CN115414941A - 含铜空位和氧空位的金属氧化物材料及其制备方法和应用 - Google Patents

含铜空位和氧空位的金属氧化物材料及其制备方法和应用 Download PDF

Info

Publication number
CN115414941A
CN115414941A CN202210926849.6A CN202210926849A CN115414941A CN 115414941 A CN115414941 A CN 115414941A CN 202210926849 A CN202210926849 A CN 202210926849A CN 115414941 A CN115414941 A CN 115414941A
Authority
CN
China
Prior art keywords
metal oxide
oxide material
srcu
vacancy
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210926849.6A
Other languages
English (en)
Other versions
CN115414941B (zh
Inventor
钟燕
黄涛
胡朝浩
王殿辉
桑湉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202210926849.6A priority Critical patent/CN115414941B/zh
Publication of CN115414941A publication Critical patent/CN115414941A/zh
Application granted granted Critical
Publication of CN115414941B publication Critical patent/CN115414941B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种含铜空位和氧空位的金属氧化物材料及其制备方法和应用。本发明所述材料的化学式为SrCu2‑xxO2‑yy,0<x<2,0<y<2,更为具体的,该材料为SrCu1.880.12O1.940.06,其带隙为1.94eV。本发明所述材料是将锶源和铜源在分散剂存在的条件下研磨后置于保护气氛中进行煅烧而得。本发明所述材料较常规三元氧化物SrCu2O2具有更小的带隙,其中含有的铜空位和氧空位增加了活性位点的数量,进一步提高了材料的光催化活性。申请人的试验结果也表明,该金属氧化物在可见光照射下对抗生素的降解具有优良的催化活性,显著高于TiO2

Description

含铜空位和氧空位的金属氧化物材料及其制备方法和应用
技术领域
本发明涉及金属氧化物,具体涉及一种含铜空位和氧空位的金属氧化物材料及其制备方法和应用。
背景技术
21世纪初,随着半导体材料的不断开发,其应用范围也越来越广泛,特别是在光催化领域。以TiO2为代表的半导体材料,因其自身的一些缺点,如宽带隙、对可见光无吸收等限制了其在实际生产中大规模应用。因此,开发和利用具有高可见光吸收效率和良好光热稳定性的环境友好型光催化剂已成为当前研究人员关注的热点。
Hara等人(Cu2O as a photocatalyst for overall water splitting undervisible light irradiation[J].Chemical Communications,1998,13(3):357-358.)在1998年首次发现丰富、低成本、易制备的氧化亚铜(Cu2O)在可见光照射下可以将水分解,这使得Cu2O作为一种新的非TiO2基光催化材料备受关注。Ba等人(New way for CO2reduction under visible light by a combination of a Cu electrode andsemiconductor thin film:Cu2O conduction type and morphology effect[J].Journalof Physical Chemistry C,2014,118(42):24467-24475.)发现,Cu2O也可以被认为是一种优秀的可见光还原CO2的光催化剂,Cu2O优秀的光催化活性主要归因于其特殊的晶体结构和电子结构。Cu2O具有赤铁矿型立方体晶体结构,空间群为Pn-3m,其中每个Cu原子与两个O原子线性连接,形成O-Cu-O哑铃结构特征单元,而每个O原子位于四个Cu原子组成的四面体的中心位置。能带结构表明,Cu2O是一种p型半导体,禁带宽度约为2.2eV,价带顶主要由Cu-3d和O-2p轨道杂化组成,促使Cu2O比其他二元金属氧化物具有更小的电离势和更宽的价带分布,这对其p型导电特性极为有利。
受此启发,可以大胆推测,其他含有O-Cu-O哑铃结构单元的一价铜基氧化物仍然保留类似于Cu2O的价带特性。事实上,含有第三主族元素MIIIA(MIIIA=B、Al、Ga、In)的CuMIIIAO2和含有第三亚族元素MIIIB(MIIIB=Sc、Y)的CuMIIIBO2三元氧化物已经被广泛研究,因为它们在水的光电化学分解制氢中作为电极和透明导电氧化物的应用极为重要。然而,CuMIIIAO2和CuMIIIBO2的带隙Eg一般较大,约为3.5至3.9eV,仅对紫外光有光敏性,难以在光催化中获得应用。而空间群为I41/amd(a=b=0.5469nm,c=0.9826nm)的四边形三元氧化物SrCu2O2的带隙约为3.3eV,具有较高的导电性和透光性,作为一种透明的导电氧化物吸引了研究人员的注意。1998年,A.Kudo等人(Mizoguchi H,et al.Appl Phys Lett,2002,80(7):1207)首次成功制备出K掺杂的p型透明导电SCO薄膜,室温下的电导率约为21Ω·cm,在可见光范围内的透光率为70~80%。但目前尚未见有对三元氧化物SrCu2O2光催化性能研究的相关报道。
发明内容
本发明要解决的技术问题是提供一种相对于常规三元氧化物SrCu2O2(表面无缺陷)具有更小带隙的含铜空位和氧空位的金属氧化物材料,以及该材料的制备方法及其应用。
为解决上述技术问题,本发明采用以下技术方案:
本发明所述的含铜空位和氧空位的金属氧化物材料,该材料的化学式为SrCu2-xxO2-yy,0<x<2,0<y<2,其中“□x”表示铜空位所占的比例,“□y”表示氧空位所占的比例。
进一步的,本发明所述化学式中x和y的取值分别优选为0<x<1,0<y<1。更为优选的,本发明所述含铜空位和氧空位的金属氧化物材料的化学式为SrCu1.880.12O1.940.06,其带隙为1.94eV,该材料中,铜空位占6%,氧空位占3%。
本发明所述含铜空位和氧空位的金属氧化物材料的制备方法,包括:将锶源和铜源在分散剂存在的条件下进行研磨,所得粉料置于保护气氛中进行煅烧,即得。
上述制备方法中,所述锶源、铜源以及分散剂的选择及用量均与现有技术相同,具体的,锶源为SrCO3,铜源为Cu2O,锶源和铜源的物质的量之比为1:0.5~1:1.5,优选为1:1;分散剂为无水乙醇,分散剂的用量通常以1g原料总重量(锶源和铜源的重量之和)加入5~20mL计算。
上述制备方法中,保护气氛通常为氮气、氩气或氦气等气氛,煅烧时的温度为900~1000℃,时间为4~12h。当煅烧在950℃条件下进行,时间控制为8h时可以避免杂质相的产生,得到纯净的含铜空位和氧空位的金属氧化物材料。
申请人通过试验发现,本发明所述含铜空位和氧空位的金属氧化物材料在可见光照射下能够降解抗生素,因此,本发明还包括上述含铜空位和氧空位的金属氧化物材料在制备降解抗生素的光催化剂中的应用。具体的,是在制备降解盐酸四环素的光催化剂中的应用。
本发明进一步包括一种光催化剂,其中含有上述含铜空位和氧空位的金属氧化物材料。
与现有技术相比,本发明提供了一种较常规三元氧化物SrCu2O2具有更小带隙的含铜空位和氧空位的金属氧化物材料及其制备方法,丰富的铜、氧空位的形成可以快速捕获和释放光生电荷,增加电子到达表面参与反应的概率,从而加速光生电子与空穴的分离;同时,在禁带中会产生缺陷级,使电子到达传导带所需的距离减少,材料的电性能得到改善;而且,空位也是O2的吸附点,与表面光生电子反应形成·O2-,·O2-可以降解有机污染物。因此,本发明所述材料中丰富的铜、氧空位不仅加速了光产生的电荷的分离,而且增加了活性位点的数量,进一步提高了材料的光催化活性。申请人的试验结果也表明,该金属氧化物在可见光照射下对抗生素的降解具有优良的催化活性,显著高于TiO2
附图说明
图1为本发明实施例1制备的金属氧化物材料的XRD图。
图2为本发明实施例1制备的金属氧化物材料的FE-SEM图,其中(a)为160倍率,(b)3000倍率。
图3为本发明实施例1制备的金属氧化物材料的HRTEM图,其中(b)为(a)中方框部分的放大图。
图4为本发明实施例1制备的金属氧化物材料的EDS元素分布图。
图5为本发明实施例1制备的金属氧化物材料的EPR光谱图和Mott-Schottky图,其中(a)为EPR光谱图,(b)为Mott-Schottky图。
图6为本发明实施例1制备的金属氧化物材料的紫外-可见吸收光谱图和漫反射光谱图,其中(a)为紫外-可见吸收光谱图,(b)为漫反射光谱图。
图7为P25、本发明实施例1制备的金属氧化物材料在可见光下降解MB溶液浓度的变化图,图中,▲表示MB Self-degration,★表示P25,■表示本发明实施例1制备的金属氧化物材料SrCu1.880.12O1.940.06
图8为本发明实施例1制备的金属氧化物材料在可见光下降解TC-HCl溶液浓度的变化图,图中,▲表示TC-HCl Self-degration,■表示本发明实施例1制备的金属氧化物材料SrCu1.880.12O1.940.06
具体实施方式
为了更好的解释本发明的技术方案,下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
取0.7154g Cu2O和0.7381g SrCO3(摩尔比为1:1)分散于10mL无水乙醇中,然后置于玛瑙臼中研磨,直到完全干燥成为粉末;所得粉末转移到刚玉坩埚中放入管式炉中,在氮气气氛下升温至950℃煅烧8h;然后随炉冷却至室温后,所得黑色粉末即为含铜空位和氧空位的金属氧化物材料SrCu2-xxO2-yy
为了证实本实施例所得金属氧化物材料的成分,进行了X射线衍射(XRD)测试。测试结果如图1所示,由图1可知所制得产物为四方结构的SrCu2O2(JCPDS no.38-1178)。
为了证明本实施例所得金属氧化物材料的微观结构特征,对其进行了扫描电子显微镜(SEM)测试,测试结果如图2所示。由图2可以清楚地看到,所得材料的粒度从10μm到100μm不等,并且有一个粗糙的表面。用HRTEM进一步研究了所得材料的微观结构,如图3所示,测得的晶格间距为0.2734nm和0.2807nm,分别对应于所得材料的(200)和(103)晶面。在图3(b)中,所得材料的(200)晶面的下部和(103)晶面的右侧的晶格条纹十分模糊,晶格失配明显,因此推断所得材料中含有空位。
为了证明本实施例所得金属氧化物材料的成分组成,进行了能量色散X射线能谱(EDS)测试,测试结果如图4所示,测试结果表明,所得材料由Sr、Cu和O元素组成。
为了证明本实施例所得金属氧化物材料存在空位,进行了电子顺磁共振(EPR)测试(EPR技术是检测氧空位存在的最常用方法),测试结果如图5所示,对应于g=2.003的EPR特征峰是氧空位存在的依据,这很好地证明了所得材料SrCu2-xxO2-yy晶格中存在氧空位。这些氧空位不仅可以影响SrCu2-xxO2-yy的能带结构,还可以作为电子的捕获中心,抑制载流子的复合过程。为了对样品中的空位进行准确的量化,用电感耦合等离子体质谱(ICP-MS)测定样品的元素含量。通过ICP-MS测试Sr与Cu的原子比例,从化合物化学价态平衡角度出发,确定了铜空位的存在。ICP-MS测试的结果显示Sr:Cu的原子计量比为41.79%:57.008%,即Sr:Cu原子比为1:1.881。从化合物的化学价态平衡角度出发,得到Sr:Cu:O原子比为1:1.881:1.9405,因此最终确定本实施例所得金属氧化物材料的化学成分为
SrCu1.880.12O1.940.06
本实施例制得的SrCu2-xxO2-yy样品的紫外-可见光谱如图6(a)所示。结果显示,由于SrCu2-xxO2-yy样品的颜色较深,吸收光谱中对入射光线的总吸收显示出一个长的吸收带,这表明SrCu2-xxO2-yy样品有一个宽而强的光吸收范围。半导体的带隙能通过以下公式计算得出(A visible-light-driven heterojuncted composite WO3/Bi12O17Cl2:Synthesis,characterization,and improved photocatalytic performance[J].Journalof Colloid Interface Science,2018,510:20-31.):
αhν=Α(hν-Eg)n/2
其中,α、h、ν、Eg和A分别是吸收系数、普朗克常数、光频、带隙和常数。直接半导体时,n=1;间接半导体时,n=4。对于SrCu2-xxO2-yy,根据我们理论计算的能带结构,它是直接半导体,n的值是1。因此,SrCu2-xxO2-yy的Eg可以从(αhν)2与光子能量(hν)的关系图中获得。通过Kubelka-Munk定理(BiOX(X=Cl,Br,I)photocatalytic nanomaterials:Applications for fuels and environmental management[J].Advances in ColloidInterface Science,2018,254:76-93)可以计算得到本实施例所得金属氧化物材料的禁带宽度的实验测量近似值Eg约为1.94eV,如图6(b)所示。这与文献中报道的透明导电氧化物SrCu2O2(Eg=3.3eV)差别很大,本申请人认为这很可能是因为该样品是粉末状的,且当前制备的样品富含空位缺陷。
实施例2
取0.7154g Cu2O和0.7381g SrCO3(摩尔比为1:1)分散于10mL无水乙醇中,然后置于玛瑙臼中研磨,直到完全干燥成为粉末;所得粉末转移到刚玉坩埚中放入管式炉中,在氮气气氛下升温至950℃煅烧10h;然后随炉冷却至室温后,得到黑色粉末。经表征,所得黑色粉末为含铜空位和氧空位的金属氧化物材料SrCu1.880.12O1.940.06
实施例3
取0.7154g Cu2O和0.7381g SrCO3(摩尔比为1:1)分散于10mL无水乙醇中,然后置于玛瑙臼中研磨,直到完全干燥成为粉末;所得粉末转移到刚玉坩埚中放入管式炉中,在氮气气氛下升温至1000℃煅烧6h;然后随炉冷却至室温后,得到黑色粉末。经表征,所得黑色粉末为含铜空位和氧空位的金属氧化物材料SrCu1.880.12O1.940.06
实验例1:按实施例1所述方法制备的金属氧化物材料
SrCu1.880.12O1.940.06的光催化性能评价
在λ>420nm的可见光照射下,通过对典型染料和抗生素包括亚甲基蓝(MB)和盐酸四环素(TC-HCl)室温下的降解,评估了所制备的SrCu1.880.12O1.940.06的光催化活性。作为比较,还进行了TiO2(P25)对MB溶液的光降解。所有使用的模型污染物的初始浓度(C0)为10mg/L。所有样品都需放入暗箱中持续搅拌半小时,使样品达到吸附-解吸的平衡状态。
在SrCu1.880.12O1.940.06和TiO2(P25)体系中,污染物浓度与反应时间的关系分别绘制在图7中。MB溶液在35min内被SrCu1.880.12O1.940.06催化完全光降解,而在P25的反应中仍有73%的MB溶液没有降解(P25对应MB溶液的降解率仅为27%)。没有光催化剂的MB溶液光降解几乎可以忽略不计(图7)。因此,SrCu1.880.12O1.940.06比P25在MB溶液光降解反应中具有更好的光催化活性。此外,由SrCu1.880.12O1.940.06的MB溶液光降解的一阶动力学方程显示P25和SrCu1.880.12O1.940.06的表观速率常数k分别为0.0098min-1和0.1092min-1(图7插图)。换句话说,SrCu1.880.12O1.940.06的光催化活性是P25的11倍。
SrCu1.880.12O1.940.06在λ>420nm的可见光下降解TC-HCl溶液浓度的变化如图8所示,可见光照射120min后,TC-HCl溶液的降解率可以达到75.5%,这说明SrCu1.880.12O1.940.06具有较好的抗生素降解效果。

Claims (10)

1.含铜空位和氧空位的金属氧化物材料,其特征是,该材料为
SrCu2-xxO2-yy,0<x<2,0<y<2。
2.根据权利要求1所述的含铜空位和氧空位的金属氧化物材料,其特征是,所述的金属氧化物材料为SrCu1.880.12O1.940.06,其带隙为1.94eV。
3.权利要求1所述含铜空位和氧空位的金属氧化物材料的制备方法,其特征是,将锶源和铜源在分散剂存在的条件下进行研磨,所得粉料置于保护气氛中进行煅烧,即得。
4.根据权利要求3所述的制备方法,其特征是,所述锶源和铜源的物质的量之比为1:0.5~1:1.5。
5.根据权利要求3所述的制备方法,其特征是,所述的分散剂为无水乙醇。
6.根据权利要求3所述的制备方法,其特征是,煅烧的温度为900~1000℃,煅烧的时间为4~12h。
7.根据权利要求3所述的制备方法,其特征是,所述的煅烧的温度为950℃,煅烧的时间为8h。
8.权利要求1所述含铜空位和氧空位的金属氧化物材料在制备降解抗生素的光催化剂中的应用。
9.根据权利要求8所述的应用,其特征是,在制备降解盐酸四环素的光催化剂中的应用。
10.一种光催化剂,其特征是,其中含有权利要求1所述的含铜空位和氧空位的金属氧化物材料。
CN202210926849.6A 2022-08-03 2022-08-03 含铜空位和氧空位的金属氧化物材料及其制备方法和应用 Active CN115414941B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210926849.6A CN115414941B (zh) 2022-08-03 2022-08-03 含铜空位和氧空位的金属氧化物材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210926849.6A CN115414941B (zh) 2022-08-03 2022-08-03 含铜空位和氧空位的金属氧化物材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115414941A true CN115414941A (zh) 2022-12-02
CN115414941B CN115414941B (zh) 2024-02-13

Family

ID=84195946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210926849.6A Active CN115414941B (zh) 2022-08-03 2022-08-03 含铜空位和氧空位的金属氧化物材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115414941B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316686A (zh) * 2013-06-24 2013-09-25 桂林理工大学 可见光响应的光催化剂SrCu2V2O8及其制备方法
CN103433045A (zh) * 2013-09-05 2013-12-11 桂林理工大学 可见光响应的光催化剂Sr2CuO3及其制备方法
EP3421416A1 (de) * 2017-06-29 2019-01-02 Covestro Deutschland AG Photokatalytische oxidation von chlorwasserstoff mit kohlenstoffmonoxid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316686A (zh) * 2013-06-24 2013-09-25 桂林理工大学 可见光响应的光催化剂SrCu2V2O8及其制备方法
CN103433045A (zh) * 2013-09-05 2013-12-11 桂林理工大学 可见光响应的光催化剂Sr2CuO3及其制备方法
EP3421416A1 (de) * 2017-06-29 2019-01-02 Covestro Deutschland AG Photokatalytische oxidation von chlorwasserstoff mit kohlenstoffmonoxid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICHAEL NOLAN: "Defects in Cu2O, CuAlO2 and SrCu2O2 transparent conducting oxides", 《M. NOLAN / THIN SOLID FILMS》 *

Also Published As

Publication number Publication date
CN115414941B (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
Yu et al. Constructing SrTiO3-T/CdZnS heterostructure with tunable oxygen vacancies for solar-light-driven photocatalytic hydrogen evolution
Lv et al. Facile synthesis of CdS/Bi 4 V 2 O 11 photocatalysts with enhanced visible-light photocatalytic activity for degradation of organic pollutants in water
Chang et al. Construction of novel TiO2/Bi4Ti3O12/MoS2 core/shell nanofibers for enhanced visible light photocatalysis
Xia et al. Sustainable solar-light-driven SrTiO3/PbBiO2Br nanocomposites with enhanced photocatalytic activity
Wang et al. Design and fabrication of NiS/LaFeO3 heterostructures for high efficient photodegradation of organic dyes
CN110252353B (zh) 一种三元异质结构的BiOI/Bi/TiO2复合光催化材料及其制备与应用
Wang et al. Crystalline ZnO/ZnS x Se 1− x core–shell nanowire arrays for efficient visible-light photoelectrocatalysis
Zhang et al. Robust, double-shelled ZnGa 2 O 4 hollow spheres for photocatalytic reduction of CO 2 to methane
Chen et al. Boosted charge transfer and photocatalytic CO2 reduction over sulfur-doped C3N4 porous nanosheets with embedded SnS2-SnO2 nanojunctions
Wang et al. Novel SrTiO 3/NaTaO 3 and visible-light-driven SrTiO 3/NaTaO 3: N nano-heterojunctions with high interface-lattice matching for efficient photocatalytic removal of organic dye
Yu et al. Low-temperature strategy for vapor phase hydrothermal synthesis of C\N\S-doped TiO2 nanorod arrays with enhanced photoelectrochemical and photocatalytic activity
Jiang et al. Effect of Bi/Ti ratio on (Na0. 5Bi0. 5) TiO3/Bi4Ti3O12 heterojunction formation and photocatalytic performance
Man et al. Enhancement of photoelectrochemical performance of BiFeO3 by Sm3+ doping
CN108525695B (zh) 一种二维层状结构的石墨烯/碳氮烯/溴氧铋复合纳米光催化材料及其制备方法和应用
Lv et al. Oxygen vacancies-modified S-scheme heterojunction of Bi-doped La2Ti2O7 and La-doped Bi4Ti3O12 to improve the NO gas removal avoiding NO2 product
CN115110115B (zh) 一种C、N共掺杂TiO2基复合薄膜光电极及其制备方法和应用
CN109012653B (zh) 一种铋酸锂-氧化铋光催化材料及其制备方法
Qian et al. Unique 1D/2D Bi 2 O 2 CO 3 nanorod-Bi 2 WO 6 nanosheet heterostructure: synthesis and photocatalytic performance
CN111330567A (zh) 一步溶剂热法制备玫瑰花结构Bi2O3/BiVO4/GO纳米复合光催化材料及其应用
CN111266114A (zh) 一种金属铁/氧化锌/碳三元纳米复合可见光催化剂及其制备方法和应用
KR102090194B1 (ko) 비귀금속-하이브리드 z형 광촉매, 이의 제조방법 및 이를 이용하여 co2의 ch4 전환 방법
CN115414941B (zh) 含铜空位和氧空位的金属氧化物材料及其制备方法和应用
WO2020042125A1 (zh) 一种铋酸锂-氧化铋光催化材料及其制备方法
CN110876945B (zh) 一种碳纳米空心球中限域生长ZnIn2S4光催化剂及其制备方法
CN114477278A (zh) 一种利用简单球磨技术制备黑色氧化钛纳米片的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant