CN115416013A - Variable stiffness soft elongation actuator and soft gripper based on cross fiber interference - Google Patents
Variable stiffness soft elongation actuator and soft gripper based on cross fiber interference Download PDFInfo
- Publication number
- CN115416013A CN115416013A CN202210997633.9A CN202210997633A CN115416013A CN 115416013 A CN115416013 A CN 115416013A CN 202210997633 A CN202210997633 A CN 202210997633A CN 115416013 A CN115416013 A CN 115416013A
- Authority
- CN
- China
- Prior art keywords
- soft
- fiber
- variable stiffness
- bellows
- driver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 81
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000009423 ventilation Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000007779 soft material Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002520 smart material Substances 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/02—Gripping heads and other end effectors servo-actuated
- B25J15/0206—Gripping heads and other end effectors servo-actuated comprising articulated grippers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/08—Gripping heads and other end effectors having finger members
- B25J15/12—Gripping heads and other end effectors having finger members with flexible finger members
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/14—Programme-controlled manipulators characterised by positioning means for manipulator elements fluid
- B25J9/142—Programme-controlled manipulators characterised by positioning means for manipulator elements fluid comprising inflatable bodies
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Actuator (AREA)
Abstract
本发明提供一种基于交叉纤维干扰变刚度软体伸长驱动器、及软体抓手,该驱动器包括:波纹管,其两端封闭,且设有第一通气孔和第二通气孔;以及设置于波纹管内的变刚度结构,变刚度结构包括两纤维单元和软体套,每一纤维单元包括底座和纤维束,纤维束一端固定连接底座,两纤维单元设置于软体套内,且两底座分别密封连接软体套的两端,两纤维束并拢设置于软体套内,两底座分别连接波纹管两端,第一通气孔连通波纹管与软体套之间的空间,第二通气孔连通软体套内部。本发明的有益效果:驱动器的变刚度结构可跟随驱动器拉伸,有效提高软体伸长驱动器的拉伸成形稳定性;解决了传统变刚度结构中因拉伸而出现的局部空腔问题,具有全局可变刚度的特性。
The invention provides a variable stiffness soft extension driver based on cross fiber interference and a soft gripper. The driver includes: a corrugated tube with both ends closed and provided with a first air hole and a second air hole; The variable stiffness structure in the tube, the variable stiffness structure includes two fiber units and a soft cover, each fiber unit includes a base and a fiber bundle, one end of the fiber bundle is fixedly connected to the base, the two fiber units are arranged in the soft cover, and the two bases are respectively sealed and connected to the soft cover At both ends of the cover, two fiber bundles are placed together in the soft cover, the two bases are respectively connected to the two ends of the bellows, the first air hole communicates with the space between the bellows and the soft cover, and the second air hole communicates with the inside of the soft cover. Beneficial effects of the present invention: the variable stiffness structure of the driver can follow the stretching of the driver, effectively improving the stretch forming stability of the soft elongation driver; solving the problem of local cavities caused by stretching in the traditional variable stiffness structure, with global Variable stiffness properties.
Description
技术领域technical field
本发明涉及软体驱动器设备技术领域,尤其涉及一种基于交叉纤维干扰变刚度软体伸长驱动器、及软体抓手。The invention relates to the technical field of soft actuator equipment, in particular to a variable stiffness soft elongation actuator based on cross fiber interference and a soft gripper.
背景技术Background technique
机器人抓手可以代替人手来抓取物体,已被广泛应用于生产生活的方方面面,为实现工业自动化发挥了重要作用。衡量一个机械手的设计水平的高低主要取决于抓取可靠性、操作灵活性、环境适应性等评价指标。然而,传统机械手主要由刚性材料制成,通常质量较大,灵活性欠缺,在处理复杂多变的应用场景时面临很大的挑战。近年来,应用软材料设计制造的软体手引起了国内外学者和机构的广泛关注,并为我们改进机械手提供了新的思路。软体手以材料学和机械学为基础,利用软体材料本身的机械智能,使抓手具有灵活、高效的抓取性能。Robotic grippers can replace human hands to grab objects, and have been widely used in all aspects of production and life, playing an important role in realizing industrial automation. Measuring the design level of a manipulator mainly depends on evaluation indicators such as grasping reliability, operational flexibility, and environmental adaptability. However, traditional manipulators are mainly made of rigid materials, usually with high mass and lack of flexibility, and face great challenges in handling complex and changeable application scenarios. In recent years, soft hands designed and manufactured using soft materials have attracted widespread attention from scholars and institutions at home and abroad, and provided us with new ideas for improving manipulators. The soft hand is based on materials science and mechanics, and uses the mechanical intelligence of the soft material itself to make the gripper have flexible and efficient grasping performance.
软体驱动器是软体抓手的核心执行部件,对软体抓手的性能提高具有重要意义。具有伸长功能的软体驱动器是最常见的驱动器之一,可被应用于软体抓手中,并为调整抓手的抓取范围提供了一种很有前景的解决方案。然而,软体伸长驱动器在高载荷的情况下,难以保持其拉伸形状的稳定性。例如,当软体抓手需要抓取较重且较大的物体时,由于软体伸长驱动器的柔软特性,导致负载能力差,难以抵抗来自被抓物体的反向作用力,就会造成抓取不稳定的情况发生。The software driver is the core execution part of the software gripper, which is of great significance to the performance improvement of the software gripper. Soft actuators with elongation function are one of the most common actuators that can be applied in soft grippers and provide a promising solution for adjusting the grasping range of grippers. However, soft elongation actuators struggle to maintain the stability of their stretched shape under high loads. For example, when the soft gripper needs to grab a heavy and large object, due to the softness of the soft elongation driver, the load capacity is poor, and it is difficult to resist the reverse force from the grasped object, which will cause poor grip. A stable situation occurs.
近年来,变刚度技术被开发出来,并被视作是解决软体驱动器柔软问题的一种有效途径。现有变刚度技术有两类,一类是通过智能材料法变刚度,另一类是通过结构间的互相挤压变刚度(俗称干扰法)。前者通过施加光、电、热等外界刺激改变材料本身的分子特性,从而从软状态变为硬状态。后者通过将颗粒介质、层状介质等聚集在一个薄膜内,然后施加负压,使介质之间压紧而改变刚度。In recent years, variable stiffness technology has been developed and considered as an effective way to solve the problem of soft actuator softness. There are two types of existing stiffness-variable technologies, one is to change the stiffness through the intelligent material method, and the other is to change the stiffness through mutual extrusion between structures (commonly known as the interference method). The former changes the molecular properties of the material itself by applying external stimuli such as light, electricity, and heat, thereby changing from a soft state to a hard state. The latter changes the stiffness by aggregating granular media, layered media, etc. within a film, and then applying negative pressure to compact the media.
然而,现有的变刚度技术在应用于伸长驱动器时有很大的局限性。不论是智能材料法变刚度还是负压干扰法变刚度,都难以应用于伸长驱动器中。这是因为变刚度材料/变刚度结构自身不具有拉伸性,无法随着伸长驱动器的拉伸而拉伸。以颗粒干扰法为例,当颗粒干扰结构被拉伸时,就会因为拉伸而出现一个空腔区域,无法全局变刚度,即变刚度功能失效。同样,层干扰法也是如此。However, existing variable stiffness techniques have significant limitations when applied to elongational actuators. Whether it is the smart material method or the negative pressure interference method, it is difficult to apply to the elongation actuator. This is because variable stiffness materials/variable stiffness structures are not inherently stretchable and cannot stretch as the elongation actuator stretches. Taking the particle interference method as an example, when the particle interference structure is stretched, a cavity area will appear due to the stretching, and the stiffness cannot be changed globally, that is, the variable stiffness function will fail. The same is true for the layer interference method.
发明内容Contents of the invention
有鉴于此,为了解决现有变刚度结构难以应用于软体伸长驱动器中,导致驱动器在工作时硬度较低,易发生变形和抓取松弛的问题,本发明的实施例提供了一种基于交叉纤维干扰变刚度软体伸长驱动器、及软体抓手。In view of this, in order to solve the problem that the existing variable stiffness structure is difficult to be applied to the soft body elongation driver, resulting in the problem that the driver has low hardness during operation, and is prone to deformation and grasping relaxation, the embodiment of the present invention provides a cross-based Fiber interference variable stiffness soft body elongation driver and soft gripper.
本发明的实施例提供一种基于交叉纤维干扰变刚度软体伸长驱动器,包括:An embodiment of the present invention provides a variable stiffness soft body elongation driver based on cross fiber interference, including:
波纹管,其两端封闭,且设有第一通气孔和第二通气孔;a bellows closed at both ends and provided with a first vent hole and a second vent hole;
以及设置于所述波纹管内的变刚度结构,所述变刚度结构包括两纤维单元和软体套,每一所述纤维单元包括底座和纤维束,所述纤维束一端固定连接所述底座,两所述纤维单元设置于所述软体套内,且两底座分别密封连接所述软体套的两端,两所述纤维束并拢设置于所述软体套内,两底座分别连接所述波纹管两端,所述第一通气孔连通所述波纹管与所述软体套之间的空间,所述第二通气孔连通所述软体套内部。And a variable stiffness structure arranged in the bellows, the variable stiffness structure includes two fiber units and a soft cover, each fiber unit includes a base and a fiber bundle, one end of the fiber bundle is fixedly connected to the base, and the two fiber units The fiber unit is arranged in the soft cover, and the two bases are respectively sealed and connected to the two ends of the soft cover, the two fiber bundles are arranged together in the soft cover, and the two bases are respectively connected to the two ends of the bellows, The first vent hole communicates with the space between the bellows and the soft cover, and the second vent hole communicates with the interior of the soft cover.
进一步地,所述纤维束的一端固定于所述底座的一半区域。Further, one end of the fiber bundle is fixed on half of the base.
进一步地,所述软体套为圆柱形,所述纤维束为半圆柱形。Further, the soft cover is cylindrical, and the fiber bundle is semi-cylindrical.
进一步地,所述软体套与所述波纹管同轴设置。Further, the soft cover is arranged coaxially with the bellows.
进一步地,所述纤维束包括多根圆柱形纤维条。Further, the fiber bundle includes a plurality of cylindrical fiber strips.
进一步地,所述波纹管包括上端开口的管体、以及与所述管体上端口密封连接的端盖,所述第一通气孔和第二通气孔设置于所述端盖上。Further, the corrugated pipe includes a pipe body with an open upper end, and an end cap sealingly connected with the upper port of the pipe body, and the first vent hole and the second vent hole are arranged on the end cap.
另外在上述基于交叉纤维干扰变刚度软体伸长驱动器的基础上,本发明的实施例还提供了一种软体抓手,包括两上述的基于交叉纤维干扰变刚度软体伸长驱动器,还包括V形的支架和两摇臂,两所述摇臂分别与所述支架的两端铰接,每一所述驱动器连接所述摇臂和所述支架,以驱动所述摇臂相对所述支架转动。In addition, on the basis of the above-mentioned cross-fiber interference-based variable-stiffness soft elongation actuator, an embodiment of the present invention also provides a soft gripper, including two above-mentioned cross-fiber interference-based variable-stiffness soft elongation actuators, and a V-shaped A bracket and two rocker arms, the two rocker arms are respectively hinged to the two ends of the bracket, and each driver is connected to the rocker arm and the bracket to drive the rocker arm to rotate relative to the bracket.
进一步地,所述支架的外侧设有两上安装板,每一所述摇臂靠近所述支架一端设有下安装板,每一所述驱动器的两端分别安装于所述上安装板和所述下安装板上。Further, two upper mounting plates are provided on the outside of the bracket, and a lower mounting plate is provided at one end of each rocker arm close to the bracket, and the two ends of each driver are respectively installed on the upper mounting plate and the upper mounting plate. on the mounting plate described below.
进一步地,所述摇臂为L形,其中部与所述支架一端铰接、上端形成所述下安装板、下端用于夹持物品。Further, the rocker arm is L-shaped, its middle part is hinged to one end of the bracket, its upper end forms the lower mounting plate, and its lower end is used to clamp objects.
进一步地,所述摇臂下端设有接触气囊。Further, the lower end of the rocker arm is provided with a contact airbag.
本发明的实施例提供的技术方案带来的有益效果是:The beneficial effects brought by the technical solution provided by the embodiments of the present invention are:
1、本发明的一种基于交叉纤维干扰变刚度软体伸长驱动器,驱动器内部的变刚度结构可跟随驱动器拉伸,有效提高软体伸长驱动器的拉伸成形稳定性。1. A variable stiffness soft body elongation driver based on cross fiber interference of the present invention, the variable stiffness structure inside the driver can follow the stretching of the driver, effectively improving the stretch forming stability of the soft body elongation driver.
2、本发明的一种基于交叉纤维干扰变刚度软体伸长驱动器,解决了传统颗粒干扰变刚度/层干扰变刚度中,因拉伸而出现的局部空腔问题,具有全局可变刚度的特性。2. A soft body elongation driver based on cross-fiber interference variable stiffness of the present invention solves the problem of local cavities caused by stretching in the traditional particle interference variable stiffness/layer interference variable stiffness, and has the characteristics of global variable stiffness .
3、本发明的一种基于交叉纤维干扰变刚度软体伸长驱动器,具有通用性,可适用于绝大多数的软体伸长驱动器。3. A variable stiffness soft body elongation actuator based on cross-fiber interference of the present invention has versatility and can be applied to most soft body elongation actuators.
4、本发明的一种软体抓手,可自动调节抓取距离,实现稳定的调节抓取范围,并可有效抵抗物体的反向作用力,提高软体抓手在调节抓取间距时的稳定性。4. A soft gripper of the present invention can automatically adjust the gripping distance, realize a stable adjustment gripping range, and can effectively resist the reverse force of objects, improving the stability of the soft gripper when adjusting the gripping distance .
附图说明Description of drawings
图1是本发明一种基于交叉纤维干扰变刚度软体伸长驱动器100的示意图;FIG. 1 is a schematic diagram of a variable stiffness soft
图2是本发明一种基于交叉纤维干扰变刚度软体伸长驱动器的俯视图;Fig. 2 is a top view of a variable stiffness soft body elongation driver based on cross fiber interference in the present invention;
图3是本发明一种基于交叉纤维干扰变刚度软体伸长驱动器的爆炸图;Fig. 3 is an exploded view of a variable stiffness soft body elongation driver based on cross fiber interference in the present invention;
图4是图2中的A-A剖面示意图;Fig. 4 is A-A sectional schematic diagram among Fig. 2;
图5是变刚度结构的爆炸图;Figure 5 is an exploded view of the variable stiffness structure;
图6、图7是纤维束的受力示意图;Fig. 6, Fig. 7 are the schematic diagrams of the force of the fiber bundle;
图8是波纹管伸长时两纤维单元的纤维束错开的示意图;Fig. 8 is a schematic diagram of the staggering of the fiber bundles of the two fiber units when the bellows is elongated;
图9是波纹管的注塑模具的示意图;Fig. 9 is the schematic diagram of the injection mold of bellows;
图10是本发明一种软体抓手的常态示意图;Fig. 10 is a schematic diagram of a normal state of a software gripper of the present invention;
图11、12是本发明一种软体抓手的抓取状态示意图。11 and 12 are schematic diagrams of a grasping state of a soft gripper of the present invention.
图中:100-基于交叉纤维干扰变刚度软体伸长驱动器、1-波纹管、2-变刚度结构、3-管体、4-端盖、5-第一通气孔、6-第二通气孔、7-软体套、8-纤维单元、9-纤维束、10-底座、11-外模具、12-内模具、101-支架、102-摇臂、103-上安装板、104-下安装板、105-接触气囊。In the figure: 100-variable stiffness soft body elongation driver based on cross fiber interference, 1-bellows, 2-variable stiffness structure, 3-tube body, 4-end cover, 5-first vent hole, 6-second vent hole , 7-soft cover, 8-fiber unit, 9-fiber bundle, 10-base, 11-outer mold, 12-inner mold, 101-bracket, 102-rocker arm, 103-upper mounting plate, 104-lower mounting plate , 105 - contact the airbag.
具体实施方式detailed description
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。下面介绍的是本发明的多个可能实施例中的较优的一个,旨在提供对本发明的基本了解,但并不旨在确认本发明的关键或决定性的要素或限定所要保护的范围。In order to make the purpose, technical solution and advantages of the present invention clearer, the embodiments of the present invention will be further described below in conjunction with the accompanying drawings. The following is a preferred one of the multiple possible embodiments of the present invention, intended to provide a basic understanding of the present invention, but not intended to identify key or decisive elements of the present invention or limit the scope of protection.
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。In all examples shown and discussed herein, any specific values should be construed as exemplary only, and not as limitations. Therefore, other examples of the exemplary embodiment may have different values.
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。Techniques, methods and devices known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques, methods and devices should be considered part of the Authorized Specification.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。It should be noted that like numerals and letters denote like items in the following figures, therefore, once an item is defined in one figure, it does not require further discussion in subsequent figures. At the same time, it should be understood that, for the convenience of description, the sizes of the various parts shown in the drawings are not drawn according to the actual proportional relationship.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that unless otherwise specified and limited, the terms "installation" and "connection" should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral Ground connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood in specific situations.
请参考图1、2、3、4和5,本发明的实施例提供了一种基于交叉纤维干扰变刚度软体伸长驱动器100,包括波纹管1和变刚度结构2。Referring to FIGS. 1 , 2 , 3 , 4 and 5 , an embodiment of the present invention provides a variable stiffness soft
如图3和4所示,所述波纹管1空心设置,在所述波纹管1内部充气后会进行直线伸长运动。所述波纹管1两端封闭,且设有第一通气孔5和第二通气孔6。As shown in FIGS. 3 and 4 , the bellows 1 is hollow, and the bellows 1 will perform linear elongation after being inflated. Both ends of the bellows 1 are closed, and a
具体的,所述波纹管1包括管体3和端盖4,所述管体3的下端封闭、上端开口。所述端盖4与所述管体3的上端口可通过胶水粘接连接,实现所述端盖4与所述管体3之间的密封连接。Specifically, the corrugated pipe 1 includes a
所述第一通气孔5设置于所述端盖4上靠近边缘位置,第二通气孔6设置于所述端盖4的中心处。所述第一通气孔5和所述第二通气孔6均可以与气管插接,实现充气或抽气。The
所述波纹管1可以采用硅胶注塑制作,所述管体3采用的注塑模具如图9所示,该注塑模具包括两外模具11和内模具12,其中两所述外模具11拼接形成具有波纹的内腔,所述内模具12具有波纹状的内芯,所述内模具12的内芯插入两所述外模具11的内腔内。在制作所述管体3时,由所述注塑模具上方开口处倒入液体硅胶,静置等待硅胶固化,随后脱模,即可获得所述管体3。类似的,采用硅胶注塑可制作获得所述端盖4。The corrugated pipe 1 can be made by injection molding of silica gel. The injection mold used for the
如图4和5所示,所述变刚度结构2设置于所述波纹管1内,所述变刚度结构2主要包括两纤维单元8和软体套7,每一所述纤维单元8包括底座10和纤维束9。As shown in Figures 4 and 5, the
所述软体套7为中空的圆柱,且两端开口,由硅胶制成。两所述纤维单元8容置于所述软体套7内。所述纤维束9一端固定连接所述底座10,这里所述纤维束包括多根圆柱形纤维条,各所述纤维条的一端与所述底座10粘接固定连接、另一端自由设置。优选的,所述纤维束9的一端固定于所述底座10的一半区域。如本实施例中,所述底座10为圆形,所述纤维束9为半圆柱形且一端恰好粘接于所述底座10的半圆形区域。The soft cover 7 is a hollow cylinder with openings at both ends, and is made of silica gel. The two
两所述纤维单元8设置于所述软体套7内,且两底座10分别密封连接所述软体套7的两端,两所述纤维束9并拢设置于所述软体套7内。这里两所述底座10分别嵌入所述软体套7的两端并与所述软体套7的两端通过胶水粘接实现密封连接,两所述纤维束9恰好并拢形成一圆柱、容置于所述软体套7内。The two
在进行所述变刚度结构2制作时,所述纤维束9的纤维条采用Po lyjet 3D打印技术,直接3D打印软胶材质。所述软体套7可采用Po lyjet 3D打印技术3D打印,也可以采用模具注塑制作。本实施例中,所述纤维条的刚度为邵氏刚度70A,所述软体套的刚度为邵氏刚度30A。When making the
所述变刚度结构2在完成制作后,整体放入所述波纹管1内,且在放入时应尽量保证所述软体套7与所述波纹管1同轴设置。并且使两所述纤维单元8的两底座10分别连接所述波纹管1两端,如本实施例中两所述底座10分别与所述管体3的底面和所述端盖4的顶面粘接连接。After the
在完成所述变刚度结构2和所述波纹管1的组装后,所述第一通气孔5连通所述波纹管1与所述软体套7之间的空间。位于上方的所述底座10的中心设有穿孔,所述穿孔与所述第二通气孔6上下对齐,使所述第二通气孔6连通所述软体套7内部。After the
基于交叉纤维干扰变刚度软体伸长驱动器100工作时,可通过第一通气孔对所述波纹管1内通气,在气压作用下所述波纹管1伸长、弯曲。由于两所述纤维单元8的纤维束9之间没有阻碍,两所述纤维单元的纤维束可以如图8所示的很柔顺的错开。并且为了适应所述波纹管1弯曲,两所述纤维单元的纤维束之间可以如图6所示的扭转、和/或所述图7所述的弯曲。随后通过所述第二通气孔6对所述软体套7内抽负压,使纤维束9变硬,从而可以改变所述驱动器100整体的刚度。这样就克服了变刚度材料/变刚度结构自身不具有拉伸性,无法随着伸长驱动器的拉伸而拉伸的问题。When the variable-stiffness
另外在上述基于交叉纤维干扰变刚度软体伸长驱动器100的基础上,本发明的实施例还提供了一种软体抓手。如图10所示,所述软体抓手主要包括两上述的基于交叉纤维干扰变刚度软体伸长驱动器100、V形的支架101和两摇臂102。In addition, on the basis of the above-mentioned variable stiffness
所述支架101岔开一定角度,用于安装两所述摇臂102及两所述驱动器100。具体的,两所述摇臂102分别与所述支架101的两端铰接,如本实施例中所述摇臂102为L形,所述摇臂102的中部通过一铆钉与所述支架101的一端连接且使所述摇臂102可绕所述支架101的一端转动。The
每一所述驱动器100连接所述摇臂102和所述支架101,以驱动所述摇臂102相对所述支架101转动。具体的,所述支架101的外侧设有两上安装板103,每一所述摇臂102靠近所述支架一端设有下安装板104,这里所述摇臂102上端直接形成所述下安装板104,每一所述驱动器100的两端分别安装于所述上安装板103和所述下安装板104之间,所述驱动器100伸长可驱动两所述摇臂102转动,使两所述摇臂102的下端相对靠近。Each
所述摇臂102的下端用于夹持物品。优选的,所述摇臂102下端设有接触气囊105,通过所述接触气囊105与物体直接接触,可以起到缓冲的作用,防止损坏物体。The lower end of the
上述软体抓手是基于仿生人手的设计思路而设计,模拟了人手的手指开合姿态,可以灵巧的抓取多尺寸多形状的物体。如图11和12所示,在抓取时,我们先驱动两所述驱动器100的波纹管1伸长、和/或弯曲,使两摇臂102的下端夹住物体,然后对变刚度结构100内部施加真空,使其刚度提高,再将物体提起,这样可以抵抗抓取过程中来自物体对抓取的反向作用力,具有抓取稳定的有益效果。The above-mentioned software gripper is designed based on the design idea of the bionic human hand, which simulates the opening and closing posture of the fingers of the human hand, and can dexterously grasp objects of multiple sizes and shapes. As shown in Figures 11 and 12, when grabbing, we first drive the bellows 1 of the two
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解的是,它们是相对的概念,可以根据使用、放置的不同方式而相应地变化,所述方位词的使用不应限制本申请请求保护的范围。In this article, the orientation words such as front, rear, upper, and lower involved are defined by the parts in the drawings and the positions between the parts in the drawings, just for the clarity and convenience of expressing the technical solution. It should be understood that they are relative concepts and can be changed correspondingly according to different ways of use and placement, and the use of the location words should not limit the scope of protection claimed in this application.
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。In the case of no conflict, the above-mentioned embodiments and features in the embodiments herein may be combined with each other.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210997633.9A CN115416013B (en) | 2022-08-19 | 2022-08-19 | Variable-rigidity soft extension driver based on cross fiber interference and soft gripper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210997633.9A CN115416013B (en) | 2022-08-19 | 2022-08-19 | Variable-rigidity soft extension driver based on cross fiber interference and soft gripper |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115416013A true CN115416013A (en) | 2022-12-02 |
CN115416013B CN115416013B (en) | 2024-08-30 |
Family
ID=84197895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210997633.9A Active CN115416013B (en) | 2022-08-19 | 2022-08-19 | Variable-rigidity soft extension driver based on cross fiber interference and soft gripper |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115416013B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109176489A (en) * | 2018-10-11 | 2019-01-11 | 燕山大学 | A kind of continuous variable-stiffness flexible robot |
US20190167504A1 (en) * | 2017-12-06 | 2019-06-06 | Panagiotis Polygerinos | Soft robotic haptic interface with variable stiffness for rehabilitation of sensorimotor hand function |
KR20210148495A (en) * | 2020-05-28 | 2021-12-08 | 중앙대학교 산학협력단 | Mechanism for variable stiffness using electro-stiction force |
CN114274125A (en) * | 2022-01-21 | 2022-04-05 | 哈尔滨工业大学 | Soft robot based on woven fiber bundles and driving method thereof |
CN114367967A (en) * | 2020-10-14 | 2022-04-19 | 中南大学 | A Continuum Serpentine Arm Combining Pneumatic Muscles and Superelastic Rods |
-
2022
- 2022-08-19 CN CN202210997633.9A patent/CN115416013B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190167504A1 (en) * | 2017-12-06 | 2019-06-06 | Panagiotis Polygerinos | Soft robotic haptic interface with variable stiffness for rehabilitation of sensorimotor hand function |
CN109176489A (en) * | 2018-10-11 | 2019-01-11 | 燕山大学 | A kind of continuous variable-stiffness flexible robot |
KR20210148495A (en) * | 2020-05-28 | 2021-12-08 | 중앙대학교 산학협력단 | Mechanism for variable stiffness using electro-stiction force |
CN114367967A (en) * | 2020-10-14 | 2022-04-19 | 中南大学 | A Continuum Serpentine Arm Combining Pneumatic Muscles and Superelastic Rods |
CN114274125A (en) * | 2022-01-21 | 2022-04-05 | 哈尔滨工业大学 | Soft robot based on woven fiber bundles and driving method thereof |
Non-Patent Citations (1)
Title |
---|
LING-JIEGAI 等: "Stiffness-Tunable Soft Bellows Actuators by Cross-Fiber Jamming Effect for Robust Grasping", 《EEE/ASME TRANSACTIONS ON MECHATRONICS》, vol. 28, no. 5, 31 October 2023 (2023-10-31) * |
Also Published As
Publication number | Publication date |
---|---|
CN115416013B (en) | 2024-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN205928689U (en) | Pneumatic multijaw holder based on particulate matter is moulding | |
CN104015197A (en) | Corrugated double-inner-cavity gas-powered flexible micro finger, control method and grabbing system | |
CN109015724A (en) | Pneumatic software handgrip | |
CN111571623A (en) | A Variable Stiffness Pneumatic Soft Gripper | |
CN105027831A (en) | Under actuated fruit picking mechanical gripper with rigid and flexible mixed structure | |
CN111452066A (en) | A fully flexible bionic pneumatic manipulator | |
CN111887026B (en) | Rigidity-variable picking manipulator based on rigidity-flexibility combination | |
CN110253606B (en) | A soft gripper imitating origami structure | |
CN111906811A (en) | A fully flexible pneumatic actuator | |
CN107414880A (en) | Based on the activation lacking mechanical finger for becoming born of the same parents' principle | |
CN111660317A (en) | Gripper module and pneumatic universal gripper capable of continuously adjusting gripping posture | |
WO2019140929A1 (en) | Humanoid manipulator | |
CN115416013A (en) | Variable stiffness soft elongation actuator and soft gripper based on cross fiber interference | |
Gai et al. | A modular four-modal soft grasping device | |
CN117901162B (en) | Rigid-flexible coupling handle | |
CN115383774A (en) | Soft body driver and soft body tongs based on annular cross fiber interference | |
CN213859336U (en) | Pneumatic soft robot system for realizing coating and grabbing of small-particle objects | |
Zhu et al. | Design and fabrication of a soft-bodied gripper with integrated curvature sensors | |
CN110561469B (en) | Pneumatic finger of software of embedded skeleton | |
CN112428294B (en) | Compound flexible manipulator imitating plant epidermis air holes | |
CN212287665U (en) | A variable stiffness soft gripper based on elastic balls | |
CN209999217U (en) | Matrix type air bag soft gripper | |
CN113967922B (en) | A fully flexible pneumatic soft bionic manipulator | |
CN113183174B (en) | Soft robot gripper based on magnetic ball reinforced elastomer | |
CN111267138A (en) | Variable rigidity soft body tongs based on elasticity bobble |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |