidone (PVP) with a molecular weight of 8K~1300K in 25~40ml of deionized water and stir for 3-5min to fully dissolve the PVP. Sodium tellurite (Na 2 TeO 3 ) The mass ratio of polyvinylpyrrolidone (PVP) is Na 2 TeO 3 : PVP=1:1.25~30;
A-2、将0.05~0.1g的亚碲酸钠加入A-1步骤的溶液中,搅拌3-5min充分溶解;A-2. Add 0.05~0.1g of sodium tellurite into the solution in step A-1, stir for 3-5min to fully dissolve;
A-3、将0.1~0.8g的半胱氨酸(L-cys)加入A-2步骤的溶液中,搅拌3-5min充分溶解;A-3. Add 0.1~0.8g of cysteine (L-cys) into the solution in step A-2, stir for 3-5min to fully dissolve;
A-4、取1.5~5ml的氨水加入A-3步骤的溶液中;A-4. Take 1.5~5ml of ammonia water and add it to the solution in step A-3;
A-5、取0.5~3ml的水合肼加入A-4步骤中;A-5. Add 0.5~3ml of hydrazine hydrate to step A-4;
A-6、将 A-5步骤的溶液搅拌10mim放入反应釜中150~210°C反应3~21h后,冷却到室温取出;A-6. Stir the solution in step A-5 for 10mim and put it in the reactor at 150~210°C for 3~21h, then cool to room temperature and take it out;
A-7、将 A-6步骤的溶液通过去离子水离心三次,乙醇离心两次,离心速度4000~8000rpm/min,离心时间5分钟,最后重新分散在3mL离子水中,得到的晶体命名为手性L-cys+Te纳米晶体。A-7. Centrifuge the solution in step A-6 three times with deionized water and twice with ethanol at a centrifugal speed of 4000~8000rpm/min for 5 minutes, and finally redisperse it in 3mL of deionized water. The obtained crystal is named hand Sexual L-cys+Te nanocrystals.
B、制备手性特性的D-cys+Te纳米晶体材料:B. Preparation of D-cys+Te nanocrystal materials with chiral properties:
步骤B-1、B-2、B-4、B-5、B-6、B-7与所述步骤A-1、A-2、A-4、A-5、A-6、A-7完全相同;Steps B-1, B-2, B-4, B-5, B-6, B-7 and said steps A-1, A-2, A-4, A-5, A-6, A- 7 are exactly the same;
所述步骤B-3是将0.1~0.8g的半胱氨酸(D-cys)加入B-2步骤的溶液中,搅拌3-5min充分溶解;The step B-3 is to add 0.1-0.8 g of cysteine (D-cys) into the solution in step B-2, and stir for 3-5 minutes to fully dissolve;
所述步骤B-7得到晶体命名为手性D-cys+Te纳米晶体;The crystals obtained in the step B-7 are named as chiral D-cys+Te nanocrystals;
所述手性L-cys+Te纳米晶体和手性D-cys+Te纳米晶体是一对手性特性的晶体材料。The chiral L-cys+Te nanocrystal and the chiral D-cys+Te nanocrystal are a pair of chiral crystal materials.
进一步优化的一种手性Te纳米晶体材料的制备方法,具体包括以下几个步骤:A preparation method of a further optimized chiral Te nanocrystal material, specifically comprising the following steps:
A、制备手性特性的L-cys+Te纳米晶体材料:A. Preparation of L-cys+Te nanocrystal material with chiral characteristics:
A-1、 将1.0000g的分子量为58k聚乙烯吡咯烷酮(PVP)溶解在33ml去离子水中,搅拌3-5min,使PVP充分溶解,亚碲酸钠(Na2TeO3)与聚乙烯吡咯烷酮(PVP)质量比为Na2TeO3:PVP=1:10.8;A-1. Dissolve 1.0000g of polyvinylpyrrolidone (PVP) with a molecular weight of 58k in 33ml of deionized water and stir for 3-5min to fully dissolve the PVP. Sodium tellurite (Na 2 TeO 3 ) and polyvinylpyrrolidone (PVP) ) The mass ratio is Na 2 TeO 3 :PVP=1:10.8;
A-2、将0.0922g的亚碲酸钠加入A-1步骤的溶液中,搅拌3-5min充分溶解;A-2. Add 0.0922g of sodium tellurite into the solution in step A-1, stir for 3-5min to fully dissolve;
A-3、将0.2272g的半胱氨酸(L-cys)加入A-2步骤的溶液中,搅拌3-5min充分溶解;A-3. Add 0.2272g of cysteine (L-cys) to the solution in step A-2, stir for 3-5 minutes to fully dissolve;
A-4、取3.33ml的氨水加入A-3步骤的溶液中;A-4, take 3.33ml of ammonia water and add it to the solution in step A-3;
A-5、取1.67ml的水合肼加入A-4步骤的溶液中;A-5, take 1.67ml of hydrazine hydrate and add it to the solution in step A-4;
A-6、将 A-5搅拌10mim放入反应釜中180°C反应18h后,冷却到室温取出;A-6, A-5 was stirred for 10mim and put into the reactor at 180°C for 18h, then cooled to room temperature and taken out;
A-7、将 A-6的溶液通过去离子水离心三次,乙醇离心两次,离心速度6000rpm/min,离心时间5分钟,最后重新分散在3mL离子水中,得到的晶体命名为手性L-cys+纳米晶体。A-7. Centrifuge the solution of A-6 three times with deionized water and twice with ethanol at a centrifugation speed of 6000rpm/min for 5 minutes, and finally redisperse it in 3mL deionized water. The crystal obtained is named chiral L- cys+ nanocrystals.
B、制备手性特性的D-cys+Te纳米晶体材料:B. Preparation of D-cys+Te nanocrystal materials with chiral properties:
步骤B-1、B-2、B-4、B-5、B-6、B-7与本方法所述步骤A-1、A-2、A-4、A-5、A-6、A-7完全相同;Steps B-1, B-2, B-4, B-5, B-6, B-7 and steps A-1, A-2, A-4, A-5, A-6, A-7 is exactly the same;
步骤B-3是将0.2272g的半胱氨酸(D-cys)加入B-2步骤的溶液中,搅拌3-5min充分溶解;Step B-3 is to add 0.2272g of cysteine (D-cys) into the solution in step B-2, and stir for 3-5 minutes to fully dissolve;
步骤B-7得到晶体命名为手性D-cys+Te纳米晶体;The obtained crystal in step B-7 is named chiral D-cys+Te nanocrystal;
所述手性L-cys+Te纳米晶体和手性D-cys+Te纳米晶体是一对手性特性的晶体材料。The chiral L-cys+Te nanocrystal and the chiral D-cys+Te nanocrystal are a pair of chiral crystal materials.
本发明技术方案相比现有技术具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
(1)与传统水热法制备Te纳米结构相比,使得原来不具有手性特性的Te通过手性配体诱导出了具有手性特性的Te纳米晶体;(1) Compared with the preparation of Te nanostructures by the traditional hydrothermal method, Te nanocrystals with chiral properties are induced from Te without chiral properties through chiral ligands;
(2)使原本传统水热法制备的Te纳米线或纳米片结构转变为纳米晶体结构;(2) Transform the Te nanowire or nanosheet structure prepared by the traditional hydrothermal method into a nanocrystalline structure;
(3)与现有的手性诱导方案相比,更加简单方便,并从Te合成制备的步骤开始诱导Te的手性;(3) Compared with the existing chiral induction scheme, it is simpler and more convenient, and the chirality of Te is induced from the steps of Te synthesis and preparation;
(4)本发明所述的手性Te纳米晶体材料的手性配体为半胱氨酸(L-cys)和半胱氨酸(D-cys),该手性配体在界面上能够形成两种不同的生长方向,从而得到两种构型的材料;(4) The chiral ligands of the chiral Te nanocrystal material described in the present invention are cysteine (L-cys) and cysteine (D-cys), and the chiral ligands can form Two different growth directions, resulting in two configurations of materials;
(5)本发明的方法原材料简单,稳定性好,操作简单,适合大规模化生产,具有广阔的应用前景。(5) The method of the present invention has simple raw materials, good stability, simple operation, is suitable for large-scale production, and has broad application prospects.
附图说明Description of drawings
图1为本发明实施例1、2制得的手性L-cys+Te纳米晶体和D-cys+Te纳米晶体的SEM图;Fig. 1 is the SEM figure of the chiral L-cys+Te nanocrystal and D-cys+Te nanocrystal that the embodiment of the
其中A为手性形状的L-cys+Te纳米晶体材料中L的形貌的SEM图,B为手性形状的D-cys+Te纳米晶体材料中D的形貌的SEM图,将两者进行对比可以明显看出该Te纳米晶体呈明显手性对称的双锥体形貌。Wherein A is the SEM figure of the morphology of L in the L-cys+Te nanocrystal material of chiral shape, B is the SEM figure of the morphology of D in the D-cys+Te nanocrystal material of chiral shape, the two By comparison, it can be clearly seen that the Te nanocrystals have a bipyramidal morphology with obvious chiral symmetry.
图2为本发明实施例1、2中制得的手性L-cys+Te纳米晶体和D-cys+Te纳米晶体的CD、UV图和g-factor图;Fig. 2 is CD, UV diagram and g-factor diagram of chiral L-cys+Te nanocrystal and D-cys+Te nanocrystal prepared in Examples 1 and 2 of the present invention;
其中A、B、C为实施案例1中反应18h的手性L-cys+Te纳米晶体和D-cys+Te纳米晶体CD、UV图和g-factor图;D、E、F为实施案例2中聚乙烯吡咯烷酮(PVP 58000)的手性L-cys+Te纳米晶体和D-cys+Te纳米晶体CD、UV图和g-factor图。Among them, A, B, and C are the chiral L-cys+Te nanocrystals and D-cys+Te nanocrystals CD, UV and g-factor maps that were reacted for 18 hours in the
具体实施方式:Detailed ways:
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, so that those skilled in the art can better understand the present invention and implement it, but the examples given are not intended to limit the present invention.
实验原料Experimental material
聚乙烯吡咯烷酮(PVP),亚碲酸钠(Na2TeO3,99.9%),氨水(25%,w/w%),水合肼(85%,w/w%),L-半胱氨酸(L-cysteine,98.5%),D-半胱氨酸(D-cysteine,99%)购自上海阿拉丁生化科技股份有限公司。Polyvinylpyrrolidone (PVP), sodium tellurite (Na 2 TeO 3 , 99.9%), ammonia water (25%, w/w%), hydrazine hydrate (85%, w/w%), L-cysteine (L-cysteine, 98.5%) and D-cysteine (D-cysteine, 99%) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.
实施例1Example 1
不同反应时间制的手性Te纳米晶体:Chiral Te nanocrystals prepared with different reaction times:
1)称取1.000g的PVP(分子量58K),然后加入33mL的去离子水溶液,搅拌均匀,加入0.0922g的Na2TeO3搅拌均匀,接着加入0.2272g的半胱氨酸(L-cys或D-cys)搅拌均匀,然后取3.33ml的氨水1.67ml的水合肼和加入,搅拌10min后装入内胆放入反应釜中,烘箱180°C反应3h、7h、11h、15h、18h、21h,冷却后取出;1) Weigh 1.000g of PVP (molecular weight 58K), then add 33mL of deionized aqueous solution, stir well, add 0.0922g of Na 2 TeO 3 and stir well, then add 0.2272g of cysteine (L-cys or D -cys) Stir evenly, then take 3.33ml of ammonia water and 1.67ml of hydrazine hydrate and add it, stir for 10 minutes, put it into the liner and put it into the reaction kettle, and react in the oven at 180°C for 3h, 7h, 11h, 15h, 18h, 21h, Take out after cooling;
2)反应结束后,先用离心速度6000rpm/min离心时间5min,去离子水离心三次,乙醇离心两次,最后重新分散在3mL去离子水中。即得到构型明显的L-cys+Te和D-cys+Te纳米晶体材料。对制备得到的手性Te纳米晶体材料采用扫描电镜进行表征测试结果如图1所示,对制备得到的手性Te纳米晶体材料采用圆二色谱仪测试以及g-factor计算结果如图2中A、B、C所示。2) After the reaction, first centrifuge at 6000rpm/min for 5min, centrifuge three times with deionized water, centrifuge twice with ethanol, and finally redisperse in 3mL deionized water. That is, L-cys+Te and D-cys+Te nanocrystal materials with obvious configuration are obtained. The prepared chiral Te nanocrystal material was characterized by scanning electron microscopy, and the test results are shown in Figure 1. The prepared chiral Te nanocrystal material was tested by circular dichroism spectrometer and the g-factor calculation results were shown in Figure 2. A , B, C shown.
实施例2Example 2
称取1.000g的PVP(分子量分别为8000、10000、24000、40000、58000、1300000),然后每份加入33mL的去离子水溶液,搅拌均匀,加入0.0922g的Na2TeO3搅拌均匀,接着加入0.2272g的半胱氨酸(L-cys或D-cys)搅拌均匀,然后取3.33ml的氨水1.67ml的水合肼和加入,搅拌10min后装入内胆放入反应釜中,烘箱180°C反应18h,冷却后取出;Weigh 1.000g of PVP (molecular weights are 8000, 10000, 24000, 40000, 58000, 1300000), then add 33mL of deionized aqueous solution for each part, stir well, add 0.0922g of Na 2 TeO 3 and stir well, then add 0.2272 g of cysteine (L-cys or D-cys) and stir evenly, then take 3.33ml of ammonia water and 1.67ml of hydrazine hydrate and add, stir for 10min, put it into the liner and put it into the reaction kettle, and react in the oven at 180°C 18h, take out after cooling;
反应结束后,先用离心速度6000rpm/min离心时间5min,去离子水离心三次,乙醇离心两次,最后重新分散在3mL水中备用。即得到构型明显的L-cys+Te和D-cys+Te纳米晶体材料。对制备得到的手性Te纳米晶体材料采用扫描电镜进行表征测试结果如图1所示,对58000条件制备得到的手性Te纳米晶体材料采用圆二色谱仪测试以及g-factor计算结果如图2中D、E、F所示。After the reaction, centrifuge at a speed of 6000rpm/min for 5min, centrifuge three times with deionized water, centrifuge twice with ethanol, and finally redisperse in 3mL water for later use. That is, L-cys+Te and D-cys+Te nanocrystal materials with obvious configuration are obtained. The prepared chiral Te nanocrystal material was characterized by scanning electron microscopy and the test results are shown in Figure 1. The chiral Te nanocrystal material prepared under the condition of 58000 was tested by circular dichroism spectrometer and the g-factor calculation results were shown in Figure 2 Shown in D, E, F.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210807057.7A CN115417384B (en) | 2022-07-11 | 2022-07-11 | Preparation method of chiral tellurium (Te) nanocrystalline material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210807057.7A CN115417384B (en) | 2022-07-11 | 2022-07-11 | Preparation method of chiral tellurium (Te) nanocrystalline material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115417384A CN115417384A (en) | 2022-12-02 |
CN115417384B true CN115417384B (en) | 2023-06-27 |
Family
ID=84197400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210807057.7A Active CN115417384B (en) | 2022-07-11 | 2022-07-11 | Preparation method of chiral tellurium (Te) nanocrystalline material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115417384B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116177498B (en) * | 2022-12-12 | 2023-11-24 | 江南大学 | A chiral selenium nanofilm with photoresponsiveness, its preparation method and its application in detecting L-kynurenine |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005343782A (en) * | 2004-05-06 | 2005-12-15 | Tokyo Univ Of Science | Method for producing bismuth telluride nanoparticles and method for producing tellurium nanoparticles |
WO2011114173A1 (en) * | 2010-03-19 | 2011-09-22 | Isis Innovation Limited | Chalcogenide phase change materials and their use |
CN102910595A (en) * | 2012-10-31 | 2013-02-06 | 中国科学技术大学 | Macro preparation method for superfine tellurium nanowires |
CN108251116A (en) * | 2017-12-20 | 2018-07-06 | 中南民族大学 | A kind of preparation method of chirality CdSe quantum dot |
KR20190117370A (en) * | 2018-04-06 | 2019-10-16 | 서울대학교산학협력단 | Three dimensional chiral nanostructures |
CN110449169A (en) * | 2019-07-04 | 2019-11-15 | 中山大学 | A kind of semi-metallic Te nano wire/graphene hydrogel composite material and its preparation method and application |
CN113237934A (en) * | 2021-05-24 | 2021-08-10 | 常州大学 | Chiral silver sulfide quantum dot/few-layer carbon nitride compound for electrochemiluminescence chiral recognition and preparation method thereof |
CN113912025A (en) * | 2021-12-13 | 2022-01-11 | 河南师范大学 | A preparation method, product and application of Te nanomaterial with controllable morphology |
CN114045171A (en) * | 2021-12-07 | 2022-02-15 | 桂林理工大学 | A kind of preparation method of chiral carbon quantum dots |
CN114164484A (en) * | 2021-12-08 | 2022-03-11 | 之江实验室 | A kind of preparation method of chiral two-dimensional tellurium twins |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12145843B2 (en) * | 2020-09-30 | 2024-11-19 | Purdue Research Foundation | Twinned two-dimensional tellurium crystals with co-existing opposite chirality |
-
2022
- 2022-07-11 CN CN202210807057.7A patent/CN115417384B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005343782A (en) * | 2004-05-06 | 2005-12-15 | Tokyo Univ Of Science | Method for producing bismuth telluride nanoparticles and method for producing tellurium nanoparticles |
WO2011114173A1 (en) * | 2010-03-19 | 2011-09-22 | Isis Innovation Limited | Chalcogenide phase change materials and their use |
CN102910595A (en) * | 2012-10-31 | 2013-02-06 | 中国科学技术大学 | Macro preparation method for superfine tellurium nanowires |
CN108251116A (en) * | 2017-12-20 | 2018-07-06 | 中南民族大学 | A kind of preparation method of chirality CdSe quantum dot |
KR20190117370A (en) * | 2018-04-06 | 2019-10-16 | 서울대학교산학협력단 | Three dimensional chiral nanostructures |
CN110449169A (en) * | 2019-07-04 | 2019-11-15 | 中山大学 | A kind of semi-metallic Te nano wire/graphene hydrogel composite material and its preparation method and application |
CN113237934A (en) * | 2021-05-24 | 2021-08-10 | 常州大学 | Chiral silver sulfide quantum dot/few-layer carbon nitride compound for electrochemiluminescence chiral recognition and preparation method thereof |
CN114045171A (en) * | 2021-12-07 | 2022-02-15 | 桂林理工大学 | A kind of preparation method of chiral carbon quantum dots |
CN114164484A (en) * | 2021-12-08 | 2022-03-11 | 之江实验室 | A kind of preparation method of chiral two-dimensional tellurium twins |
CN113912025A (en) * | 2021-12-13 | 2022-01-11 | 河南师范大学 | A preparation method, product and application of Te nanomaterial with controllable morphology |
Non-Patent Citations (5)
Title |
---|
Chirality control of inorganic materials and metals by peptides or amino acids;Hyeohn Kim et al;《Mater. Adv.》;第1卷;全文 * |
Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules;Assaf Ben-Moshe et al;《NATURE COMMUNICATIONS》;第5卷;全文 * |
L-半胱氨酸诱导单晶银纳米线的快速合成及表征;张晓清;杨志岩;胡爱军;王会才;申子瑶;;功能材料(第21期);全文 * |
The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles;Amelie Heuer-Jungemann et al;《Chem. Rev. 》;第119卷;全文 * |
水液相环境下半胱氨酸分子的手性对映体转变机理;乔朝阳等;《武汉大学学报(理学版)》;第66卷(第4期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN115417384A (en) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alshehri et al. | Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications | |
US7919069B2 (en) | Rapid synthesis of titanate nanomaterials | |
CN105381807B (en) | A kind of preparation method of the selenizing cobalt nanocomposites of two selenizings molybdenum/bis- | |
CN105731535B (en) | A kind of preparation method of Zinc oxide/titanium dioxide composite nano materials | |
Qi et al. | One-dimensional CuS microstructures prepared by a PVP-assisted microwave hydrothermal method | |
CN115417384B (en) | Preparation method of chiral tellurium (Te) nanocrystalline material | |
Liu et al. | One-pot synthesis of Bi 2 Se 3 nanostructures with rationally tunable morphologies | |
CN106830080B (en) | Cu2MoS4Nano material and preparation method thereof | |
Tian et al. | Synthesis and growth mechanism of various SiO2 nanostructures from straight to helical morphologies | |
Ye et al. | Composite soft-template method synthesis and biosensing application of hedgehog-like bismuth sulfide micro-nanostructures | |
Zhao et al. | Fabrication of symmetric hierarchical hollow PbS microcrystals via a facile solvothermal process | |
CN102502825A (en) | A kind of bayberry shape V2O5 nanometer material and preparation method thereof | |
Li et al. | Hydrothermal synthesis of VO 2 (B) nanorings with inorganic V 2 O 5 sol | |
CN1526644A (en) | A wet chemical method for preparing zinc oxide nanowires | |
CN107032406B (en) | A kind of micro-nano beam of manganese molybdate and preparation method thereof | |
CN1312330C (en) | Preparation method of α-MnO2 single crystal nanorod | |
CN105198004B (en) | A kind of Fe3O4-SnO2 nanocomposite material and preparation method thereof | |
CN100389073C (en) | Preparation method of dendritic barium tungstate nanocrystals | |
Motonari et al. | Shape control of highly crystallized titania nanorods based on formation mechanism | |
Li et al. | Ultralong triclinic-Ba 2 V 2 O 7 nanowires: microwave radiation-assisted CTAB surfactant synthesis, the novel growth mechanism and optical activity performances | |
Haji Jumali et al. | Characterization of SnO2 nanoparticles prepared by two different wet chemistry methods | |
Ghosh et al. | Growth of compact arrays of optical quality single crystalline ZnO nanorods by low temperature method | |
CN104030361B (en) | Method for preparing metal tungstate nanomaterial by use of micro-arc oxidation process and use of nanomaterial | |
CN1257514C (en) | Preparation method of oriented zinc sulfide-zinc oxide nano cable composite material | |
CN109179340B (en) | Lead-based chalcogenide alloy particles with nanostructure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |