CN115398918A - 用于视频编码的方法和装置 - Google Patents

用于视频编码的方法和装置 Download PDF

Info

Publication number
CN115398918A
CN115398918A CN202180027161.8A CN202180027161A CN115398918A CN 115398918 A CN115398918 A CN 115398918A CN 202180027161 A CN202180027161 A CN 202180027161A CN 115398918 A CN115398918 A CN 115398918A
Authority
CN
China
Prior art keywords
block
current block
motion vector
video
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180027161.8A
Other languages
English (en)
Inventor
芮世薰
赵欣
刘杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tencent America LLC
Original Assignee
Tencent America LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tencent America LLC filed Critical Tencent America LLC
Publication of CN115398918A publication Critical patent/CN115398918A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/129Scanning of coding units, e.g. zig-zag scan of transform coefficients or flexible macroblock ordering [FMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/19Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding using optimisation based on Lagrange multipliers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/521Processing of motion vectors for estimating the reliability of the determined motion vectors or motion vector field, e.g. for smoothing the motion vector field or for correcting motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/527Global motion vector estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/53Multi-resolution motion estimation; Hierarchical motion estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本公开的各方面包括用于视频编码/解码的方法、装置和非暂时性计算机可读存储介质。一种装置包括处理电路,处理电路对视频比特流进行解码,以获得当前块的降低分辨率的残差块。处理电路确定块级标志设置为预定值。预定值指示当前块以降低分辨率的编码方式进行编码。基于块级标志,处理电路通过对当前块的全分辨率参考块进行下采样,来生成当前块的降低分辨率的预测块。处理电路基于降低分辨率的预测块和降低分辨率的残差块,生成当前块的降低分辨率的重建块。处理电路通过对降低分辨率的重建块进行上采样,来生成当前块的全分辨率重建块。

Description

用于视频编码的方法和装置
援引并入
本申请要求于2021年9月28日提交的题为“METHOD AND APPARATUS FOR VIDEOCODING”的第17/488,027号美国专利申请的优先权权益,该美国专利申请要求于2021年1月14日提交的题为“MIXED-RESOLUTION PREDICTION FOR CU-BASED SUPER-RESOLUTIONCODING”的第63/137,350号美国临时申请的优先权权益。这些在先申请的公开内容通过引用整体并入本文中。
技术领域
本公开描述了总体上涉及视频编码的实施例。
背景技术
本文所提供的背景描述是出于总体上呈现本公开内容的背景的目的。在该背景部分描述的范围内,目前命名的发明人的作品以及提交之时可能不属于现有技术的描述的各方面既未明确、亦未默示地承认为本公开的现有技术。
可使用具有运动补偿的帧间图片预测来执行视频编码和解码。未压缩的数字视频可包括一系列图片,每个图片具有例如为1920×1080的亮度样本及相关联的色度样本的空间维度。该一系列图片可具有例如每秒60幅图片或60Hz的固定或可变的图片速率(也非正式地称为帧率)。未压缩的视频具有特定比特率要求。例如,每样本8位的1080p60 4:2:0的视频(60Hz帧率下的亮度样本分辨率为1920×1080)需要接近1.5Gbit/s的带宽。一小时的此类视频需要600GB以上的存储空间。
视频编码和解码的一个目的可以是通过压缩来减少输入视频信号中的冗余。压缩可有助于减小上述带宽或存储空间需求,在一些情况下可减小两个数量级或大于两个数量级。可采用无损压缩和有损压缩以及它们的组合。无损压缩指的是可以从已压缩的原始信号中重建原始信号的精确副本的技术。当使用有损压缩时,已重建的信号可能与原始信号不同,但是原始信号和已重建的信号之间的失真足够小,以使已重建的信号可用于预期的应用。在视频的情况下,广泛使用有损压缩。可容忍的失真量取决于应用;例如,某些消费流媒体应用的用户相比电视分布应用的用户来说可以容忍更高的失真。可达到的压缩率可以反映:更高的可容许/可容忍的失真可产生更高的压缩率。
视频编码器和解码器可利用多种广泛类别的技术,这些技术包括例如运动补偿、变换、量化和熵编码。
视频编解码器技术可包括称为帧内编码的技术。在帧内编码中,在不参考来自先前重建的参考图片的样本或其它数据的情况下表示样本值。在一些视频编解码器中,图片在空间上细分成样本块。当所有样本块都以帧内模式编码时,该图片可以是帧内图片。帧内图片及其派生物(例如独立解码器刷新图片)可用于重置解码器状态,因此可用作已编码视频比特流和视频会话中的第一张图片,或者用作静止图像。可以对帧内块的样本进行变换,且可在熵编码之前对变换系数进行量化。帧内预测可以是一种使预变换域中的样本值最小化的技术。在一些情况下,变换之后的DC值越小,AC系数越小,在给定的量化步长尺寸下表示熵编码之后的块所需的比特越少。
例如从诸如MPEG-2代编码技术已知的传统帧内编码不使用帧内预测。然而,一些较新的视频压缩技术包括尝试从例如周围样本数据和/或元数据中预测样本值的技术,周围样本数据和/或元数据是在空间上相邻的且在解码顺序上在先的数据块的编码和/或解码期间获得的。在下文中这样的技术称为“帧内预测”技术。应注意,至少在一些情况下,帧内预测仅使用来自正在重建的当前图片的参考数据,而不使用来自参考图片的参考数据。
帧内预测可以有许多不同形式。当在给定的视频编码技术中可使用一种以上这样的技术时,可以以帧内预测模式对使用中的技术进行编码。在一些情况下,模式可具有子模式和/或参数,且这些子模式和/或参数可单独编码或包含在模式码字中。给定的模式、子模式和/或参数组合使用哪个码字,可能会通过帧内预测对编码效率增益产生影响,因此用于将码字转换为比特流的熵编码技术同样对其也可以产生影响。
H.264引入了某种帧内预测模式,该帧内预测模式在H.265中得到改进,且在诸如联合探索模型(JEM)、下一代视频编码(VVC)和基准集(BMS)等更新的编码技术中进一步得到改进。可使用属于已经可用样本的相邻样本值来形成预测器块。根据方向将相邻样本的样本值复制到预测器块中。对使用方向的参考可以在比特流中进行编码,或者可对其本身进行预测。
参考图1A,在右下方描绘的是从H.265的33种可能的预测器方向(对应于35种帧内模式中的33种角模式)中已知的9个预测方向的子集。箭头汇聚的点(101)表示正在被预测的样本。箭头表示正在被预测的样本所沿的方向。例如,箭头(102)指示从在右上方、与水平方向成45度角的一个或多个样本中预测样本(101)。类似地,箭头(103)指示从在样本(101)的左下方、与水平方向成22.5度角的一个或多个样本中预测样本(101)。
仍然参考图1A,在左上方描绘了4×4个样本的方形块(104)(由粗体虚线指示)。方形块(104)包括16个样本,每个样本用“S”、其在Y维度上的位置(例如,行索引)和其在X维度上的位置(例如,列索引)来标记。例如,样本S21是在Y维度上(从顶部开始)的第二个样本和在X维度上(从左侧开始)的第一个样本。类似地,样本S44在Y维度和X维度上都是块(104)中的第四个样本。由于块的大小为4×4个样本,因此S44位于右下角。还示出了遵循类似编号方案的参考样本。参考样本用R、其相对于块(104)的Y位置(例如,行索引)和X位置(列索引)来标记。在H.264和H.265中,预测样本都与正在重建的块相邻;因此,无需使用负值。
帧内图片预测可通过信号通知的预测方向适当地从相邻样本复制参考样本值来工作。例如,假设已编码视频比特流包括信令,该信令针对该块指示与箭头(102)一致的预测方向,即样本是从在右上方、与水平方向成45度角的一个或多个预测样本进行预测的。在那种情况下,从同一个参考样本R05预测样本S41,S32,S23和S14。然后从参考样本R08预测样本S44。
在一些情况下,可例如通过插值来组合多个参考样本的值,以计算参考样本;尤其是当方向不能被45度整除时。
随着视频编码技术的发展,可能的方向的数量已经增加。在H.264(2003年)中,可表示九个不同的方向。这一数字在H.265(2013年)中,增加到33个方向,而在本公开时,JEM/VVC/BMS可支持多达65个方向。已经进行了实验以识别最可能的方向,且熵编码中的一些技术被用于以少量比特来表示那些可能的方向,对于不太可能的方向接受一定的代价。此外,有时可以根据已经解码的相邻块中使用的相邻方向来预测方向本身。
图1B示出了根据JEM的65个帧内预测方向的示意图(105),以说明随着时间的推移预测方向的数量增加。
表示方向的帧内预测方向比特在已编码视频比特流中的映射可能因视频编码技术的不同而不同;且例如,映射的范围可以从预测方向到帧内预测模式再到代码字的简单直接映射,再到涉及最可能的模式和类似技术的复杂自适应方案。然而,在所有情况下,可存在某些方向,这些方向与某些其它方向相比,在视频内容中统计出现的可能性较小。由于视频压缩的目标是减少冗余,因此在运行良好的视频编码技术中,那些不太出现可能的方向相比更大可能出现的方向将由更多数量的比特表示。
运动补偿可以是有损压缩技术,且可涉及以下技术:来自先前重建的图片或其部分(参考图片)的样本数据的块在沿着由运动矢量(此后称为MV)指示的方向进行空间偏移之后,被用于预测新重建的图片或图片部分。在一些情况下,参考图片可与当前正在重建的图片相同。MV可具有X和Y两个维度,或具有三个维度,第三个维度指示正在使用的参考图片(后者间接地可以是时间维度)。
在一些视频压缩技术中,可根据其它MV例如根据在空间上与正在重建的区域相邻的样本数据的另一个区域相关的、且解码顺序在该MV之前的MV来预测适用于样本数据的某个区域的MV。这样做可大大减少对MV进行编码所需的数据量,从而消除冗余并增加压缩率。MV预测可有效地工作,例如,由于在对从相机获得的输入视频信号(称为自然视频)进行编码时,存在以下统计可能性:比适用单个MV的区域更大的区域沿着相似的方向移动,因此,在一些情况下,可使用从相邻区域的MV导出的相似MV来预测该更大的区域。这使得为给定区域找到的MV与根据周围MV所预测的MV相似或相同,进而在熵编码之后,该为给定区域找到的MV可以用比直接对MV进行编码时使用的位数更少的位数来表示。在一些情况下,MV预测可以是无损压缩从原始信号(即样本流)中导出的信号(即MV)的示例。在其它情况下,例如由于根据多个周围MV计算预测值时出现舍入误差,使得MV预测本身可以是有损的。
H.265/HEVC(ITU-T H.265建议书,“高效视频编码(High Efficiency VideoCoding)”,2016年12月)中描述了各种MV预测机制。在H.265提供的多种MV预测机制中,本文的实施例描述的是下文称为“空间合并”的技术。
参考图1C,当前块(111)可包括在运动搜索过程期间已由编码器找到的样本,可根据已产生空间偏移的相同大小的先前块来预测该样本。可以从与一个或多个参考图片相关联的元数据中导出MV,而非直接对MV进行编码,例如使用与被标记为A0、A1和B0、B1、B2(分别对应112到116)的五个周围样本中的任一样本相关联的MV,(按解码次序)从最近的参考图片中导出该MV。在H.265中,MV预测可使用来自相邻块也正在使用的相同参考图片的预测值。
发明内容
本公开的各方面提供用于视频编码/解码的装置。一种装置包括处理电路,处理电路对视频比特流进行解码,以获得当前块的降低分辨率的残差块。处理电路确定块级标志被设置为预定值。预定值指示当前块以降低分辨率的编码方式进行编码。基于块级标志,处理电路通过对当前块的全分辨率参考块进行下采样,来生成当前块的降低分辨率的预测块。处理电路基于降低分辨率的预测块和降低分辨率的残差块,生成当前块的降低分辨率的重建块。处理电路通过对降低分辨率的重建块进行上采样,来生成当前块的全分辨率重建块。
在一个实施例中,处理电路基于全分辨率参考块的大小和当前块的下采样因子,确定降低分辨率的预测块的大小。
在一个实施例中,处理电路从视频比特流中解码出当前块的块级标志。块级标志指示当前块以降低分辨率的编码方式进行编码。
在一个实施例中,处理电路从视频比特流中解码出滤波器系数或滤波器系数的索引。滤波器系数用于对降低分辨率的重建块进行上采样。
在一个实施例中,处理电路基于缩放因子,对当前块的第一相邻块的运动矢量进行缩放,缩放因子是当前块的下采样因子和第一相邻块的下采样因子的比值。处理电路构建当前块的第一运动矢量候选列表。第一运动矢量候选列表包括第一相邻块的已缩放的运动矢量。
在一个实施例中,处理电路响应于缩放因子是2的幂,基于移位操作来确定已缩放的运动矢量。在一个示例中,当缩放因子是2N时,则丢弃运动矢量的水平分量的低N位和运动矢量的垂直分量的低N位,以获得已缩放的运动矢量。在另一示例中,当缩放因子是2N时,运动矢量首先加上舍入因子(例如,2N-1),然后丢弃运动矢量的水平分量的低N位和运动矢量的垂直分量的低N位,以获得已缩放的运动矢量。
在一个实施例中,处理电路响应于缩放因子不是2的幂,基于查找表来确定已缩放的运动矢量。
在一个实施例中,处理电路基于当前块的下采样因子和第一相邻块的下采样因子,确定第一运动矢量候选列表中已缩放的运动矢量的优先级。
在一个实施例中,处理电路基于当前块的一个或多个第二相邻块,构建当前块的第二运动矢量候选列表。一个或多个第二相邻块中的每一个具有与当前块相同的下采样因子。处理电路基于当前块的一个或多个第三相邻块,构建当前块的第三运动矢量候选列表。一个或多个第三相邻块中的每一个具有与当前块不同的下采样因子。
在一个实施例中,处理电路基于第二运动矢量候选列表中的运动矢量候选的数量小于指定数量,扫描第三运动矢量候选列表。
在一个实施例中,处理电路通过以交错方式合并第二运动矢量候选列表和第三运动矢量候选列表,来确定当前块的第四运动矢量候选列表。
在一个实施例中,处理电路基于当前块的下采样因子,确定当前块的仿射参数。
本公开的各方面提供用于视频编码/解码的方法。在该方法中,对视频比特流进行解码,以获得当前块的降低分辨率的残差块。确定设置为预定值的块级标志。预定值指示当前块以降低分辨率的编码方式进行编码。基于块级标志,通过对当前块的全分辨率参考块进行下采样,来生成当前块的降低分辨率的预测块。基于降低分辨率的预测块和降低分辨率的残差块,生成当前块的降低分辨率的重建块。通过对降低分辨率的重建块进行上采样,来生成当前块的全分辨率重建块。
本公开的各方面还提供非暂时性计算机可读介质,非暂时性计算机可读介质存储有指令,当指令由至少一个处理器执行时,使得至少一个处理器执行用于视频编码/解码的方法中的任一种或其组合。
附图说明
根据以下详细描述和附图,所公开的主题的进一步的特征、性质和各种优点将更加明显,在附图中:
图1A是帧内预测模式的示例性子集的示意性图示;
图1B是示例性的帧内预测方向的图示;
图1C是在一个示例中的当前块及其周围空间合并候选的示意性图示;
图2是根据一个实施例的通信系统的简化框图的示意性图示;
图3是根据一个实施例的通信系统的简化框图的示意性图示;
图4是根据一个实施例的解码器的简化框图的示意性图示;
图5是根据一个实施例的编码器的简化框图的示意性图示;
图6示出了根据另一实施例的编码器的框图;
图7示出了根据另一实施例的解码器的框图;
图8示出了根据本公开的一些实施例的示例性块划分;
图9A和图9B示出了根据本公开的一个实施例的使用四叉树加二叉树(QTBT)和对应的树结构的示例性块划分;
图10示出了根据本公开的一个实施例的示例性标称角度;
图11示出了根据本公开的一个实施例的当前块中的一个像素的顶部样本、左侧样本和左上方样本的位置;
图12示出了根据本公开的一个实施例的示例性递归滤波器帧内模式;
图13示出了根据本公开的一个实施例的示例性多层参考帧结构;
图14示出了根据本公开的一个实施例的示例性候选运动矢量列表建立过程;
图15示出了根据本公开的一个实施例的示例性运动场估计过程;
图16A和图16B分别示出了使用顶部相邻块和左侧相邻块来预测的示例性重叠区域(阴影区域);
图17示出了示例性两步扭曲过程,其中,垂直剪切跟在水平剪切之后;
图18示出了包括AV1中的帧级超分辨率的总体环路滤波流水线;
图19示出了根据本公开的一个实施例的使用块级标志的示例性实现;
图20示出了根据本公开的一个实施例的示例性空间相邻运动矢量参考;
图21示出了根据本公开的一个实施例的示例性时间相邻运动矢量参考;
图22示出了根据本公开的一个实施例的用于仿射运动预测的示例性空间相邻运动矢量参考;
图23示出了根据一个实施例的示例性流程图;以及
图24是根据一个实施例的计算机系统的示意性图示。
具体实施方式
I.视频解码器和编码器系统
图2示出了根据本公开的一个实施例的通信系统(200)的简化框图。通信系统(200)包括多个终端设备,该多个终端设备可通过例如网络(250)彼此通信。例如,通信系统(200)包括通过网络(250)互连的第一终端设备对(210)和(220)。在图2的示例中,第一终端设备对(210)和(220)执行单向数据传输。例如,终端设备(210)可以对视频数据(例如由终端设备(210)采集的视频图片流)进行编码以通过网络(250)传输到另一终端设备(220)。已编码视频数据可以以一个或多个已编码视频比特流的形式传输。终端设备(220)可以从网络(250)接收已编码视频数据,对已编码视频数据进行解码以恢复视频图片,以及根据恢复的视频数据显示视频图片。单向数据传输可以在媒体服务等应用中是常见的。
在另一示例中,通信系统(200)包括执行已编码视频数据的双向传输的第二终端设备对(230)和(240),该双向传输可例如在视频会议期间发生。对于双向数据传输,在一个示例中,终端设备(230)和(240)中的每个终端设备可以对视频数据(例如由终端设备采集的视频图片流)进行编码,以通过网络(250)传输到终端设备(230)和(240)中的另一终端设备。终端设备(230)和(240)中的每个终端设备还可接收由终端设备(230)和(240)中的另一终端设备传输的已编码视频数据,且可以对已编码视频数据进行解码以恢复视频图片,且可根据恢复的视频数据在可访问的显示设备上显示视频图片。
在图2的示例中,终端设备(210)、终端设备(220)、终端设备(230)和终端设备(240)可示出为服务器、个人计算机和智能电话,但是本公开的原理可不限于此。本公开的实施例在膝上型计算机、平板计算机、媒体播放器和/或专用视频会议设备上找到应用之处。网络(250)表示在终端设备(210)、终端设备(220)、终端设备(230)和终端设备(240)之间传送已编码视频数据的任何数量的网络,包括例如有线(连线的)和/或无线通信网络。通信网络(250)可以在电路交换和/或分组交换信道中交换数据。代表性的网络包括电信网络、局域网、广域网和/或互联网。出于本讨论的目的,除非在下文中有说明,否则网络(250)的架构和拓扑对于本公开的操作来说可能是无关紧要的。
作为用于所公开的主题的应用的示例,图3示出了视频编码器和视频解码器在流式传输环境中的放置方式。所公开的主题可同等地适用于其它支持视频的应用,包括例如视频会议、数字TV、在包括CD、DVD、记忆棒等的数字介质上存储压缩视频等等。
流式传输系统可包括采集子系统(313),采集子系统(313)可包括例如数码相机的视频源(301),视频源(301)创建例如未压缩的视频图片流(302)。在一个示例中,视频图片流(302)包括由数码相机拍摄的样本。相较于已编码视频数据(304)(或已编码视频比特流),被描绘为粗线以强调高数据量的视频图片流(302)可由电子设备(320)处理,电子设备(320)包括耦接到视频源(301)的视频编码器(303)。视频编码器(303)可包括硬件、软件或软硬件组合,以实现或实施如下文更详细地描述的所公开的主题的各方面。相较于视频图片流(302),被描绘为细线以强调较低数据量的已编码视频数据(304)(或已编码视频比特流(304))可存储在流式传输服务器(305)上以供将来使用。一个或多个流式传输客户端子系统,例如图3中的客户端子系统(306)和客户端子系统(308)可访问流式传输服务器(305)以检索已编码视频数据(304)的副本(307)和副本(309)。客户端子系统(306)可包括例如电子设备(330)中的视频解码器(310)。视频解码器(310)对已编码视频数据的传入副本(307)进行解码,且产生可以在显示器(312)(例如显示屏)或其它渲染设备(未描绘)上渲染的输出视频图片流(311)。在一些流式传输系统中,可根据某些视频编码/压缩标准对已编码视频数据(304)、(307)和(309)(例如,视频比特流)进行编码。这些标准的示例包括ITU-TH.265建议书。在一个示例中,正在开发的视频编码标准非正式地称为通用视频编码(VVC)。所公开的主题可用于VVC的上下文中。
应注意,电子设备(320)和电子设备(330)可包括其它组件(未示出)。例如,电子设备(320)可包括视频解码器(未示出),且电子设备(330)还可包括视频编码器(未示出)。
图4示出了根据本公开的一个实施例的视频解码器(410)的框图。视频解码器(410)可包括在电子设备(430)中。电子设备(430)可包括接收器(431)(例如接收电路)。视频解码器(410)可用于代替图3的示例中的视频解码器(310)。
接收器(431)可接收将由视频解码器(410)解码的一个或多个已编码视频序列;在同一实施例或另一实施例中,一次接收一个已编码视频序列,其中每个已编码视频序列的解码独立于其它已编码视频序列。可以从信道(401)接收已编码视频序列,信道(401)可以是通向存储已编码视频数据的存储设备的硬件/软件链路。接收器(431)可接收可转发到它们各自的使用实体(未描绘)的已编码视频数据和其它数据,例如已编码音频数据和/或辅助数据流。接收器(431)可将已编码视频序列与其它数据分开。为了防止网络抖动,缓冲存储器(415)可耦接在接收器(431)和熵解码器/解析器(420)(此后称为“解析器(420)”)之间。在某些应用中,缓冲存储器(415)是视频解码器(410)的一部分。在其它情况下,缓冲存储器(415)可位于视频解码器(410)外部(未描绘)。而在其它情况下,视频解码器(410)的外部可存在缓冲存储器(未描绘)以例如防止网络抖动,且在视频解码器(410)的内部可存在另一缓冲存储器(415)以例如处理播出定时。当接收器(431)从具有足够带宽和可控性的存储/转发设备或从等时同步网络接收数据时,可能不需要缓冲存储器(415),或可以将缓冲存储器做得较小。为了在诸如互联网等业务分组网络上使用,可能需要缓冲存储器(415),缓冲存储器(415)可相对较大且可有利地具有自适应大小,且可至少部分地实施于操作系统或视频解码器(410)外部的类似元件(未描绘)中。
视频解码器(410)可包括解析器(420),以根据已编码视频序列重建符号(421)。这些符号的类别包括用于管理视频解码器(410)的操作的信息,以及用于控制诸如渲染设备(412)(例如显示屏)的渲染设备的潜在信息,该渲染设备不是电子设备(430)的整体部分,但是可耦接到电子设备(430),如图4所示。用于渲染设备的控制信息可以是辅助增强信息(SEI消息)或视频可用性信息(VUI)参数集片段(未描绘)的形式。解析器(420)可以对接收到的已编码视频序列进行解析/熵解码。已编码视频序列的编码可根据视频编码技术或标准进行,且可遵循各种原理,包括可变长度编码,霍夫曼(Huffman)编码、具有或不具有上下文敏感度的算术编码等。解析器(420)可基于对应于群组的至少一个参数,从已编码视频序列提取用于视频解码器中的像素的子群中的至少一个子群的子群参数集。子群可包括图片群组(GOP)、图片、图块、切片、宏块、编码单元(CU)、块、变换单元(TU)、预测单元(PU)等。解析器(420)还可以从已编码视频序列提取信息,例如变换系数,量化器参数值,MV等。
解析器(420)可以对从缓冲存储器(415)接收的视频序列执行熵解码/解析操作,从而创建符号(421)。
取决于已编码视频图片或一部分已编码视频图片(例如:帧间图片和帧内图片,帧间块和帧内块)的类型以及其它因素,符号(421)的重建可涉及多个不同单元。涉及哪些单元以及涉及方式可由解析器(420)通过从已编码视频序列解析的子群控制信息来控制。为了清楚起见,未描绘解析器(420)与下文的多个单元之间的此类子群控制信息流。
除了已提及的功能块之外,视频解码器(410)可以在概念上细分成如下文所描述的多个功能单元。在商业约束下运行的实际实现中,这些单元中的许多单元彼此紧密交互且可至少部分地彼此集成。然而,出于描述所公开的主题的目的,在概念上细分成下文的多个功能单元,是合适的。
第一单元是缩放器/逆变换单元(451)。缩放器/逆变换单元(451)从解析器(420)接收作为符号(421)的量化变换系数以及控制信息,包括使用哪种变换方式、块大小、量化因子、量化缩放矩阵等。缩放器/逆变换单元(451)可输出包括样本值的块,样本值可输入到聚合器(455)中。
在一些情况下,缩放器/逆变换(451)的输出样本可属于帧内编码块;即:不使用来自先前重建的图片的预测信息,但是可使用来自当前图片的先前重建部分的预测信息的块。此类预测信息可由帧内图片预测单元(452)提供。在一些情况下,帧内图片预测单元(452)使用从当前图片缓冲器(458)提取的周围已重建信息来生成大小和形状与正在重建的块相同的块。例如,当前图片缓冲器(458)缓冲部分重建的当前图片和/或完全重建的当前图片。在一些情况下,聚合器(455)基于每个样本,将帧内预测单元(452)生成的预测信息添加到由缩放器/逆变换单元(451)提供的输出样本信息中。
在其它情况下,缩放器/逆变换单元(451)的输出样本可属于帧间编码和潜在运动补偿的块。在这种情况下,运动补偿预测单元(453)可访问参考图片存储器(457)以提取用于预测的样本。在根据属于块的符号(421)对提取的样本进行运动补偿之后,这些样本可由聚合器(455)添加到缩放器/逆变换单元(451)的输出(在这种情况下,称为残差样本或残差信号),从而生成输出样本信息。运动补偿预测单元(453)从参考图片存储器(457)内的地址提取预测样本可受到MV控制,且MV可以以符号(421)的形式提供给运动补偿预测单元(453)使用,符号(421)可具有例如X分量、Y分量和参考图片分量。运动补偿还可包括在使用子样本精确MV时,从参考图片存储器(457)提取的样本值的内插、MV预测机制等。
聚合器(455)的输出样本可经受环路滤波器单元(456)中的各种环路滤波技术。视频压缩技术可包括环路内滤波器技术,该环路内滤波器技术受控于包括在已编码视频序列(还称为已编码视频比特流)中且可作为来自解析器(420)的符号(421)而用于环路滤波器单元(456)的参数,然而,视频压缩技术还可响应于在对已编码图片或已编码视频序列的先前(按解码次序)部分进行解码期间获得的元信息,以及响应于先前重建且经过环路滤波的样本值。
环路滤波器单元(456)的输出可以是样本流,该样本流可输出到渲染设备(412)以及存储在参考图片存储器(457)中以用于将来的帧间图片预测。
一旦完全重建,某些已编码图片就可用作参考图片以用于将来预测。例如,一旦对应于当前图片的已编码图片被完全重建,且已编码图片(通过例如解析器(420))被识别为参考图片,则当前图片缓冲器(458)可变成参考图片存储器(457)的一部分,且可以在开始重建后续已编码图片之前重新分配新的当前图片缓冲器。
视频解码器(410)可根据诸如ITU-T H.265建议书的标准中的预定视频压缩技术执行解码操作。在已编码视频序列遵循视频压缩技术或标准的语法以及视频压缩技术或标准中记录的配置文件的意义上,已编码视频序列可符合所使用的视频压缩技术或标准指定的语法。具体而言,配置文件可以从视频压缩技术或标准中可用的所有工具中选择某些工具作为在该配置文件下可供使用的仅有工具。对于合规性,还需要已编码视频序列的复杂度处于视频压缩技术或标准的层级所限定的范围内。在一些情况下,层级限制最大图片大小、最大帧率、最大重建采样率(以例如每秒兆(mega)个样本为单位进行测量)、最大参考图片大小等。在一些情况下,由层级设定的限制可通过假设参考解码器(HRD)规范和在已编码视频序列中用信号表示的HRD缓冲器管理的元数据来进一步限定。
在一个实施例中,接收器(431)可以在接收已编码视频时接收附加(冗余)数据。该附加数据可以被包括作为已编码视频序列的一部分。附加数据可由视频解码器(410)使用来对数据进行适当解码和/或更准确地重建原始视频数据。附加数据可采用例如时间、空间或信噪比(SNR)增强层、冗余切片、冗余图片、前向纠错码等形式。
图5示出了根据本公开的一个实施例的视频编码器(503)的框图。视频编码器(503)包括在电子设备(520)中。电子设备(520)包括传输器(540)(例如传输电路)。视频编码器(503)可用于代替图3的示例中的视频编码器(303)。
视频编码器(503)可以从视频源(501)(并非图5的示例中的电子设备(520)的一部分)接收视频样本,视频源(501)可采集将由视频编码器(503)编码的视频图像。在另一示例中,视频源(501)是电子设备(520)的一部分。
视频源(501)可提供将由视频编码器(503)编码的、呈数字视频样本流形式的源视频序列,该数字视频样本流可具有任何合适的位深度(例如:8位、10位、12位......)、任何色彩空间(例如BT.601Y CrCB,RGB……)和任何合适的采样结构(例如Y CrCb 4:2:0,YCrCb 4:4:4)。在媒体服务系统中,视频源(501)可以是存储先前已准备的视频的存储设备。在视频会议系统中,视频源(501)可以是采集本地图像信息作为视频序列的相机。视频数据可作为多个单独的图片来提供,当按顺序观看时,这些图片被赋予运动。图片本身可构建为空间像素阵列,其中取决于所使用的采样结构、色彩空间等,每个像素可包括一个或多个样本。本领域技术人员可容易地理解像素和样本之间的关系。下文侧重于描述样本。
根据一个实施例,视频编码器(503)可实时地或在应用所要求的任何其它时间约束下,将源视频序列的图片编码并压缩成已编码视频序列(543)。施行适当的编码速度是控制器(550)的一个功能。在一些实施例中,控制器(550)控制如下文所描述的其它功能单元,且在功能上耦接到所述的其它功能单元。为了清楚起见,图中未描绘耦接。由控制器(550)设置的参数可包括速率控制相关参数(图片跳过、量化器、率失真优化技术的λ值......)、图片大小、图片群组(GOP)布局、最大MV允许参考区域等。控制器(550)可配置成具有其它合适的功能,这些功能涉及针对某一系统设计优化的视频编码器(503)。
在一些实施例中,视频编码器(503)配置成在编码环路中进行操作。作为过于简化的描述,在一个示例中,编码环路可包括源编码器(530)(例如,负责基于待编码的输入图片和参考图片来创建符号,例如符号流)和嵌入于视频编码器(503)中的(本地)解码器(533)。解码器(533)重建符号以用类似于(远程)解码器可创建样本数据的方式创建样本数据(因为在所公开的主题中考虑的视频压缩技术中,符号与已编码视频比特流之间的任何压缩是无损的)。重建的样本流(样本数据)输入到参考图片存储器(534)。由于符号流的解码产生与解码器位置(本地或远程)无关的位精确结果,因此参考图片存储器(534)中的内容在本地编码器和远程编码器之间也是按比特位精确对应的。换句话说,编码器的预测部分“看到”的参考图片样本与解码器将在解码期间使用预测时所“看到”的样本值完全相同。这种参考图片同步性基本原理(以及在例如因信道误差而无法维持同步性的情况下产生的漂移)也用于一些相关技术。
“本地”解码器(533)的操作可以与例如已在上文结合图4详细描述视频解码器(410)的“远程”解码器相同。然而,另外简要参考图4,由于符号可用且熵编码器(545)和解析器(420)能够无损地将符号编码/解码成已编码视频序列,因此包括缓冲存储器(415)和解析器(420)的视频解码器(410)的熵解码部分可能无法完全在本地解码器(533)中实施。
此时可以观察到,除了存在于解码器中的解析/熵解码之外的任何解码器技术,也必定以基本上相同的功能形式存在于对应的编码器中。出于此原因,所公开的主题侧重于解码器操作。可简化编码器技术的描述,因为编码器技术与全面地描述的解码器技术互逆。仅在某些区域中需要更详细的描述,且在下文提供。
在操作期间,在一些示例中,源编码器(530)可执行运动补偿预测编码,通过参考来自视频序列中被指定为“参考图片”的一个或多个先前已编码图片,该运动补偿预测编码对输入图片进行预测性编码。以这种方式,编码引擎(532)对输入图片的像素块和参考图片的像素块之间的差异进行编码,该参考图片可被选作该输入图片的预测参考。
本地视频解码器(533)可基于源编码器(530)创建的符号,对可指定为参考图片的图片的已编码视频数据进行解码。编码引擎(532)的操作可有利地是有损过程。当已编码视频数据可以在视频解码器(图5未示出)中进行解码时,已重建视频序列通常可以是源视频序列的副本,但带有一些误差。本地视频解码器(533)复制解码过程,该解码过程可由视频解码器对参考图片执行,且可使已重建参考图片存储在参考图片高速缓存(534)中。以这种方式,视频编码器(503)可以在本地存储已重建参考图片的副本,该副本与将由远端视频解码器获得的已重建参考图片具有共同内容(不存在传输误差)。
预测器(535)可针对编码引擎(532)执行预测搜索。即,对于待编码的新图片,预测器(535)可以在参考图片存储器(534)中搜索可用作新图片的适当预测参考的样本数据(作为候选参考像素块)或某些元数据,例如参考图片MV、块形状等。预测器(535)可基于样本块逐像素块操作,以找到合适的预测参考。在一些情况下,如由预测器(535)获得的搜索结果所确定的,输入图片可具有从参考图片存储器(534)中存储的多个参考图片取得的预测参考。
控制器(550)可管理源编码器(530)的编码操作,包括例如设置用于对视频数据进行编码的参数和子群参数。
可以在熵编码器(545)中对所有上述功能单元的输出进行熵编码。熵编码器(545)根据诸如霍夫曼编码、可变长度编码、算术编码等的技术来对各种功能单元生成的符号进行无损压缩,从而将该符号转换成已编码视频序列。
传输器(540)可缓冲由熵编码器(545)创建的已编码视频序列,从而为通过通信信道(560)进行传输做准备,通信信道(560)可以是通向可存储已编码视频数据的存储设备的硬件/软件链路。传输器(540)可以将来自视频编码器(503)的已编码视频数据与待传输的其它数据合并,其它数据例如是已编码音频数据和/或辅助数据流(未示出来源)。
控制器(550)可管理视频编码器(503)的操作。在编码期间,控制器(550)可以向每个已编码图片分配某一已编码图片类型,但这可能影响可应用于相应的图片的编码技术。例如,通常可向图片分配以下任一种图片类型:
帧内图片(I图片),其可以是不将序列中的任何其它图片用作预测源就可被编码和解码的图片。一些视频编解码器容许不同类型的帧内图片,包括例如独立解码器刷新(“IDR”)图片。本领域技术人员了解I图片的变体及其相应的应用和特征。
预测性图片(P图片),其可以是可使用帧内预测或帧间预测进行编码和解码的图片,该帧内预测或帧间预测使用至多一个MV和参考索引来预测每个块的样本值。
双向预测性图片(B图片),其可以是可使用帧内预测或帧间预测进行编码和解码的图片,该帧内预测或帧间预测使用至多两个MV和参考索引来预测每个块的样本值。类似地,多个预测性图片可使用多于两个参考图片和相关联的元数据来用于重建单个块。
源图片通常可以在空间上细分成多个样本块(例如,4×4、8×8、4×8或16×16个样本的块),且逐块进行编码。这些块可参考其它(已编码)块进行预测性编码,其它(已编码)块由应用于块的相应图片的编码分配来确定。例如,I图片的块可进行非预测性编码,或者I图片的块可参考同一图片的已编码块来进行预测性编码(空间预测或帧内预测)。P图片的像素块可参考一个先前编码的参考图片通过空间预测或通过时间预测来进行预测性编码。B图片的块可参考一个或两个先前编码的参考图片通过空间预测或通过时间预测来进行预测性编码。
视频编码器(503)可根据诸如ITU-T H.265建议书的预定视频编码技术或标准执行编码操作。在操作中,视频编码器(503)可执行各种压缩操作,包括利用输入视频序列中的时间和空间冗余的预测编码操作。因此,已编码视频数据可符合所使用的视频编码技术或标准指定的语法。
在一个实施例中,传输器(540)可以在传输已编码视频时传输附加数据。源编码器(530)可包括此类数据作为已编码视频序列的一部分。附加数据可包括时间/空间/SNR增强层、诸如冗余图片和切片的其它形式的冗余数据、SEI消息、VUI参数集片段等。
所采集的视频可作为呈时间序列的多个源图片(视频图片)。帧内图片预测(通常简化为帧内预测)利用给定图片中的空间相关性,而帧间图片预测则利用图片之间的(时间或其它)相关性。在一个示例中,将正在编码/解码的特定图片分成块,正在编码/解码的特定图片称为当前图片。在当前图片中的块类似于视频中先前已编码且仍被缓冲的参考图片中的参考块时,可通过被称为MV的矢量对当前图片中的块进行编码。MV指向参考图片中的参考块,且在使用多个参考图片的情况下,MV可具有识别参考图片的第三维度。
在一些实施例中,双向预测技术可用于帧间图片预测中。根据双向预测技术,使用两个参考图片,例如按解码次序在视频中的当前图片之前(但是按显示次序可能分别是过去和将来)的第一参考图片和第二参考图片。可通过指向第一参考图片中的第一参考块的第一MV和指向第二参考图片中的第二参考块的第二MV来对当前图片中的块进行编码。可通过第一参考块和第二参考块的组合来预测该块。
此外,合并模式技术可用于帧间图片预测以改善编码效率。
根据本公开的一些实施例,例如帧间图片预测和帧内图片预测的预测以块为单位执行。例如,根据HEVC标准,将视频图片序列中的图片分成编码树单元(CTU)以用于压缩,图片中的CTU具有相同大小,例如64×64像素、32×32像素或16×16像素。通常,CTU包括三个编码树块(CTB),这三个编码树块是一个亮度CTB和两个色度CTB。可将每个CTU递归地以四叉树拆分成一个或多个编码单元(CU)。例如,可将64×64像素的CTU拆分成一个64×64像素的CU,或4个32×32像素的CU,或16个16×16像素的CU。在一个示例中,分析每个CU以确定用于CU的预测类型,例如帧间预测类型或帧内预测类型。根据时间和/或空间可预测性,将CU拆分成一个或多个预测单元(PU)。通常,每个PU包括亮度预测块(PB)和两个色度PB。在一个实施例中,编码(编码/解码)中的预测操作以预测块为单位来执行。以亮度预测块作为预测块的示例,预测块包括针对像素的值(例如,亮度值)的矩阵,所述的像素为例如8×8像素、16×16像素、8×16像素、16×8像素等。
图6示出了根据本公开的另一实施例的视频编码器(603)的图。视频编码器(603)配置成接收视频图片序列中的当前视频图片内的样本值的处理块(例如预测块),且将处理块编码到作为已编码视频序列的一部分的已编码图片中。在一个示例中,视频编码器(603)用于代替图3的示例中的视频编码器(303)。
在HEVC示例中,视频编码器(603)接收用于处理块的样本值的矩阵,该处理块为例如8×8样本的预测块等。视频编码器(603)使用例如率失真优化来确定是否使用帧内模式、帧间模式或双向预测模式来最佳地对处理块进行编码。当在帧内模式中对处理块进行编码时,视频编码器(603)可使用帧内预测技术以将处理块编码到已编码图片中;且当在帧间模式或双向预测模式中对处理块进行编码时,视频编码器(603)可分别使用帧间预测或双向预测技术以将处理块编码到已编码图片中。在某些视频编码技术中,合并模式可以是帧间图片预测子模式,其中,在不借助预测器外部的已编码MV分量的情况下,从一个或多个MV预测器导出MV。在某些其它视频编码技术中,可存在适用于主题块的MV分量。在一个示例中,视频编码器(603)包括其它组件,例如用于确定处理块的模式的模式决策模块(未示出)。
在图6的示例中,视频编码器(603)包括如图6所示耦接在一起的帧间编码器(630)、帧内编码器(622)、残差计算器(623)、开关(626)、残差编码器(624)、通用控制器(621)和熵编码器(625)。
帧间编码器(630)配置成接收当前块(例如处理块)的样本、将该块与参考图片中的一个或多个参考块(例如先前图片和后来图片中的块)进行比较、生成帧间预测信息(例如对根据帧间编码技术的冗余信息的描述、MV、合并模式信息)、以及基于帧间预测信息使用任何合适的技术来计算帧间预测结果(例如预测块)。在一些示例中,参考图片是基于已编码视频信息解码的已解码参考图片。
帧内编码器(622)配置成接收当前块(例如处理块)的样本、在一些情况下将该块与同一图片中已编码的块进行比较、在变换之后生成量化系数、以及在一些情况下还(例如根据一个或多个帧内编码技术的帧内预测方向信息)生成帧内预测信息。在一个示例中,帧内编码器(622)还基于帧内预测信息和同一图片中的参考块计算帧内预测结果(例如预测块)。
通用控制器(621)配置成确定通用控制数据,且基于该通用控制数据控制视频编码器(603)的其它组件。在一个示例中,通用控制器(621)确定块的模式,且基于该模式将控制信号提供给开关(626)。例如,当该模式是帧内模式时,通用控制器(621)控制开关(626)以选择供残差计算器(623)使用的帧内模式结果,且控制熵编码器(625)以选择帧内预测信息并将帧内预测信息包括在比特流中;以及当该模式是帧间模式时,通用控制器(621)控制开关(626)以选择供残差计算器(623)使用的帧间预测结果,且控制熵编码器(625)以选择帧间预测信息并将帧间预测信息包括在比特流中。
残差计算器(623)配置成计算所接收的块与从帧内编码器(622)或帧间编码器(630)选择的预测结果之间的差(残差数据)。残差编码器(624)配置成基于残差数据操作,以对残差数据进行编码来生成变换系数。在一个示例中,残差编码器(624)配置成将残差数据从空间域变换到频域,且生成变换系数。变换系数随后经受量化处理以获得量化变换系数。在各种实施例中,视频编码器(603)还包括残差解码器(628)。残差解码器(628)配置成执行逆变换,且生成已解码残差数据。已解码残差数据可适当地由帧内编码器(622)和帧间编码器(630)使用。例如,帧间编码器(630)可基于已解码残差数据和帧间预测信息生成已解码块,且帧内编码器(622)可基于已解码残差数据和帧内预测信息生成已解码块。适当处理已解码块以生成已解码图片,且在一些示例中,已解码图片可以在存储器电路(未示出)中缓冲并用作参考图片。
熵编码器(625)配置成将比特流格式化以包括已编码块。熵编码器(625)配置成根据诸如HEVC的合适标准而包括各种信息。在一个示例中,熵编码器(625)配置成将通用控制数据、所选预测信息(例如帧内预测信息或帧间预测信息)、残差信息和其它合适的信息包括在比特流中。应注意,根据所公开的主题,当在帧间模式或双向预测模式的合并子模式中对块进行编码时,不存在残差信息。
图7示出了根据本公开的另一实施例的视频解码器(710)的图。视频解码器(710)配置成接收作为已编码视频序列的一部分的已编码图片,且对已编码图片进行解码以生成已重建图片。在一个示例中,视频解码器(710)用于代替图3的示例中的视频解码器(310)。
在图7的示例中,视频解码器(710)包括如图7所示耦接在一起的熵解码器(771)、帧间解码器(780)、残差解码器(773)、重建模块(774)和帧内解码器(772)。
熵解码器(771)可配置成根据已编码图片来重建某些符号,这些符号表示构成已编码图片的语法元素。此类符号可包括例如对块进行编码的模式(例如帧内模式、帧间模式、双向预测模式、后两者的合并子模式或另一子模式)、可识别分别供帧内解码器(772)或帧间解码器(780)使用以进行预测的某些样本或元数据的预测信息(例如帧内预测信息或帧间预测信息)、呈例如量化变换系数形式的残差信息等。在一个示例中,当预测模式是帧间或双向预测模式时,将帧间预测信息提供给帧间解码器(780);以及当预测类型是帧内预测类型时,将帧内预测信息提供给帧内解码器(772)。残差信息可经受逆量化并提供给残差解码器(773)。
帧间解码器(780)配置成接收帧间预测信息,且基于该帧间预测信息生成帧间预测结果。
帧内解码器(772)配置成接收帧内预测信息,且基于该帧内预测信息生成预测结果。
残差解码器(773)配置成执行逆量化以提取解量化的变换系数,且处理该解量化的变换系数,以将残差从频域变换到空间域。残差解码器(773)还可能需要某些控制信息(用以包括量化器参数(QP)),且该信息可由熵解码器(771)提供(未描绘数据路径,因为这仅仅是低量控制信息)。
重建模块(774)配置成在空间域中组合由残差解码器(773)输出的残差与预测结果(可由帧间预测模块或帧内预测模块输出)以形成已重建块,已重建块可以是已重建图片的一部分,已重建图片进而可以是已重建视频的一部分。应注意,可执行诸如解块操作等其它合适的操作来改善视觉质量。
应注意,可使用任何合适的技术来实现视频编码器(303)、视频编码器(503)和视频编码器(603)以及视频解码器(310)、视频解码器(410)和视频解码器(710)。在一个实施例中,可使用一个或多个集成电路来实现视频编码器(303)、视频编码器(503)和视频编码器(603)以及视频解码器(310)、视频解码器(410)和视频解码器(710)。在另一实施例中,可使用执行软件指令的一个或多个处理器来实现视频编码器(303)、视频编码器(503)和视频编码器(603)以及视频解码器(310)、视频解码器(410)和视频解码器(710)。
II.块划分
图8示出了根据本公开的一些实施例的示例性块划分(block partition)。
在一些相关示例,例如由开放媒体联盟(AOMedia)提出的VP9中,可使用4路划分树,如图8所示,4路划分树从64×64级别开始到4×4级别,对8×8及以下的块存在一些附加限制。应注意,指定为R的分区可称为递归分区。即,以较低的比例重复相同的划分树,直到达到最低的4×4级别为止。
在一些相关示例,例如由AOMedia提出且基于VP9的AV1中,划分树可扩展到如图8所示的10路结构,且最大编码块大小(按照VP9/AV1的说法,被称为超级块)增加以从128×128开始。应注意,4:1/1:4矩形分区包括在AV1中,但不包括在VP9中。矩形分区均不可进一步细分。此外,在一些示例中,由于可以对2×2色度块执行帧间预测,因此在AV1中使用小于8×8级别的分区时,可支持更大的灵活性。
在一些相关示例,例如HEVC中,可通过使用表示为编码树的四叉树结构而将CTU拆分成CU,以适应各种局部特性。可以在CU级做出关于是否使用帧间图片(时间)预测或帧内图片(空间)预测对图片区域进行编码的决定。根据PU拆分类型,每个CU可进一步拆分成一个PU、两个PU或四个PU。在一个PU内,可应用相同的预测过程,且可基于PU向解码器传输相关信息。在通过应用基于PU拆分类型的预测过程来获得残差块之后,CU可根据类似于CU的编码树的另一四叉树结构而划分成TU。HEVC结构的一个关键特征是:其具有包括CU、PU和TU在内的多个分区概念。在HEVC中,对于帧间预测块,CU或TU可以仅是正方形形状,而PU可以是正方形或矩形形状。在HEVC中,一个编码块可进一步拆分成四个正方形子块,且可以对每个子块(即,TU)执行变换过程。每个TU可进一步递归地拆分(例如,使用四叉树拆分)成更小TU。四叉树拆分可被称为残差四叉树(RQT)。
在图片边界处,HEVC使用隐式四叉树拆分,使得块可继续执行四叉树拆分,直到块的大小符合图片边界。
在一些相关示例,例如VVC中,可应用四叉树加二叉树(QTBT)划分结构。四叉树加二叉树(QTBT)结构移除了多个分区类型的概念(即,移除CU、PU和TU概念的分离),且支持CU分区形状的更大的灵活性。
图9A和图9B示出了根据本公开的一个实施例的使用QTBT和对应的树结构的示例性块划分。实线指示QT拆分,且虚线指示BT拆分。在BT的每个拆分节点(即,非叶节点)中,用信号通知一个标志,以指示使用哪种拆分类型(即,水平或垂直)。在图9B中,0指示水平拆分,且1指示垂直拆分。对于QT拆分,不需要指示拆分类型,原因是QT拆分始终水平地和垂直地拆分块,以产生大小相等的4个子块。
在QTBT结构中,CU可具有正方形或矩形形状。如图9A和图9B所示,首先CTU通过QT结构来划分。QT叶节点可通过BT结构来进一步划分。在BT拆分中,存在两种拆分类型,即,对称水平拆分和对称垂直拆分。BT叶节点是CU,且分割成两个CU来用于预测和变换处理,而无需任何进一步的划分。因此,在QTBT结构中,CU、PU和TU可具有相同的块大小。
有时,CU可包括不同颜色分量的CB,例如在JEM中。例如,在具有4:2:0色度格式的P切片和B切片的情况下,一个CU可包含一个亮度CB和两个色度CB。在其它示例中,CU可包括单个分量的CB,例如,在I切片的情况下,一个CU可仅包含一个亮度CB,或者仅包含两个色度CB。
针对QTBT划分方案,定义以下参数:CTU大小(QT的根节点大小,例如在HEVC中),MinQTSize(最小允许QT叶节点大小),MaxBTSize(最大允许BT根节点大小),MaxBTDepth(最大允许BT深度)和MinBTSize(最小允许BT叶节点大小)。
在QTBT划分结构的一个示例中,CTU大小被设置为128×128亮度样本,和两个对应的64×64色度样本块,MinQTSize被设置为16×16,MaxBTSize被设置为64×64,MinBTSize(对于宽度和高度)被设置为4×4,且MaxBTDepth被设置为4。QT划分首先应用于CTU以生成QT叶节点。QT叶节点可具有从16×16(即,MinQTSize)到128×128(即,CTU大小)的大小。如果QT叶节点是128×128,则由于大小超过MaxBTSize(即,64×64),因此QT叶节点不会通过BT来进一步拆分。否则,QT叶节点可通过BT树来进一步划分。因此,QT叶节点也是BT的根节点,且具有的BT深度为0。当BT深度达到MaxBTDepth(即,4)时,不考虑进一步的拆分。当BT节点具有等于MinBTSize(即,4)的宽度时,不考虑进一步的水平拆分。类似地,当BT节点具有等于MinBTSize的高度时,不考虑进一步的垂直拆分。BT的叶节点通过预测和变换处理来进一步处理,而无需任何进一步划分。例如,在JEM中,最大CTU大小是256×256亮度样本。
III.AV1中的预测
在一些相关示例,例如VP9中,支持8种方向模式,8种方向模式对应于从45度到207度的角度。为了利用方向纹理中的更多种类的空间冗余,在一些相关示例,例如AV1中,方向帧内模式扩展到具有更细粒度的角度集。将最初的8个角度稍微改变且称为标称角度,这8个标称角度被命名为V_PRED,H_PRED,D45_PRED,D135_PRED,D113_PRED,D157_PRED,D203_PRED和D67_PRED。
图10示出了根据本公开的一个实施例的示例性标称角度。在一些相关示例,例如AV1中,每个标称角度可与7个更细的角度相关联,因此总共可存在56个方向角度。预测角度可由标称帧内角度加上角度增量来表示。角度增量可等于系数乘以步长,该步长为3度。系数可以在-3到3的范围内。在AV1中,首先用信号通知8个标称模式以及5个非角度平滑模式。然后,如果当前模式是角度模式,则进一步用信号通知索引,以指示相对于对应的标称角度的角度增量。为了通过通用方式实现AV1中的方向预测模式,可利用统一方向预测器来实现AV1中的所有56个方向帧内预测角度,统一方向预测器将每个像素投影到参考子像素位置,且通过2抽头双线性滤波器对参考子像素进行插值。
在一些相关示例,例如AV1中,存在5个无方向平滑帧内预测模式,分别是DC,PAETH,SMOOTH,SMOOTH_V和SMOOTH_H。对于DC预测,左侧相邻样本和顶部相邻样本的平均值用作待预测块的预测器。对于PAETH预测,首先提取顶部参考样本、左侧参考样本和左上方参考样本,然后将最接近(顶部+左侧-左上方)的值设置为待预测像素的预测器。
图11示出了根据本公开的一个实施例的当前块中一个像素的顶部样本、左侧样本和左上方样本的位置。对于SMOOTH模式,SMOOTH_V模式和SMOOTH_H模式,使用沿着垂直方向或水平方向的二次插值或两个方向的平均值来预测块。
在一些相关示例,例如AV1中,可使用基于递归滤波的帧内预测模式。
图12示出了根据本公开的一个实施例的示例性递归滤波器帧内模式。
为了捕获与边缘参考的衰减空间相关性,针对亮度块设计滤波器帧内模式。在AV1中定义五个滤波器帧内模式,每个滤波器帧内模式由一组八个7抽头滤波器表示,从而反映4×2小块(patch)中的像素和与其相邻的7个相邻小块的像素之间的相关性。例如,7抽头滤波器的权重因子取决于位置。如图12所示,一个8×8块拆分成8个4×2小块,分别由B0,B1,B2,B3,B4,B5,B6和B7表示。对于每个小块,其7个相邻小块(由R0~R7指示)用于预测相应小块中的像素。对于小块B0,所有相邻小块已被重建。但是对于其它小块,并不是所有的相邻小块都被重建,那么直接相邻小块的预测值用作参考值。例如,小块B7的所有相邻小块都没有被重建,因此替代地,使用小块B7的相邻小块(即,B5和B6)的预测样本。
在一些相关示例,例如VP9中,三个参考帧可用于帧间预测。这三个参考帧包括LAST(最近的过去)帧,GOLDEN(遥远的过去)帧和ALTREF(时间滤波的未来)帧。
在一些相关示例,例如AV1中,可使用扩展的参考帧。例如,除了在VP9中使用的三个参考帧之外,可以在AV1中使用另外四种类型的参考帧。这另外四种类型的参考帧包括LAST2帧,LAST3帧,BWDREF帧和ALTREF2帧。LAST2帧和LAST3帧是两个最近的过去帧,BWDREF帧和ALTREF2帧是两个未来帧。此外,BWDREF帧是未经过时间滤波而编码的前向帧,且在相对较短的距离中作为后向参考会更有用。ALTREF2帧是GOLDEN帧(黄金帧)和ALTREF帧之间的中间已滤波的未来参考帧。
图13示出了根据本公开的一个实施例的示例性多层参考帧结构。在图13中,自适应数量的帧共享相同的GOLDEN帧和ALTREF帧。BWDREF帧是不应用时间滤波而直接编码的前向帧,因此更适合在相对较短的距离中作为后向参考。ALTREF2帧用作GOLDEN帧和ALTREF帧之间的中间已滤波的未来参考。所有新的参考可由单个预测模式选取,或者可组合成对以形成复合模式。AV1提供了丰富的参考帧对的集合,既提供双向复合预测又提供了单向复合预测,从而可以以更自适应且最优的方式对具有动态时间相关特性的各种视频进行编码。
图14示出了根据本公开的一个实施例的示例性候选运动矢量列表建立过程。空间参考运动矢量和时间参考运动矢量可基于它们出现的位置而分类成两种类别:最近的空间邻居和其余邻居。在一些相关示例中,来自当前块的正上方相邻块、左侧相邻块和右上方相邻块的运动矢量相比其余相邻块的运动矢量,可与当前块具有更高的相关性,因此被认为具有更高的优先级。在每种类别内,运动矢量按照它们在空间和时间搜索范围内的出现计数的降序来排列。具有较高出现计数的运动矢量候选可被认为是在局部区域中“流行”,即,较高的先验概率。这两种类别连接(concatenate)以形成排列列表。
图15示出了根据本公开的一个实施例的示例性运动场估计过程。
在一些相关示例,例如AV1中,可使用动态的空间和时间运动矢量参考。例如,可合并运动矢量参考选择方案,以有效地对运动矢量进行编码。在运动矢量参考选择方案中,空间邻居可以比在VP9中使用的那些空间邻居更宽。此外,运动场估计过程可用于找到时间运动矢量参考候选。运动场估计过程可以以三个阶段工作:运动矢量缓冲,运动轨迹创建和运动矢量投影。首先,对于每个已编码帧,可存储相应已编码帧的参考帧索引和相关联的运动矢量。所存储的信息可由下一个编码帧参考,以生成下一个编码帧的运动场。运动场估计可检查运动轨迹,例如,图15中的MVRef2从一个参考帧Ref2中的块指向另一参考帧Ref0Ref2。然后,运动场估计过程在并置的128×128区域中搜索经过每个64×64处理单元的所有8×8块分辨率的运动轨迹。接下来,在编码块级,一旦确定了参考帧,则可通过将经过的运动轨迹线性投影到期望参考帧上来导出运动矢量候选,例如将图15中的MVRef2转换成MV0或MV1
一旦找到所有候选运动矢量,则可以对候选运动矢量进行分类(sort)、合并(merge)和排列(rank),以建立四个最终候选。然后,可以用信号通知从列表中选择的参考运动矢量的索引,且可选地可以对运动矢量差进行编码。
在一些相关示例,例如AV1中,为了通过组合从相邻运动矢量获得的预测来减少块边界周围的预测误差,可通过分别沿着垂直方向和水平方向应用1-D滤波器,来将基于块的预测与来自顶部边缘和左侧边缘的二次预测器组合。该方法可称为重叠块运动补偿(OBMC)。
图16A和图16B分别示出了使用顶部相邻块(2)和左侧相邻块(4)来预测的示例性重叠区域(阴影区域)。可通过经由1-D升余弦滤波器递归地生成混合预测样本,来预测预测块(0)的阴影区域。
在一些相关示例,例如AV1中,可使用两种仿射预测模型,这两种仿射预测模型称为全局扭曲运动补偿和局部扭曲运动补偿。前者用信号通知帧与其参考之间的帧级仿射模型,而后者以最小开销隐式地处理变化的局部运动。可使用来自因果邻域的2D运动矢量,在块级处导出局部运动参数。基于1/64像素精度的8抽头插值滤波器,通过连续的水平和垂直剪切操作来实现这种仿射模型。
图17示出了示例性两步扭曲过程,其中,垂直剪切跟在水平剪切之后。在图17中,在局部扭曲运动补偿中实现仿射模型,该局部扭曲运动补偿首先执行水平剪切,然后执行垂直剪切。
IV.AV1中基于帧的超分辨率
图18示出了包括AV1中的帧级超分辨率的总体环路滤波流水线。在编码器侧,源帧首先可以以非规范的方式向下缩放(down-scale),且以较低分辨率进行编码。在解码器侧,可应用解块滤波器和受约束的方向增强滤波器(CDEF),以去除编码伪影,同时保留较低分辨率的边缘。然后,可仅沿着水平方向应用线性上采样滤波器,以获得全分辨率重建。之后,可选地可以以全分辨率应用环路恢复滤波器,以恢复在下采样和量化期间丢失的高频细节。
在一些相关示例,例如AV1中,超分辨率是在帧级用信号通知的特殊模式。每个已编码帧可以以在比例约束内的任意分辨率使用仅水平超分辨率模式。可以用信号通知是否在解码之后应用线性上采样和待使用的缩放比例。上采样率可具有9个可能的值,以d/8形式给出,其中d=8,9……16。在编码之前对应的下采样率可以是8/d。
给定输出帧维度W×H和上采样率d,编码器和解码器均可将低分辨率编码的帧维度计算成w×H,其中减小的宽度w=(8W+d/2)/d。线性向上缩放(upscale)过程接收降低分辨率的帧w×H,且输出具有如帧标头中指定的维度W×H的帧。AV1中的规范水平线性向上缩放器使用1/16相位线性8抽头滤波器来用于每一行的插值。
V.基于CU的超分辨率编码
在一些相关示例,例如AV1中,对帧级执行超分辨率。即,超分辨率以固定缩放比例应用于图片中的所有区域。然而,图片内的不同区域中的信号统计可能会有很大差异。因此,将下采样和/或上采样应用于所有区域,可能并不总是良好的率失真权衡。
可使用预处理方法和/或后处理方法来执行以自适应方式对图片区域应用下采样和/或上采样,例如使用掩码和/或分段信息选择图片区域用于进行下采样和/或上采样。然而,该过程不能保证率失真性能的改进优于不采用超分辨率的其它编码方法。
本公开包括块级超分辨率编码的方法。
根据本公开的各方面,可使用混合分辨率预测来仿真适于在块级使用的帧级超分辨率。
在一个实施例中,块级标志可用于指示降低分辨率的编码是否用于编码块。例如,如果块级标志被设置为第一预定值(例如,1),则针对块启用降低分辨率的编码。可通过使用降低分辨率的参考样本或图片来执行预测样本生成(例如,如上所述的AV1中的预测过程),以生成编码块的降低分辨率的预测块。然后,可使用降低分辨率的预测块来生成编码块的降低分辨率的重建块。最后,可以对降低分辨率的重建块进行上采样,回到编码块的全分辨率重建块。
在一个实施例中,如果块级标志被设置为第二预定值(例如,0),则可以以全分辨率(或原始分辨率)执行预测样本生成,然后执行全分辨率重建。
图19示出了根据本公开的一个实施例的使用块级标志的示例性实现。当块级标志为真(on)时,例如当块级标志等于第一预定值时,编码器侧的源块(1901)可通过下采样器模块(1920)进行下采样,以生成下采样源块(1902)。下采样源块(1902)可与降低分辨率的预测块(1903)组合,以生成下采样残差块(1904)。然后,可通过包括变换过程、量化过程和熵编码过程的模块(或多个模块,图19中未示出)将下采样残差块(1904)编码成已编码视频比特流。为了对源块(1901)进行解码,可通过熵解码过程、逆量化过程和逆变换过程来处理在解码器侧接收的已编码视频比特流,以生成下采样残差块(1911)。下采样残差块(1911)可与降低分辨率的预测块(1912)组合,以生成下采样重建块(1913)。可通过上采样模块(1930)对下采样重建块(1913)进行上采样,以生成源块(1901)的全分辨率重建块(1914)。应注意,可通过经由下采样器模块(1940)对源块(1901)的参考块的全分辨率重建块进行下采样,来生成降低分辨率的预测块(1912)。
当块级标志为假(off)时,例如当块级标志等于第二预定值时,不应用图19中的下采样模块(1920)和(1940)以及上采样器模块(1930)。下采样块(1902)-(1904)或降低分辨率的块(1911)-(1913)可变成全分辨率对应项。
在一个实施例中,对于大小为M×N的编码块,可以以分别沿着水平方向和垂直方向的下采样因子DX和DY对大小为M×N的参考块进行下采样,以生成大小为(M/DX)×(N/DY)的降低分辨率的预测块。M和N的示例值可包括但不限于256,128,64,32,16和8。下采样因子DX和DY是包括但不限于2,4和8的整数。
在一个实施例中,可基于每个CU、超级块、预测块、变换块、图块(tile)、已编码段、帧或序列,用信号通知或自适应地推断块级标志。
在一个实施例中,对于用于对降低分辨率的重建块进行上采样的上采样器模块(1930),可直接用信号通知上采样滤波器系数,或者可以用信号通知来自多组预定义系数中的一组滤波器系数的索引。
根据本公开的各方面,为了由当前块的运动矢量参考,当前块的空间相邻块和/或时间相邻块的运动矢量可利用与当前块相同或不同的分辨率进行缩放。
例如,当当前块以分别沿着水平方向和垂直方向的采样率(或下采样因子)DX和DY来编码时,具有采样率Dref,x和Dref,y的空间相邻块和/或时间相邻块的运动矢量可通过分别用于水平分量和垂直分量的
Figure BDA0003878851880000311
Figure BDA0003878851880000312
来缩放。
图20示出了根据本公开的一个实施例的示例性空间相邻运动矢量参考。
在一个实施例中,基于运动矢量参考方法(例如AV1中的空间相邻运动矢量参考方法),参考运动矢量列表建立过程可以按照如图20所指示的(1)至(8)的顺序、以W×H亮度样本为单位搜索相邻区域。顶部W×H区域Tij的运动矢量、左侧W×H区域Lij的运动矢量、左上方W×H区域TL的运动矢量以及右上方W×H区域TR的运动矢量按照
Figure BDA0003878851880000313
来缩放,然后用作候选列表中的参考运动矢量,其中,Dref是W×H区域的采样率,且Dcur是当前块待使用的采样率。W×H的示例值包括但不限于8×8。
图21示出了根据本公开的一个实施例的示例性时间相邻运动矢量参考。
在一个实施例中,基于运动矢量参考方法(例如AV1中的时间相邻运动矢量参考方法),可如下获得在当前帧中位于(blk_row,blk_col)处的当前块的运动矢量mf_mv_1和mf_mv_2。
如图21所示,在参考帧(reference_frame1)的指定搜索区域内位于(ref_blk_row,ref_blk_col)处的W×H区域的运动矢量ref_mv用于找到朝向先前帧(prior_frame)的运动轨迹。如果该轨迹穿过位于(blk_row,blk_col)处的当前块,则可给出reference_frame1和reference_frame2的运动矢量mf_mv_1和mf_mv_2,如下:
Figure BDA0003878851880000314
Figure BDA0003878851880000315
Figure BDA0003878851880000316
Figure BDA0003878851880000321
其中,‘.x’和‘.y’分别表示运动矢量的水平分量和垂直分量。
所导出的运动矢量mf_mv_1和mf_mv_2进一步按照
Figure BDA0003878851880000322
来缩放,然后用作候选列表中的参考运动矢量,其中Dref是W×H块的采样率,且Dcur是在当前帧中位于(blk_row,blk_col)处的当前块待使用的采样率。W×H的示例值可以是,但不限于8×8。
根据本公开的各方面,当前块的运动矢量候选可分类成两种(或多种)类别。如图14所示,位于当前块的紧邻顶行、紧邻左列和右上角的空间相邻块的运动矢量可分类成当前块的运动矢量候选的第一类别(例如,类别1),而所有其它候选分类成第二类别(例如,类别2)。在每个类别内,运动矢量候选可按照每个候选出现的计数数量的降序来排序。也就是说,在候选列表中相比第二运动矢量候选更频繁地出现的第一运动矢量候选,在候选列表中位于第二运动矢量候选之前。此外,第一类别(例如,类别1)的候选列表可与第二类别(例如,类别2)的候选列表连接(concatenate),以形成单个候选列表。
在一些实施例中,除了类别和每个类别内的计数数量之外,在建立候选列表时还可包含用于运动矢量候选的采样率。
在一个实施例中,来自与当前块具有相同的采样因子的相邻块的运动矢量候选可具有较高的优先级,以在给定相同的出现计数时在每个类别的候选列表中被选择。
在一个实施例中,可构建两个单独的候选列表。第一候选列表可仅包括来自具有相同采样率的相邻块的候选运动矢量。第二候选列表可包括来自具有不同采样率的相邻块的候选运动矢量。除了用信号通知候选列表中选择的参考运动矢量的索引之外,还可以用信号通知或推断使用哪个候选列表。
在一个实施例中,仅当第一候选列表中的候选的数量小于待索引和信号通知的参考运动矢量的指定数量时,才可扫描第二候选列表。
在一个实施例中,两个单独的候选列表可基于交错方式合并,以形成单个列表。例如,当来自两个列表的候选的总数大于或等于参考运动矢量的指定数量时,可按照列表中的条目位置的升序选择来自第一候选列表的一个候选和来自第二候选列表的另一个候选,直到组合列表中的参考运动矢量达到指定数量。
图22示出了根据本公开的一个实施例的用于仿射运动预测的示例性空间相邻运动矢量参考。
在一个实施例中,基于运动矢量参考方法(例如AV1中的仿射运动预测方法),给出了将在当前块中位于(x,y)处的样本投影到在参考帧中位于(x′,y′)处的参考块中的预测样本的仿射模型,如下:
Figure BDA0003878851880000331
可如下获得仿射参数{hij:i=1,2且j=1,2}。当前帧中的样本位置定义为(ak,bk)=(xk,yk)-(x0,y0),其中,k是与当前块具有相同的参考帧的相邻块的索引(k=0对应于当前块)。在图22的示例中,k=2,3,5和6。
然后,给出参考帧中的对应样本位置为(a'k,b'k)=(ak,bk)+Dref,k·(mvk.x,mvk.y)-Dcur·(mv0.x,mv0.y),其中,mvk.x和mvk.y分别是相邻块k(k=0对应于当前块)的运动矢量的水平分量和垂直分量。Dref,k和Dcur分别是相邻块k和当前块的采样率。
可获得最小二乘解为
Figure BDA0003878851880000332
Figure BDA0003878851880000333
其中,在图22中所示的示例中,P,q和r如下给出:
Figure BDA0003878851880000334
Figure BDA0003878851880000335
在以上描述中,假设仿射参数(h13,h23)对应于全分辨率下的平移运动矢量。当将具有采样率D的降低分辨率预测应用于块时,(h13,h23)需要相应地缩放成
Figure BDA0003878851880000336
这种向下缩放操作可降低运动矢量的数值精度(例如,将运动矢量下采样2N可使运动矢量丢弃其低N位)。为了保持与全分辨率域中的精度相同的精度,可增加运动矢量的原始分辨率。
根据本公开的各方面,当缩放相邻运动矢量以使用降低分辨率的编码模式对块进行编码时,可使用以下方法之一导出已缩放的运动矢量的水平分量和垂直分量。
在第一种方法中,当缩放因子是2的幂(例如,2N)时,则丢弃运动矢量的水平分量的低N位和运动矢量的垂直分量的低N位,以获得已缩放的运动矢量。
在第二种方法中,当缩放因子是2的幂(例如,2N)时,运动矢量首先加上舍入因子(例如,2N-1),然后丢弃运动矢量的水平分量的低N位和运动矢量的垂直分量的低N位,以获得已缩放的运动矢量。
在第三种方法中,当缩放因子不是2的幂时,可使用查找表来导出已缩放的运动矢量的水平分量和垂直分量的值。
VI.流程图
图23示出了概述根据本公开的一个实施例的示例性过程(2300)的流程图。在各个实施例中,过程(2300)由处理电路来执行,处理电路例如为终端设备(210)、终端设备(220)、终端设备(230)和终端设备(240)中的处理电路、执行视频编码器(303)的功能的处理电路、执行视频解码器(310)的功能的处理电路、执行视频解码器(410)的功能的处理电路、执行帧内预测模块(452)的功能的处理电路、执行视频编码器(503)的功能的处理电路、执行预测器(535)的功能的处理电路、执行帧内编码器(622)的功能的处理电路、执行帧内解码器(772)的功能的处理电路等。在一些实施例中,过程(2300)以软件指令实现,因此当处理电路执行该软件指令时,处理电路执行过程(2300)。
过程(2300)通常可以在步骤(S2310)处开始,在步骤(S2310)处,过程(2300)对视频比特流进行解码,以获得当前块的降低分辨率的残差块。然后,过程(2300)进行到步骤(S2320)。
在步骤(2320)处,过程(2300)确定块级标志被设置为预定值。预定值指示当前块以降低分辨率的编码方式进行编码。然后,过程(2300)进行到步骤(S2330)。
在步骤(S2330)处,过程(2300)通过对当前块的全分辨率参考块进行下采样,来生成当前块的降低分辨率的预测块。然后,过程(2300)进行到步骤(S2340)。
在步骤(S2340)处,过程(2300)基于降低分辨率的预测块和降低分辨率的残差块,生成当前块的降低分辨率的重建块。然后,过程(2300)进行到步骤(2350)。
在步骤(S2350)处,过程(2300)通过对降低分辨率的重建块进行上采样,来生成当前块的全分辨率重建块。然后,过程(2300)终止。
在一个实施例中,过程(2300)基于全分辨率参考块的大小和当前块的下采样因子,确定降低分辨率的预测块的大小。
在一个实施例中,过程(2300)从视频比特流中解码出当前块的块级标志。块级标志指示当前块以降低分辨率的编码方式进行编码。
在一个实施例中,过程(2300)从视频比特流中解码出滤波器系数或滤波器系数的索引。滤波器系数用于对降低分辨率的重建块进行上采样。
在一个实施例中,过程(2300)基于缩放因子,对当前块的第一相邻块的运动矢量进行缩放,缩放因子是当前块的下采样因子和第一相邻块的下采样因子的比值。过程(2300)构建当前块的第一运动矢量候选列表。第一运动矢量候选列表包括第一相邻块的已缩放的运动矢量。
在一个实施例中,过程(2300)响应于缩放因子是2的幂,基于移位操作来确定已缩放的运动矢量。在一个示例中,当缩放因子是2N时,则丢弃运动矢量的水平分量的低N位和运动矢量的垂直分量的低N位,以获得已缩放的运动矢量。在另一示例中,当缩放因子是2N时,运动矢量首先加上舍入因子(例如,2N-1),然后丢弃运动矢量的水平分量的低N位和运动矢量的垂直分量的低N位,以获得已缩放的运动矢量。
在一个实施例中,过程(2300)响应于缩放因子不是2的幂,基于查找表来确定已缩放的运动矢量。
在一个实施例中,过程(2300)基于当前块的下采样因子和第一相邻块的下采样因子,确定第一运动矢量候选列表中已缩放的运动矢量的优先级。
在一个实施例中,过程(2300)基于当前块的一个或多个第二相邻块,构建当前块的第二运动矢量候选列表。一个或多个第二相邻块中的每一个具有与当前块相同的下采样因子。过程(2300)基于当前块的一个或多个第三相邻块,构建当前块的第三运动矢量候选列表。一个或多个第三相邻块中的每一个具有与当前块不同的下采样因子。
在一个实施例中,过程(2300)基于第二运动矢量候选列表中的运动矢量候选的数量小于指定数量,扫描第三运动矢量候选列表。
在一个实施例中,过程(2300)通过以交错方式合并第二运动矢量候选列表和第三运动矢量候选列表,来确定当前块的第四运动矢量候选列表。
在一个实施例中,过程(2300)基于当前块的下采样因子,确定当前块的仿射参数。
VII.计算机系统
上述技术可实现为计算机软件,该计算机软件使用计算机可读指令,且物理地存储在一个或多个计算机可读介质中。例如,图24示出了适于实施所公开的主题的某些实施例的计算机系统(2400)。
可使用任何合适的机器代码或计算机语言对计算机软件进行编码,任何合适的机器代码或计算机语言可经受汇编、编译、链接或类似的机制以创建包括指令的代码,该指令可由一个或多个计算机中央处理单元(CPU)、图形处理单元(GPU)等直接执行,或者通过解释、微代码执行等执行。
指令可以在各种类型的计算机或其组件上执行,计算机或其组件例如包括个人计算机、平板计算机、服务器、智能电话、游戏设备、物联网设备等。
图24所示的计算机系统(2400)的组件本质上是示例性的,并不旨在对实施本公开的实施例的计算机软件的用途或功能的范围提出任何限制。组件的配置也不应解释为具有与计算机系统(2400)的示例性实施例中所示的组件中的任何一个组件或组件的组合相关的任何依赖或要求。
计算机系统(2400)可包括某些人机接口输入设备。此类人机接口输入设备可响应于一个或多个人类用户通过例如下述的输入:触觉输入(例如:击键、划动,数据手套移动)、音频输入(例如:语音、拍手)、视觉输入(例如:手势)、嗅觉输入(未描绘)。人机接口设备还可用于捕获不一定与人的意识输入直接相关的某些媒介,例如音频(例如:语音、音乐、环境声音)、图像(例如:扫描图像、从静止图像相机获取的拍摄图像)、视频(例如二维视频、包括立体视频的三维视频)等。
人机接口输入设备可包括下述中的一项或多项(每种中仅示出一个):键盘(2401)、鼠标(2402)、触控板(2403)、触摸屏(2410)、数据手套(未示出)、操纵杆(2405)、麦克风(2406)、扫描仪(2407)、相机(2408)。
计算机系统(2400)还可包括某些人机接口输出设备。此类人机接口输出设备可例如通过触觉输出、声音、光和气味/味道来刺激一个或多个人类用户的感官。此类人机接口输出设备可包括触觉输出设备(例如触摸屏(2410)的触觉反馈、数据手套(未示出)或操纵杆(2405),但还可以是不作为输入设备的触觉反馈设备)、音频输出设备(例如:扬声器(2409)、耳机(未描绘))、视觉输出设备(例如包括CRT屏幕、LCD屏幕、等离子屏幕、OLED屏幕的屏幕(2410),每种屏幕具有或没有触摸屏输入功能,每种屏幕具有或没有触觉反馈功能,其中的一些屏幕能够通过诸如立体图像输出之类的装置、虚拟现实眼镜(未描绘)、全息显示器和烟箱(未描绘)以及打印机(未描绘)来输出二维视觉输出或超过三维的输出。
计算机系统(2400)还可包括人类可访问存储设备及其关联介质,例如包括具有CD/DVD等介质(2421)的CD/DVD ROM/RW(2420)的光学介质、指状驱动器(2422)、可拆卸硬盘驱动器或固态驱动器(2423)、诸如磁带和软盘之类的传统磁性介质(未描绘)、诸如安全软件狗之类的基于专用ROM/ASIC/PLD的设备(未描绘)等。
本领域技术人员还应该理解,结合当前公开的主题所使用的术语“计算机可读介质”不涵盖传输介质、载波或其它暂时性信号。
计算机系统(2400)还可包括通向一个或多个通信网络(2455)的网络接口(2454)。一个或多个通信网络(2455)可例如是无线网络、有线网络、光网络。一个或多个通信网络(2455)可进一步是本地网络、广域网络、城域网络、车辆和工业网络、实时网络、延迟容忍网络等。一个或多个通信网络(2455)的示例包括诸如以太网之类的局域网、无线LAN、包括GSM、3G、4G、5G、LTE等的蜂窝网络、包括有线电视、卫星电视和地面广播电视的电视有线或无线广域数字网络、包括CANBus的车辆和工业网络等。某些网络通常需要附接到某些通用数据端口或外围总线(2449)的外部网络接口适配器(例如计算机系统(2400)的USB端口);如下所述,其它网络接口通常通过附接到系统总线而集成到计算机系统(2400)的内核中(例如,连接到PC计算机系统中的以太网接口或连接到智能手机计算机系统中的蜂窝网络接口)。计算机系统(2400)可使用这些网络中的任何一个网络与其它实体通信。此类通信可以是仅单向接收的(例如,广播电视)、仅单向发送的(例如,连接到某些CANbus设备的CANbus)或双向的,例如,使用局域网或广域网数字网络连接到其它计算机系统。如上所述,可以在那些网络和网络接口中的每一个上使用某些协议和协议栈。
上述人机接口设备、人机可访问的存储设备和网络接口可附接到计算机系统(2400)的内核(2440)。
内核(2440)可包括一个或多个中央处理单元(CPU)(2441)、图形处理单元(GPU)(2442)、现场可编程门区域(FPGA)(2443)形式的专用可编程处理单元、用于某些任务的硬件加速器(2444)、图形适配器(2450)等。这些设备以及只读存储器(ROM)(2445)、随机存取存储器(2446)、诸如内部非用户可访问的硬盘驱动器、SSD等之类的内部大容量存储器(2447)可通过系统总线(2448)连接。在一些计算机系统中,可以以一个或多个物理插头的形式访问系统总线(2448),以能够通过附加的CPU、GPU等进行扩展。外围设备可直接附接到内核的系统总线(2448)或通过外围总线(2449)附接到内核的系统总线(2448)。在一个示例中,屏幕(2410)可连接到图形适配器(2450)。外围总线的架构包括PCI、USB等。
CPU(2441)、GPU(2442)、FPGA(2443)和加速器(2444)可执行某些指令,这些指令可组合来构成上述计算机代码。该计算机代码可存储在ROM(2445)或RAM(2446)中。过渡数据还可存储在RAM(2446)中,而永久数据可例如存储在内部大容量存储器(2447)中。可通过使用高速缓存来进行通向任何存储设备的快速存储及检索,该高速缓存可与下述紧密关联:一个或多个CPU(2441)、GPU(2442)、大容量存储(2447)、ROM(2445)、RAM(2446)等。
计算机可读介质可以在其上具有执行各种由计算机实现的操作的计算机代码。介质和计算机代码可以是出于本公开的目的而专门设计和构造的介质和计算机代码,或者介质和计算机代码可以是计算机软件领域的技术人员公知且可用的类型。
作为示例而非限制,可由于一个或多个处理器(包括CPU、GPU、FPGA、加速器等)执行包含在一种或多种有形的计算机可读介质中的软件而使得具有架构(2400),特别是内核(2440)的计算机系统提供功能。此类计算机可读介质可以是与如上所述的用户可访问的大容量存储相关联的介质,以及某些非暂时性内核(2440)的存储器,例如内核内部大容量存储器(2447)或ROM(2445)。实施本公开的各个实施例的软件可存储在此类设备中并由内核(2440)执行。根据特定需要,计算机可读介质可包括一个或多个存储设备或芯片。软件可使得内核(2440),特别是其中的处理器(包括CPU、GPU、FPGA等)执行本文所描述的特定过程或特定过程的特定部分,包括定义存储在RAM(2446)中的数据结构以及根据由软件定义的过程来修改此类数据结构。附加地或替换地,可由于硬连线或以其它方式体现在电路(例如,加速器(2444))中的逻辑而使得计算机系统提供功能,该电路可替换软件或与软件一起运行以执行本文描述的特定过程或特定过程的特定部分。在适当的情况下,提及软件的部分可包含逻辑,反之亦然。在适当的情况下,提及计算机可读介质的部分可包括存储用于执行的软件的电路(例如集成电路(IC))、体现用于执行的逻辑的电路或包括两者。本公开包括硬件和软件的任何合适的组合。
虽然本公开已描述多个示例性实施例,但是存在落入本公开的范围内的修改、置换和各种替换等效物。因此,应理解,本领域技术人员将能够设计出许多虽然未在本文中明确示出或描述,但是体现了本公开的原理,因此落入本公开的精神和范围内的系统和方法。
附录A:首字母缩写词
ALF:自适应环路滤波器
AMVP:高级运动矢量预测
APS:自适应参数集
ASIC:专用集成电路
ATMVP:可选/高级时间运动矢量预测
AV1:开放媒体联盟视频1
AV2:开放媒体联盟视频2
BMS:基准集
BV:块矢量
CANBus:控制器区域网络总线
CB:编码块
CC-ALF:跨分量自适应环路滤波器
CD:光盘
CDEF:受约束的方向增强滤波器
CPR:当前图片参考
CPU:中央处理单元
CRT:阴极射线管
CTB:编码树块
CTU:编码树单元
CU:编码单元
DPB:解码器图片缓冲器
DPCM:差分脉冲编码调制
DPS:解码参数集
DVD:数字视频光盘
FPGA:现场可编程门区域
JCCR:联合CbCr残差编码
JVET:联合视频探索团队
GOP:图片群组
GPU:图形处理单元
GSM:全球移动通信系统
HDR:高动态范围
HEVC:高效视频编码
HRD:假想参考解码器
IBC:帧内块复制
IC:集成电路
ISP:帧内子划分
JEM:联合探索模型
LAN:局域网
LCD:液晶显示器
LR:环路恢复滤波器
LRU:环路恢复单元
LTE:长期演进
MPM:最可能模式
MV:运动矢量
OLED:有机发光二极管
PB:预测块
PCI:外围组件互连
PDPC:位置相关预测组合
PLD:可编程逻辑器件
PPS:图片参数集
PU:预测单元
RAM:随机存取存储器
ROM:只读存储器
SAO:样本自适应偏移
SCC:屏幕内容编码
SDR:标准动态范围
SEI:辅助增强信息
SNR:信噪比
SPS:序列参数集
SSD:固态驱动器
TU:变换单元
USB:通用串行总线
VPS:视频参数集
VUI:视频可用性信息
VVC:下一代视频编码
WAIP:广角帧内预测

Claims (20)

1.一种视频解码的方法,由解码器执行,所述方法包括:
对视频比特流进行解码,以获得当前块的降低分辨率的残差块;
确定块级标志设置为预定值,所述预定值指示所述当前块以降低分辨率的编码方式进行编码;
基于所述块级标志,通过对所述当前块的全分辨率参考块进行下采样,来生成所述当前块的降低分辨率的预测块;
基于所述降低分辨率的预测块和所述降低分辨率的残差块,生成所述当前块的降低分辨率的重建块;以及
通过对所述降低分辨率的重建块进行上采样,来生成所述当前块的全分辨率重建块。
2.根据权利要求1所述的方法,其特征在于,所述生成降低分辨率的预测块,包括:
基于所述全分辨率参考块的大小和所述当前块的下采样因子,确定所述降低分辨率的预测块的大小。
3.根据权利要求1所述的方法,其特征在于,所述确定包括:
从所述视频比特流中解码出所述当前块的所述块级标志,所述块级标志指示所述当前块以所述降低分辨率的编码方式进行编码。
4.根据权利要求1所述的方法,其特征在于,所述方法进一步包括:
从所述视频比特流中解码出滤波器系数或滤波器系数的索引,所述滤波器系数用于对所述降低分辨率的重建块进行上采样。
5.根据权利要求1所述的方法,其特征在于,所述方法进一步包括:
基于缩放因子,对所述当前块的第一相邻块的运动矢量进行缩放,所述缩放因子是所述当前块的下采样因子和所述第一相邻块的下采样因子的比值;以及
构建所述当前块的第一运动矢量候选列表,所述第一运动矢量候选列表包括所述第一相邻块的已缩放的运动矢量。
6.根据权利要求5所述的方法,其特征在于,所述缩放包括:
响应于所述缩放因子是2的幂,
基于移位操作来确定所述已缩放的运动矢量;以及
响应于所述缩放因子不是2的幂,
基于查找表来确定所述已缩放的运动矢量。
7.根据权利要求5所述的方法,其特征在于,所述方法进一步包括:
基于所述当前块的所述下采样因子和所述第一相邻块的所述下采样因子,确定所述第一运动矢量候选列表中所述已缩放的运动矢量的优先级。
8.根据权利要求1所述的方法,其特征在于,所述方法进一步包括:
基于所述当前块的一个或多个第二相邻块,构建所述当前块的第二运动矢量候选列表,所述一个或多个第二相邻块中的每一个具有与所述当前块相同的下采样因子;以及
基于所述当前块的一个或多个第三相邻块,构建所述当前块的第三运动矢量候选列表,所述一个或多个第三相邻块中的每一个具有与所述当前块不同的下采样因子。
9.根据权利要求8所述的方法,其特征在于,所述方法进一步包括:
基于确定所述第二运动矢量候选列表中的运动矢量候选的数量小于指定数量,扫描所述第三运动矢量候选列表。
10.根据权利要求8所述的方法,其特征在于,所述方法进一步包括:
通过以交错方式合并所述第二运动矢量候选列表和所述第三运动矢量候选列表,来确定所述当前块的第四运动矢量候选列表。
11.根据权利要求1所述的方法,其特征在于,所述方法进一步包括:
基于所述当前块的下采样因子,确定所述当前块的仿射参数。
12.一种装置,包括:
处理电路,所述处理电路配置成:
对视频比特流进行解码,以获得当前块的降低分辨率的残差块;
确定块级标志设置为预定值,所述预定值指示所述当前块以降低分辨率的编码方式进行编码;
基于所述块级标志,通过对所述当前块的全分辨率参考块进行下采样,来生成所述当前块的降低分辨率的预测块;
基于所述降低分辨率的预测块和所述降低分辨率的残差块,生成所述当前块的降低分辨率的重建块;以及
通过对所述降低分辨率的重建块进行上采样,来生成所述当前块的全分辨率重建块。
13.根据权利要求12所述的装置,其特征在于,所述处理电路进一步配置成:
基于所述全分辨率参考块的大小和所述当前块的下采样因子,确定所述降低分辨率的预测块的大小。
14.根据权利要求12所述的装置,其特征在于,所述处理电路进一步配置成:
从所述视频比特流中解码出所述当前块的所述块级标志,所述块级标志指示所述当前块以所述降低分辨率的编码方式进行编码。
15.根据权利要求12所述的装置,其特征在于,所述处理电路进一步配置成:
从所述视频比特流中解码出滤波器系数或滤波器系数的索引,所述滤波器系数用于对所述降低分辨率的重建块进行上采样。
16.根据权利要求12所述的装置,其特征在于,所述处理电路进一步配置成:
基于缩放因子,对所述当前块的第一相邻块的运动矢量进行缩放,所述缩放因子是所述当前块的下采样因子和所述第一相邻块的下采样因子的比值;以及
构建所述当前块的第一运动矢量候选列表,所述第一运动矢量候选列表包括所述第一相邻块的已缩放的运动矢量。
17.根据权利要求16所述的装置,其特征在于,所述处理电路进一步配置成:
响应于所述缩放因子是2的幂,
基于移位操作来确定所述已缩放的运动矢量;以及
响应于所述缩放因子不是2的幂,
基于查找表来确定所述已缩放的运动矢量。
18.根据权利要求16所述的装置,其特征在于,所述处理电路进一步配置成:
基于所述当前块的所述下采样因子和所述第一相邻块的所述下采样因子,确定所述第一运动矢量候选列表中所述已缩放的运动矢量的优先级。
19.根据权利要求12所述的装置,其特征在于,所述处理电路进一步配置成:
基于所述当前块的一个或多个第二相邻块,构建所述当前块的第二运动矢量候选列表,所述一个或多个第二相邻块中的每一个具有与所述当前块相同的下采样因子;以及
基于所述当前块的一个或多个第三相邻块,构建所述当前块的第三运动矢量候选列表,所述一个或多个第三相邻块中的每一个具有与所述当前块不同的下采样因子。
20.一种非暂时性计算机可读存储介质,存储有指令,当所述指令由至少一个处理器执行时,使得所述至少一个处理器执行以下操作:
对视频比特流进行解码,以获得当前块的降低分辨率的残差块;
确定块级标志设置为预定值,所述预定值指示所述当前块以降低分辨率的编码方式进行编码;
基于所述块级标志,通过对所述当前块的全分辨率参考块进行下采样,来生成所述当前块的降低分辨率的预测块;
基于所述降低分辨率的预测块和所述降低分辨率的残差块,生成所述当前块的降低分辨率的重建块;以及
通过对所述降低分辨率的重建块进行上采样,来生成所述当前块的全分辨率重建块。
CN202180027161.8A 2021-01-14 2021-09-30 用于视频编码的方法和装置 Pending CN115398918A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202163137350P 2021-01-14 2021-01-14
US63/137,350 2021-01-14
US17/488,027 2021-09-28
US17/488,027 US11924408B2 (en) 2021-01-14 2021-09-28 Method and apparatus for video coding
PCT/US2021/052967 WO2022154835A1 (en) 2021-01-14 2021-09-30 Method and apparatus for video coding

Publications (1)

Publication Number Publication Date
CN115398918A true CN115398918A (zh) 2022-11-25

Family

ID=82322348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180027161.8A Pending CN115398918A (zh) 2021-01-14 2021-09-30 用于视频编码的方法和装置

Country Status (6)

Country Link
US (2) US11924408B2 (zh)
EP (1) EP4088474A4 (zh)
JP (1) JP7462792B2 (zh)
KR (1) KR20220104041A (zh)
CN (1) CN115398918A (zh)
WO (1) WO2022154835A1 (zh)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9154808B2 (en) * 2005-01-14 2015-10-06 Thomson Licensing Method and apparatus for INTRA prediction for RRU
US8054885B2 (en) 2006-11-09 2011-11-08 Lg Electronics Inc. Method and apparatus for decoding/encoding a video signal
US8514942B2 (en) 2008-12-31 2013-08-20 Entropic Communications, Inc. Low-resolution video coding content extraction
RU2543954C2 (ru) * 2009-01-26 2015-03-10 Томсон Лайсенсинг Упаковка кадров для кодирования видео
EP2526698A1 (en) 2010-01-22 2012-11-28 Thomson Licensing Methods and apparatus for sampling -based super resolution video encoding and decoding
CN111741312B (zh) * 2014-10-31 2024-03-19 三星电子株式会社 用于对运动矢量进行编码/解码的方法和装置
US10560718B2 (en) 2016-05-13 2020-02-11 Qualcomm Incorporated Merge candidates for motion vector prediction for video coding
CN111937385B (zh) 2018-04-13 2024-04-16 皇家Kpn公司 基于帧级超分辨率的视频编码
US11197025B2 (en) * 2019-06-21 2021-12-07 Qualcomm Incorporated Signaling of matrix intra prediction parameters in video coding
US20220201307A1 (en) 2020-12-23 2022-06-23 Tencent America LLC Method and apparatus for video coding

Also Published As

Publication number Publication date
EP4088474A4 (en) 2023-07-12
US11924408B2 (en) 2024-03-05
US20240155113A1 (en) 2024-05-09
EP4088474A1 (en) 2022-11-16
WO2022154835A1 (en) 2022-07-21
JP7462792B2 (ja) 2024-04-05
KR20220104041A (ko) 2022-07-25
JP2023520594A (ja) 2023-05-17
US20220224883A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
CN112789850B (zh) 一种视频编解码方法、装置、设备和介质
CN113545061B (zh) 视频编解码方法和装置、存储介质以及包括处理电路的装置
CN113261298A (zh) 用于视频编码的方法和装置
CN110944185B (zh) 视频解码的方法和装置、计算机设备及存储介质
CN110719477B (zh) 视频编解码的方法、装置、计算机设备及计算机可读存储介质
CN113557724A (zh) 视频编解码的方法和装置
CN113597763A (zh) 视频编解码的方法及装置
CN113557527A (zh) 通用视频编解码中色彩变换的方法和装置
CN112235573B (zh) 视频编解码的方法、装置、电子设备、存储介质
CN111953996A (zh) 视频解码的方法和装置
JP2023517350A (ja) ビデオコーディングのための方法および装置
CN113574895A (zh) 帧间位置相关的预测组合模式的改进
CN116569553A (zh) 采用样本填充进行帧内块复制预测的方法和装置
CN116830581A (zh) 用于运动矢量差的经改进的信令方法和装置
CN117063471A (zh) 用于运动矢量差的联合信令方法
CN116368802A (zh) 用于约束具有残差rice编码扩展的范围扩展的标志信令的技术
CN115486078A (zh) 多参考行选择方案的低存储设计
CN115486077A (zh) 针对变换系数的符号图的改进熵编码
CN115486075A (zh) 视频编解码的方法和装置
CN115152208A (zh) 视频解码的方法和设备
CN112437306A (zh) 视频编解码方法、装置、计算机设备和存储介质
JP7462792B2 (ja) ビデオ・コーディングのための方法及び装置
CN113395524B (zh) 视频解码方法、装置和电子设备
CN116783888A (zh) 改进的帧内模式编码
CN116897533A (zh) 图像和视频压缩中交叉分量预测的自适应参数选择

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination